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Abstract

Human’s systematic cognitive processes are vulnerable to
misinformation-related effects. For example, misleading in-
formation can have a lasting influence even after it has been
corrected. This continued influence effect (CIE) was found to
be resistant to mitigation in experiments. Leading explanations
are memory-based, but some include emotion and/or reason-
ing. However, mixed findings have hindered our understand-
ing of the phenomenon. We argue that cognitive models are
uniquely suited to help clarify these mixed findings and the-
ories through specification of underlying mechanisms, testing
hypotheses, and identifying why and when mitigations are ef-
fective. We start by discussing relevant experimental findings,
then present an updated cognitive model of the CIE, compare
model fits to two experiments across three model variations,
and discuss the results along with recent exploratory analyses
with previous experiments.

Keywords: ACT-R; Cognitive modeling; misinformation;
continued influence effect; knowledge representation; affect

Introduction

Humans often leverage heuristics that exploit statistical reg-
ularities (i.e., cues) in the environment, which can lead to
successes (Gigerenzer & Gaissmaier, [2011) and systematic
failures (Kahneman, |2011). Failures are usually related to
applying a heuristic in the wrong context or when the envi-
ronment is “hostile” and the diagnostic cues are misleading,
limited, or manipulated (Stanovichl |2018)). These heuristic
vulnerabilities were successfully leveraged to spread misin-
formation in the past (Lewandowsky et al., 2013) and can
now be spread more quickly (Vosoughi et al. 2018). Here,
we focus on a specific vulnerability, the continued influence
effect (CIE; (Johnson & Seifert, [1994; Lewandowsky et al.,
2012))), where misinformation is presented and has a persis-
tent effect on decisions even after it has been corrected.

The CIE

CIE experiments typically present two narratives about sce-
narios (i.e., events), where one contains misinformation and
the second has a correction. In general, corrections reduce,
but do not eliminate misinformation reliance (Ecker & An-
tonio, 20215 [Ecker et al., 2017; Johnson & Seifert, (1994).
Explanations suggest memory is permanent, but varies in
strength due to re-activation or association with different in-
formation (Wilkes & Leatherbarrow, 1988). One account
focuses on issues with memory retrieval, such as compet-
ing memory activations (Ayers & Reder, [1998; [Ecker et al.

2010), recency effects (Ecker et al., |2015), or familiarity-
based fluency (Ecker et al. 2011). These processes can
lead to errors. However, if detected, errors can be avoided
through directed retrievals and/or reasoning, leading to more
thorough consideration of information (Pennycook & Rand),
2019; Stanovich, 2018]). An alternative account involves the
preference for mental models that are more complete or co-
herent, which may involve causal information, believability,
or interconnected details (Gentner, |1983; Johnson & Seifert,
1994; [Lewandowsky et al.l 2012; [Wilkes & Leatherbarrow,
1988). Misinformation may be preferred when it is part of
a more complete mental model or the correction cannot be
integrated, which may create a feeling of discomfort (Ecker
et al., [2011; [Susmann & Wegener, 2022). Feelings alone
can also influence memories by making them easier to recall
(Yonelinas & Ritchey, 2015), with a greater effect for nega-
tive information (Vaish et al., 2008; /Williamson et al.,[2019).
However, the extent emotion influences memory related to
misinformation is still unclear (Phillips et al., 2024).

Research covered a range of correction methods to miti-
gate and explain the CIE (Prike & Ecker, [2023} |Walter &
Tukachinsky, [2020), and some individual differences (e.g.,
Brydges et al.| (2018)), however, findings are rather incon-
sistent. There are likely interactions between the content of
events, sources of influence, individual differences (e.g., prior
experience), and mitigations (Hough et al., [Under review).
We argue computational cognitive models could help provide
a clearer understanding of the CIE by testing explanations in
different contexts and help to determine how, when, and why
context and sources of influence interact. Here, we extend
a basic computational cognitive model framework (Hough &
Larue, |2024) by including an additional model variant and ex-
perimental dataset to show differences resulting from degree
of encoding, affect, and memory rumination.

