Publications in Learning and Memory
Dimov, C. M., Anderson, J. R., Betts, S. A., & Bothell, D. (2023). An Integrated Model of Collaborative Skill Acquisition: Anticipation, Control Tuning, and Role Adoption. Cognitive Science, 47:e13303. https://doi.org/10.1111/cogs.13303
Stocco, A., Rice, P., Thomson, R., Smith, B. M., Morrison, D., & Lebiere, C. (2023). An Integrated Computational Framework for the Neurobiology of Memory Based on the ACT-R Declarative Memory System. Computational Brain and Behavior. https://doi.org/10.1007/s42113-023-00189-y
Anderson, J. R., Betts, S., Byrne, M. D., Schooler, L. J., & Stanley, C. (2022, December 22). The Environmental Basis of Memory. Psychological Review. Advance online publication. https://dx.doi.org/10.1037/rev0000409
Morita, J., Miwa, K., Maehigashi, A., Terai, H., Kojima, K., and Ritter, F. E. (2020). Cognitive Modeling of Automation Adaptation in a Time Critical Task. Frontiers in Psychology (section Cognitive Science), doi: 10.3389/fpsyg.2020.02149.
Anderson, J.R., Borst, J.P., Fincham, J.M., Ghuman, A.S., Tenison, C., & Zhang, Q. (2018). The Common Time Course of Memory Processes Revealed. Psychological Science, 29(9), 1463-1474.
Stocco, A. Murray, N. L., Yamasaki, B. L., Renno, T., Nguyen, J., & Prat, C. S. (2017). Individual differences in the Simon effect are underpinned by differences in the competitive dynamics in the basal ganglia: An experimental verification and a computational model. Cognition, 164, 31-45.
Morita, J., Konno, T., Okuda, J., Samejima, K., Li, G., Fujiwara, M., and Hashimoto, T. (2017). Implicit Memory Processing in the Formation of a Shared Communication System. in Proceedings of the 15th International Conference on Cognitive Modeling.
Moon,J., Fincham,J.M., Betts,S.A., & Anderson,J.R.,(2015). End effects and cross-dimensional interference in identification of time and length: Evidence for a common memory mechanism. Cognitive, Affective, & Behavioral Neuroscience, 15, 680-695.
Lebiere, C., Bothell, D., Morrison, D., Oltramari, A., Romero, O., Thomson, R., & Vinokurov, J. (2015). Strong CogSci: Guidance from Cognitive Science On the Design of a Test of Artificial Intelligence. In Rossi, F (Ed), Beyond The Turing Test Workshop Proceedings of the 29th AAAI Conference. Austin, TX.
Lebiere, C., Bennati, S., Thomson, R., Shakarian, P., & Nunes, E. (2015). Functional Cognitive Models of Malware Identification. In N. Taatgen (Ed), Proceedings of the 13th Annual Conference on Cognitive Modeling. Groningen, Netherlands.
Halbrügge, M., Quade, M., & Engelbrecht, K.-P. (2015) How can Cognitive Modeling Benefit from Ontologies? Evidence from the HCI Domain. In Bieger, J., Goertzel, B., & Potapov, A. (Eds.) Proceedings of Artificial General Intelligence 2015, pp. 261–271. Berlin: Springer.
Pyke, A., Betts, S., Fincham, J. M., & Anderson, J. R. (2014). Visuospatial referents facilitate the learning and transfer of mathematical operations: Extending the role of the angular gyrus. Cognitive, Affective, & Behavioral Neuroscience, 1-22.
Thomson, R., Bennati, S., & Lebiere, C. (2014). Extending the Influence of Contextual Information in ACT-R using Buffer Decay. In P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings of the 36th Annual Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.
Borst, J.P., Schneider, D.W., Walsh, M.M., & Anderson, J.R. (2013). Stages of Processing in Associative Recognition: Evidence from Behavior, Electroencephalography, and Classification. Journal of Cognitive Neuroscience, 25(12), 2151-2166.
Lebiere, C., Pirolli, P., Thomson, R., Paik, J., Rutledge-Taylor, M., Staszewski, J., & Anderson, J. (2013). A Functional Model of Sensemaking in a Neurocognitive Architecture. Computational Intelligence and Neuroscience; Special Issue on Neurocognitive Models of Sense Making.
Thomson, R., Lebiere, C., Rutledge-Taylor, M., Staszewski, J., & Anderson, J. R. (2012). Understanding Sensemaking Using Functional Architectures. In T. Jambrowski (Ed.) Proceedings of the 21st Annual Behavior Representation in Modeling and Simulation Conference. Dayton, OH.
