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At(m) = log ∑i(t - ti) -d(i)

d(i) = eA(m) + φ 



The equation’s origin story: The Spacing Effect
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The spacing effect /2

● AKA the spaced practice benefit, spaced repetition effect, etc.
● Was first observed by Ebbinghaus himself in 1884

○ First modern study of memory ever 

● Mostly studied for declarative memories, but…
● … Has been shown for procedural memories as well

○ Real-life skills, like CPR
○ Complex skills, like surgical practice
○ Motor skills in athletes

● We have good descriptions, no good explanations



Example: Nick Cepeda’s experiment (2008)

● Participants studied trivia 
○ E.g., “which country consumes the most hot sauce per capita?”/“Norway”

● Each trivia was studied twice
● Systematically varied the spacing (7 levels) between the two study 

sessions and the retention interval (4 levels) before test
● 7 x 4 Between-group design = 1,350 participants

Test
From 3 mins 
to 105 days

7, 35, 70, or 
350 days

1st Study 2nd Study
Spacing Retention



Cepeda et al., 2008 Results



Cepeda et al., 2008 Results

Benefit of spacing
Baseline

(No spacing)



Before Pavlik, ACT-R could not produce a spacing effect

At(m) = log ∑i(t – ti)
–d



Classic ACT-R (1991)

A(m) = log( t1
-d + t2

-d + … + tN
-d )

d = constant

Pavlik & Anderson (2005)

A(m) = log( t1
-d(1) + t2

-d(2) + … + tN
-d(N) )

d(i )= c eA(m) + φ



Pavlik & Anderson does produce a spacing effect 







Problem 1: P&A does not work well for long intervals



Problem 2: Interpretation

● Memories are accumulation of 
traces 

● Traces are patterns of active 
neurons 

● Memories are strengthened by 
increasing synaptic weights

● Decay d approximates the speed at 
which synapses are lost

= trace 1
d(1)



Memory as a Hopfield network

● Memories are acculation of traces 
● Traces are patterns of active 

neurons 
● Memories are strengthened by 

increasing synaptic weights
● Decay d approximates the speed at 

which synapses are lost
● … But this causes a problem

= trace 2

d(2)



Memory as a Hopfield network

● Memories are acculation of traces 
● Traces are patterns of active 

neurons 
● Memories are strengthened by 

increasing synaptic weights
● Decay d approximates the speed at 

which synapses are lost
● … But this causes a problem

d(1) or d(2)?



A New Approach



Alternative model 

Pavlik’s idea: traces decay at different rates

A(m) = log( t1
-d(1) + t2

-d(2) + … + tN
-d(N) )

Alternative: Different traces are weighted different

A(m) = log( w1t1
-d + w2t2

-d + … + wNtN
-d )

But how is w computed?



This is where Free Energy comes in place

● Free Energy Principle (FEP: Friston, 2010): The brain maintains 
homeostasis by minimizing the surprisal (-log P) of new stimuli:  
○ Allocates neural resources efficiently
○ Can be shown

● FEP is related to Predictive Coding (PC: Rao, 1999): The brain is trying 
to maximize successful predictions of the next events
○ Encode neural information so that it predicts future states  

● Both FEP solves the problem of optimal encoding: How many neural 
resources should you invest in processing a new new trace?

● You can think of it as a neural extension of rational analysis





New Approach

A(m) = log( w1t1
-d + w2t2

-d + … + w3tN
-d 

)

d = constant

Pavlik & Anderson (2005)

A(m) = log( t1
-d(1) + t2

-d(2) + … + tN
-d(N) )

d(i )= c eA(m) + φ



Christian’s solution

Current activation at rehearsal time t:

A(m,t) = log( w1t1
-d + … + wN-1tN-1

-d )

Compute wN such that activation at time 
t + τ is constant k:

log( w1 (t1 + τ )-d + … + wN t-d ) = k

When τ = 1, w1 independent of d

When k = 0, w1 = 1 : full rehearsal

Prevents out-of-control activation buildup 
and limit winner-take-all dynamics

Like Belgian drinking, you try to keep 
the buzz constant as more beers 
arrive



Andrea’s solution

Like Italian wine, you try to match it 
the food that it expected in a full meal 

Weights are proportional to surprisal

   w = surprisal of m = –log P(m)

= –log [eA(m) / (1 + eA(m))]

= –log [1 / (1 + e–A(m))]

= log(1 + e–A(m))

You can think of it as minimizing free 
energy



The two approaches are, in fact, related 



Is the new approach better? 



Data fit



Parameter Space Partitioning 



How about the brain?



Hopfield networks: How do they remember?

● Common model for hippocampus
● Memories are states with associated 

energy H:
● H(m) = -∑i ∑j wi,j xi xj 

● During retrieval, networks move to the 
closest minimum energy state.



Similarities between Hopfield networks and ACT-R

Energy H ≈ Activation

● Memories have an intrinsic “energy” H

H(m) = -∑i ∑j wi,j xi xj 

● Probability of retrieving m is inversely 
proportional to its energy H

PHopfield(m) = 1 / (1 + eH(m))

● Analogous to ACT-R, where 

PACT-R(m) = 1 / (1 + e-A(m))

Interference ≈ Power Decay 



Ventral 
Tegmental
Area

Hippocampus

Neural implementation of Free Energy model

VTA

Subiculum

Dopamine

–

Compute weight
log(1 + e-x))

Change synapses 
wi,j’ = wi,j + log(1 + e-H(m)) xi xj

Compute neg 
energy -H(m)
(from time)

Network finds the 
closest memory

New trace 
comes in12

4

3

5



Free energy learning prevents runaway dynamics 

Standard Hopfield Free Energy Hopfield



Evidence from fMRI Hippocampus



Next steps

● Find formal relationship between approaches
● Derive optimal training schedule

○ Compare to Pavlik & Anderson
○ Impact on practical applications? MemoryLab?

● Biological: apply to neural data
● Cognitive: model Pavlik and Anderson tasks
● Rational: relate to Anderson and Milson model
● Social: apply to Anderson et al. (2022) Twitter data analysis



Questions?