Modeling the CIE

We implemented our CIE model within the ACT-R cognitive
architecture (Anderson, 2007). ACT-R is a hybrid cognitive
architecture with symbolic and sub-symbolic structures, and
modules representing systems of the mind. The CIE model
uses the goal module for the model’s focus and storage of
goal-relevant information. The vision module allows visual
perception, and the imaginal module serves as temporary
working memory. The declarative memory module stores in-



formation as chunks and captures memory dynamics. The
procedural memory module uses condition-action rules (i.e.,
productions) to represent knowledge about how to do things
and to drive behavior. Here we focus on declarative memory
and affect mechanisms to capture the CIE and compare three
model variants we used to fit data from two experiments.

Declarative Memory and Affect Mechanisms

Through chunk activation, ACT-R declarative memory can
capture memory retrieval and mental model effects. Chunks
are the basic unit of declarative memory. They include slots
with values and have an activation value corresponding to
the probability and speed of its retrieval in a given situation
(Anderson, 2007). Chunks often compete because they match
a retrieval request, but the chunk with the highest activation
is more likely to be retrieved. Here, we reduced the terms of
the standard activation equation to just base level activation,
B;, which represents recency and frequency of chunk use, and
activation noise, €;, representing variability in memory. The
base level term, B;, is important for opposing dynamics of
learning with experience and forgetting across time: n;, is
the number of times chunk i has been used or retrieved, #; is
elapsed time in seconds since the j™ retrieval, and d € [0, 1]
is a decay parameter. If used, the base-level constant, f;, is a
constant offset to the equation.

1
Ai=Bj+¢+ (Vixvw)+ (Arixaw) B;=log <Ztijd> +Bi (1)
j=1

We added valuation, V;, and arousal, Ar;, terms to the
equation, with their accompanying weights (i.e., vw and aw).
These terms approximate emotion dynamics based on the
core affect theory of emotion (Russell & Barrett, [1999),
which focuses on feelings underlying emotion using two di-
mensions: valuation (positive or negative) and arousal (mag-
nitude). Previous work developed a valuation module (Juvina
et al. 2018)) to compute the valuation, V;, and arousal, Ar;,
terms. The current valuation of chunk i at the j" use is based
on its previous valuation V;(j — 1) and the difference between
the previous valuation and current reward R;(j) multiplied by
a valuation learning rate av. Arousal is the absolute magni-
tude of valuation and represents the importance of a chunk:

Vi(j) =Vili—D+av[Ri(j)) =Vi(j—1)]  Ari(j)=abs(Vi(j) (2)

Valuation and arousal are updated each time a chunk is ref-
erenced within a time window. They affect activations and
can be used as retrieval cues. This aligns with research sug-
gesting emotional memories are more accessible (Buchanan|
2007) and/or easier to recall (Yonelinas & Ritchey, [2015).
For example, if negative affect was associated with a chunk,
its activation would increase. It could persist over time and
affect decision-making despite the accumulation of conflict-
ing, more neutral, evidence.

Model Descriptions and Processes

In this paper, we compare and contrast three CIE model vari-
ants: Memory, Memory-affect, and Updated-memory. De-

Table 1: Declarative and valuation parameters for the |Ecker
and Antonio| (2021) experiment and Bruns et al.| (2023) ex-
periment (in parentheses if different).

Memory Memory-affect Updated-memory
Retrieval threshold 0 0 0
Base-level decay 0.5 0.5 0.5
Activation noise 0.25 0.25 0.45 (0.25)
Base-level constant 2.5 2.5 0
Declarative finst num 1000 1000 1000
Declarative finst span 1000 1000 1000
Initial valuation - 1 -
Valuation weight - 2
Valuation learning - 1
Valuation time window - 0.5
Arousal weight - 1
Word affect scaling - 10 (1)

Source affect 0.4-14 (5)

spite having features of both the memory error and mental
model explanations above, we did not explicitly create any
variant to directly represent them. Variants have features of
both, but we argue the Memory and Memory-affect variants
better align with the memory encoding/retrieval error expla-
nation, and the Updated-memory with the mental model ex-
planation. The Memory variant was used as a base for the
other two model variants. Changes from the base model (i.e.,
Memory) included parameter values (Table [I)), productions
(Figure [T), and/or the activation equation (Equation [I)). We
start by describing the Memory variant and move on to the
other two variants.