Lee, H. S., Anderson, A., Betts, S., & Anderson, J. R. (2011). When does provision of instruction promote learning? In L. Carlson, C. Hoelscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 3518-3523). Austin, TX: Cognitive Science Society.
Mehlhorn, K., Taatgen, N.A., Lebiere, C., & Krems, J.F. (2011). Memory Activation and the Availability of Explanations in Sequential Diagnostic Reasoning. Journal of Experimental Psychology: Learning, Memory, & Cognition, 37, 1391-1411.
Janssen, C.P., Young, R.M., Ament, G.A., Back, J., Brumby, D.P., Cox, A.L., & Grace, J. (2010). Cognitive Modelling at the UCL Interaction Centre. In Proceedings of the European ACT-R Workshop 2010. Groningen, Netherlands.
Chikhaoui, B., Pigot, H., Beaudoin, M., Pratte, G., Bellefeuille, P. & Laudares, F. (2009). Learning a song: an ACT-R Model. In proceedings of the International Conference on Computational Intelligence (pp. 405-410), Oslo, Norway.
Evertsz, R., Busetta, P., Pedrotti, M., Ritter, F. E., & Bittner, J. L. (2008). CoJACK--Achieving principled behaviour variation in a moderated cognitive architecture. In Proceedings of the 16th Conference on Behavior Representation in Modeling and Simulation. 08-BRIMS-025. Orlando, FL: U. of Central Florida.
Gunzelmann, G., Gluck, K. A., Kershner, J., Van Dongen, H. P. A., & Dinges, D. F. (2007). Understanding decrements in knowledge access resulting from increased fatigue. In The 29th Annual Conference of the Cognitive Science Society. Nashville, Tennessee, USA.
Pavlik, P. I., Jr., Presson, N., Dozzi, G., Wu, S.-M., MacWhinney, B., & Koedinger, K. (2007). The FaCT (fact and concept) system: A new tool linking cognitive science with educators. In proceedings of the 29th Annual Conference of the Cognitive Science Society. Nashville, TN, USA.
Ritter, F. E., Schoelles, M., Klein, L. C., & Kase, S. E. (2007). Modeling the range of performance on the serial subtraction task. In Proceedings of the 8th International Conference on Cognitive Modeling. Lewis, R. L., Polk, T. A., Laird, J. L., (eds.). 299-304. Oxford, UK: Taylor & Francis/Psychology Press.
Reder, L. M., Oates, J. M., Dickison, D., Anderson, J. R., Gyulai, F., Quinlan, J. J., Ferris, J. L., Dulik, M., & Jefferson, B. (2007a). Retrograde faciliation under midazolam: The role of general and specific interference. Psychonomic Bulletin & Review, 14(2), 261-269.
Reder, L. M., Proctor, I., Anderson, J. R., Gyulai, F., Quinlan, J. J., & Oates, J. M. (2006). Midazolam does not inhibit association formation, just its storage and strengthening. Psychopharmacology, 188, 462-471.
Ritter, F. E., Haynes, S. R., Cohen, M., Howes, A., John, B., Best, B. J., Lebiere, C., Jones, R. M., Crossman, J., Lewis, R. L., St. Amant, R., McBride, S. P., Urbas, L., Leuchter, S., & Vera, A. (2006). High-level behavior representation languages revisited. Symposium at Trieste: Proceedings of the Seventh International Conference on Cognitive Modeling (pp. 404-407). Trieste, Italy.
Fu, W.-T., Bothell, D., Douglass, S., Haimson, C., Sohn, M.-H., & Anderson, J. A. (2006), Toward a Real-Time Model-Based Training System. Interacting with Computers, 18(6), 1216-1230.
Terao, A., Koedinger K., Sohn, M-H., Anderson, J. R., & Carter, C. S. (2004). An fMRI study of the interplay of visual-spatial systems in mathematical reasoning. In Proceedings of the 26th Annual Conference of the Cognitive Science Society (pp. 1327-1332). August 4-7, Chicago, USA.
Ritter, F. E., Reifers, A., Klein, L. C., Quigley, K., & Schoelles, M. (2004). Using cognitive modeling to study behavior moderations: Pre-task appraisal and anxiety. In Proceedings of the Human factors and Ergonomics Society (pp. 2121-2125). Santa Monica, CA: Human Factor and Ergonomics Society.
Anderson, J. R., Kline, P. J., & Beasley, C. M. (1980). Complex learning processes. In R. Snow, P. Federico, and W. Montague (Eds.) Aptitude, learning, and instruction: Cognitive processes analyses, Volume II, 199-232. Hillsdale, NJ: Erlbaum.