Memory The Memory variant used six declarative memory
parameters and the first three were previously discussed: 1)
base-level constant, B;, was set to 2.5 (0 is default), 2) base-
level decay, d was set to the default of .5, 3) activation noise,
€;, was set to .25 (recommended range is .2-.8), 4) Retrieval
threshold restricts which chunks can be retrieved based on
activation and was set at the default value of 0. The last two
parameters: 5) declarative finsts that sets number of items
marked as retrieved, and 6) declarative finst span that sets the
time items remain marked, were both essentially shut off by
setting higher than recommended (i.e., 1000) to prevent an
endless loop of retrievals.

Table 2: Full football scenario (Ecker & Antonio, [2021) with
misinformation in bold and correction italicized.

Football Scenario
StockhoIm FC star player Emil Larsson will not be available for the opening match
of the Swedish Superettan league season.

Larsson is believed to have tested positive to performance enhancing drugs.

The 27 year-old signed with Stockholm at the beginning of the 2012 season and
has since become one of their strongest players.

Larsson scored 23 goals in his first season with Stockholm, and gave 11 assists.

Club president Asgeir Soerenssen, who recently refused several lucrative offers to
sell Larsson, was not available for comments.

Recent acquisition Lucas Johansson is predicted to take Larsson’s position in the
opening round match against arch-rival Goteborg SK.

Oliver Lindgren, SOURCE, stated that “I do not believe that Larsson has engaged
in drug use.”

Under recently introduced rules, players suspended for drug-related offenses will
not receive pay throughout the duration of their suspension.




Table 3: Football scenario parsed into word pairs/chunks and
categorized as neutral, misinformation, and correction.

Type Word Pairs/chunks

Neutral (Stockholm star-player) (star-player Emil-Larsson) (Emil-
Larsson not-available) (not-available opening-match) (club-
president Asgeir-Soerenssen) (Asgeir-Soerenssen refused-sale)
(refused-sale Emil-Larsson) (Stockhold aquired) (aquired
Lucas-Johansson) (Lucas-Johansson replace) (replace Asgeir-
Soerenssen) (performance-drugs suspended) (suspended no-

pay)

Misinformation  (Emil-Larsson tested) (tested positive) (positive performance-
drugs)

Correction (Oliver-Lindgren source) (source statement) (statement I-

do-not-believe-that-Larsson-has-engaged-in-drug-use) (Emil-
Larsson not-engaged) (not-engaged performance-drugs)

The Memory variant focused on retrievals and chunk ac-
tivation changes based on declarative memory dynamics to
capture competition between misinformation and corrections.
There are two main sets of processes that: 1) read text and
create chunks, and 2) navigate chunks in memory by chain-
ing them together based on associations and then giving a
simulated summary of the content (Figure [T). Before infor-
mation was presented to the model, we parsed the experimen-
tal materials (Table[2) into word pairs (Table[3). We provided
an in-context learning example to ChatGPT (e.g., Romero et
al.[(2023)) and had to use the output as a guide to manually
generate words pairs for most of the materials due to dra-
matic changes to ChatGPT (we are working on a better long-
term solution). During the first set of processes, the model
is presented with word pairs in Table 3 one at a time. The
model finds, attends, and reads a word. If the model can’t as-
sociate words (i.e., only one word was read), then searches
for another word to read (i.e., keep-reading). Once two
words are read, the model attempts to retrieve (i.e., retrieve-
assoc) a matching chunk and if not possible, it creates a new
chunk (i.e., create-assoc). Once all experimental materials are
read and encoded into memory, the model starts the memory
chaining processes. It starts by openly retrieving a chunk for
a random scenario (i.e., retrieve-scenario-info) and encoding
it (i.e., encode-scenario-info). Next, it attempts to find the
root or start of chunk chain through back-chaining (i.e., find-
chain-root) using the first word of the encoded chunk (e.g.,
tested positive) and trying to retrieve a chunk with a match-
ing second word (e.g., Emil-Larsson tested).

If a chunk was retrieved, it is encoded (i.e., encode-back-
chain), otherwise the root is considered found and back-
chaining stops (i.e., found-root). Next, the model attempts
to parallel chain using the first word of the root (e.g., Emil-
Larsson not-available) to find a chunk with the same first
word (e.g., Emil-Larrson tested). Parallel chaining prevents
some chunks from being neglected and can link informa-
tion from different chains. If such a chunk is retrieved, it
is encoded (i.e., encode-parallel-chain) and if not, forward
chaining is started (i.e., start-forward-chain). The model uses
the second word of the currently encoded chunk (e.g., Emil-
Larsson tested) to find a chunk with a matching first word
(e.g., tested positive). If a chunk is retrieved, it is encoded
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Figure 1: CIE Model Framework Processes.

(i.e., encode-forward-chain) and if not, the chain is consid-
ered complete and the model starts a new chain (i.e., find-
new-info). If the open retrieval (i.e., retrieve-scenario-info)
fails because chunks are marked as recently retrieved and/or
their activations are below the retrieval threshold, memory
navigation is complete and the model prepares a summary an-
swer (i.e., start-answer). The model uses the same navigation
processes, excluding parallel chaining (see dotted lines), to
find the most active chunk and the chain it belongs to; which
is given as the answer (i.e., answer).

Memory-affect The Memory-affect variant included val-
uation and arousal terms that were added to the activation
equation (equation [I)), and affect was associated with con-
tent when reading and reinforced during retrieval/encoding
(red borders in Figure [T). We used valance and arousal val-
ues scaled from 0-1 (i.e., below .5 is negative and above
is positive) from the 20,000 word NRC Emotion Lexicon
Mohammad| (2018)) to specify affect associated with words.
We collapsed valence and arousal values into a single posi-
tive reward (i.e., greater than 0) so that negative valence had
a greater value, arousal x (1 — valence). We scaled values
(Table 1) so that they were high enough to influence chunk
activations. We specified source affect based on source cred-
ibility and trustworthiness ratings collected in the two exper-
iments we used for model fitting (Bruns et al., 2023} [Ecker,
& Antonio, 2021). These values ranged from .4-1.4 across
the five source conditions for one experiment (Ecker & Anto-
nio| 2021) and were set to 5 for a single source for the other
(Bruns et al.l [2023) Based on previous work with the valua-
tion module (Juvina et al., [2018])), we used rewards to update
both valuation and arousal terms in the activation equation.
These rewards were scaled differently based on valance and
arousal values for words (0-1 * scaling value) and ratings for
information sources for the two experiments (Table [T). To
align with previous research (Vaish et al., [2008; Williamson
et al., 2019), words with negative valence increased activa-
tions more than positive. We used five valuation parameters:



1) valuation weight (2), 2) valuation alpha or learning rate
(1), 3) valuation time window (.5), 4) arousal weight (1), and
5) initial chunk valuation (1).

Updated-memory We leveraged declarative finsts to re-
strict retrievals to chunks not recently retrieved for the open
retrieval (i.e., retrieve-scenario-info) and during backward,
parallel, and forward chunk chaining to prevent infinite chain-
ing loops with additional datasets. The downside was that
some chunk chains were unable to complete because some
of their chunks had already been retrieved. Therefore, inter-
connected chunks (i.e., chunks that can chain or link to many
other chunks) were not retrieved as much as originally in-
tended and their activation was less affected by memory nav-
igation. We argue that this results in a less coherent men-
tal model. The Updated-memory variant was developed to
address this issue. Our initial solution, which still had limi-
tations that we address in the discussion, was to modify the
open retrieval (i.e., retrieve-scenario-info) that started the pro-
cess for each chain and to reset declarative finsts (i.e., chunks
marked as retrieved) at the end of each chain. We created an-
other list of non-retrieved chunks so that the model would re-
trieve each chunk for a given scenario and find the chain it be-
longed to. The result is that more interconnected chunks (i.e.,
are present in more chains) are retrieved significantly more.
In addition, we eliminated the parallel chaining productions
(Figure , set the base-level constant, [3;, to the default of 0,
and increased activation noise to .45 (Table[T).

Ecker and Antonio| (2021) Experiment 1

In experiment 1 from [Ecker and Antonio| (2021)), 53 partic-
ipants (62% female and mean age 18.6) from the Univer-
sity of Western Australia read narratives about six scenar-
ios (i.e. anti-viral drug, fishing restrictions, food additives,
football scandal, joint condition treatments, and water con-
tamination) with embedded misinformation and corrections.
Each scenario had a different correction source that varied
in “quality” (i.e., no retraction [NoR], low expertise/trust
[LELT], low expertise/high trust [LEHT], high expertise/low
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Figure 2: Misinformation belief/activation across scenarios
for human and model data. Error bars are SEM.

1 T T T

EllHuman [_IMemory-affect
-Memory |:|Updated-memory

° e g
IS o ©
T

Normalized Belief/Activation
o
)

LELT LEHT HELT HEHT
Source Condition

HEHT+

Figure 3: Misinformation belief/activation across source con-
ditions for human and model data. Error bars are SEM

trust [HELT], high expertise/trust [HEHT], and highest ex-
pertise/trust [HEHT+]), and was counterbalanced across six
versions. Participants answered 10 open-ended and interfer-
ence questions to comprise a misinformation reliance score,
and rated beliefs in misinformation and corrections. Here, we
focused on belief scores and approximated them by calculat-
ing the average activation for misinformation and correction
chunks. We normalized belief scores and activation for misin-
formation by dividing values for misinformation by the sum
of misinformation and correction values. We simulated 60
participants (i.e., 10 for each counterbalancing version) for
each model variant. We first compared model fits across nar-
rative scenarios using a correlation and root mean squared er-
ror (i.e., RMSE), however, we emphasize RMSE as the main
indicator of fit. The Updated-memory variant had the lowest
RMSE, r(8) =0.11,p = 0.86,RMSE = 0.04, followed by the
Memory-affect variant, r(8) = 0.65, p = 0.24, RMSE = 0.05,
and the Memory variant, (8) = —0.10,p = 0.87,RMSE =
0.10 (Figure2).

Next, we compared model variants for source condi-
tions, which were arranged from least to highest qual-
ity. We note that only the Memory-affect model is sen-
sitive to the quality of source information. The Updated-
memory variant had the lowest RMSE, r(10) = 0.29,p =
0.57,RMSE = 0.07, followed the the Memory-affect vari-
ant, r(10) = —0.09, p = 0.86, RMSE = 0.10, and the Memory
variant, r(10) = —0.32, p = 0.53, RMSE = 0.12 (Figure [3)).

Bruns et al. (2023) Experiment

InBruns et al.|(2023)), 2,614 participants were recruited from
Europe and read one of three claims (i.e., misinformation)
about climate change and a separate correction article that
came before (i.e., prebunk) or after (i.e., debunk) the claim
with or without a source. Similar to experiment 1, sources
had associated affect. There was no associated affect for no
source conditions. As there were three claims and five con-
ditions (no correction control, prebunk no source, prebunk
source, debunk no source, and debunk source), there were 15
separate conditions. Participants answered questions about



agreement with claims (misinformation), credibility of cor-
rections, and intention to engage in discussion. Here, we fo-
cus on the agreement with claims, which is comparable to be-
liefs, and fit the models to reduction in agreement. Reduction
in agreement was calculated by subtracting the control group
misinformation agreement [activation] from misinformation
agreement [activation] for all conditions (i.e., prebunk and
debunks with and without source information). We simulated
150 participants (i.e., 10 for each of the 15 conditions) for all
model variants. The Updated-memory model has the lowest
RMSE, r(6) = 0.93, p = 0.07, RMSE = 0.06, followed by the
Memory-affect variant, r(6) = 0.70, p = 0.30,RMSE = 0.07,
and the Memory variant, r(6) =0.88, p =0.12, RMSE = 0.24
(Figure 4).

Discussion

We argued computational cognitive models could help re-
solve mixed findings and ambiguity with CIE explanations,
and compared three CIE model variants. The Memory vari-
ant included creation of chunks and limited memory naviga-
tion that influenced chunk activation based on retrieval fre-
quency. The Memory-affect variant was an extension that in-
cluded affect associated with words and information sources
at chunk creation, which was reinforced during retrieval. The
Updated-memory variant eliminated some processes, better
aligned with default parameter values, and increased the ex-
tent of memory navigation affecting activation of the more
interconnected chunks within narratives.

We argue that the Memory and Memory-affect variants
best aligned with the memory encoding/retrieval error expla-
nation and the Updated-memory aligned best with the men-
tal model explanation. Although the Updated-memory model
was only slightly better than the Memory-affect variant, it
was simpler. These results suggest misinformation beliefs
in the two experiments may be best explained by the men-
tal model explanation. These findings also raise a concern for
CIE experiments, as some results might be due to the wording
of the narrative, which should be considered when testing ma-
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Figure 4: Misinformation agreement/activation difference
from control (no correction) across correction type and source

conditions for human and model data. Error bars are SEM.

nipulations to reduce the CIE. However, models developed to
directly test specific explanations or hypotheses would pro-
vide more clear conclusions. Despite successes, we discuss
several limitations that may limit generalization of results.

Limitations and Future Work

Our current work has several limitations: 1) We manually
generated predicates, 2) we focused on declarative memory
with syntactic chunk chaining, 3) we focused on belief and
agreement because inferential reasoning was too complex for
our current model, 4) we simplified valuation and arousal
terms to a single reward value that favored negative affect,
and 5) we fit data for only two experiments, and 6) mod-
els were developed and compared to theoretical explanations
post-hoc.

Misinformation is often in text format, which is a challenge
for modeling. Our initial strategy was to parse the scenarios
using ChatGPT, but we had to manually generate predicates
for most scenarios after ChatGPT was updated. The parsing
and subsequent representation of written content has a large
impact on a model’s behavior, and in our case, the model is
dependent on the structure of representations to chain and
connect information. We are currently finding a more sta-
ble language processing method and are currently improving
chaining by: 1) treating words (i.e., rather than word pairs)
as chunks, 2) using spreading activation to reduce memory
retrievals, and 3) using semantic and affective information
rather than word matching to connect information. This will
enable comparing spreading activation and memory naviga-
tion mechanisms, more holistic knowledge representation,
and extend question answering capabilities.

We focused on beliefs and agreement, and approximated
them by the average activation of misinformation and correc-
tion chunks. Most experiments include several open-ended
and inference questions. Our planned improvements to lan-
guage parsing and knowledge representation will extend the
model’s behavior capabilities, but we also need to add some
reasoning ability and/or causal knowledge.

Our emotion implementation used a previous valuation
module to update chunk activation through rewards, which
combined valuation and arousal values and favored negative
affect. Rather than rewards, we plan to associate valuation
and arousal values with words to allow for differential influ-
ence of both negative and positive affect.

We fit our model to only two experiments, which limits
generalization. Our improvements mentioned above should
increase the ability of the model to handle different content
and provide different types of responses. In addition, this
will enable more direct testing of explanations and hypothe-
ses. Our goal is to capture fundamental cognitive processes
and knowledge representations underlying the CIE and re-
lated phenomena.

Conclusion

Overall, we were able to simulate the CIE with and with-
out emotion for two datasets. Planned future improvements



will enable exploration of social factors, group interactions,
and theoretical explanations across experiments and datasets.
Our current work, mixed findings, and interactions between
sources of influence, content, and mitigations suggest we may
benefit from a methodological re-framing. We suggest treat-
ing sources of influence and mitigations as cues could enable
predictions similar to multiple-cue decision making (Lee et
al., [2019; |[Weber & Johnson, 2009), and some literature has
already suggested source information (Traberg et al., 2024))
and emotion (Phillips et al.,[2024) serve as cues.
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