Comparing Similarity and Homophily-Based Cognitive Models of Influence and Conformity

Robert Thomson

2024 ACT-R Workshop

*The opinions expressed are my personal opinions and do not reflect the official position of the United States Military Academy, United States Army, or United States Government.

Overview

- Challenging Assumptions
 - System 1 vs System 2
 - Cognitive Biases
- Topics for Discussion
 - Modeling Cognitive Biases
 - Cognitive Models of Trust Diffusion via Homophily and Similarity
 - Critical Thinking and the Role of Rehearsal Strategy

Challenging Assumptions: False Dichotomies

- There is **no physiological evidence** supporting this dichotomy
- Doesn't explain how decisions are made
- Largely unfalsifiable
- We use multiple systems in parallel based on numerous factors (e.g., payoff, risk, effort)

Challenging Assumption 2: Cognitive Biases

- Doesn't explain how decisions are made
- Many seem to be specific cases of general principles
- Many biases can be explained by 3 factors: recency, frequency, and order of information.
 - Add in expectancy/effort and I think we have a 90% solution to model them

DESIGNHACKS.CO - CATEGORIZATION BY BUSTER BENSON - ALGORITHMIC DESIGN BY JOHN MANOOGIAN III (JM3) - DATA BY WIKIPEDIA

Commons ① @ attribution - share-alke

What is the Origin of Biases (from Cognition)

• Task structure

- Environment/Task/Interface affordances
- Time course of information (recency, frequency, & order)
- Cognitive Architecture
 - Mechanisms (e.g., spreading activation, blending)
 - Constraints (e.g., working memory)
 - Information flow
- Knowledge and strategies
 - Adaptive to interactions between task and cognition
 - Metacognitive determination of estimated effort

From Biases to Persuasive Communication

- Challenge: Understand how people consume information from sources they trust vs sources they don't trust (reputational trust/reliability)
 - How does the reliability of the source further impact how an agent consumes the message, under various conditions?
 - Can this provide a cognitive explanation for social contagion, conformity, bias?
- Assumption: You increase trust with sources who communicate similar beliefs, and decrease for those who hold contrasting beliefs
 - Homophily-based belief updating (trust-weighted belief)
 - Similarity learning mechanism

Simulation Environment (Codename: Othello)

- Model receives messages and compares messenger's opinions to the model's own prior belief
 - Messages have a source (messenger), destination (recipient), topic, and stance (pro vs anti)
 - Assume that the model already supports a position on the topic
- Data consists of 1800 messages from 9 sources:
 - Each source has a different proportion of 'pro' stances
 - Iago 10%, Roderigo 20%, Cassio 20%, Montano 30%, Lodovico 40%, Brabantio 40%, Gratiano 50%, Bianca 50%, and Emilia 90%
 - Each 'trial', the model processes a single message from a single source
- Will the model 'conform' to the majority view or be resilient?
 - Compare homophily (algorithmic) vs similarity (structural) models

Biasing Belief Updating via Homophily

- TRUST*: Stored as either 0 or 1 based on homophily
 - Blended retrieval for current strength (blends between the **0** and **1** instance)
 - Solely based on power law of learning and forgetting
- **BELIEF**: Stored as current belief (from 0 to 1)
 - Blended retrieval stores current belief, based on trust-weighted exponential:

NewStrength =
$$\frac{priorStrength + updateFactor}{2}$$
, where
updateFactor = (messageStrength - prior) \cdot trust²

* Could be any latent factor(s) that bias how beliefs are updated.

Similarity Learning Mechanism

- Similarity prior at :MD (max-dif default to -1.0)
 - Bracket with :MS (max-sim default to 0.0) for selfsimilarities
 - Essential to get symmetrical push-backs
- Similarity weight of prior at 1
 - Multiply learning factor by product of frequencies
 - Can be generalized to product of chunk probabilities
- Alternating learning fields
 - First learn sources similarities from beliefs then belief similarities from sources
 - Alternative would be to learn both fields at the same time but potential stability issues

Similarities Between Users and Positions

(defparameter *data*
'((user1 1 pos1 pos2)
 (user2 1 pos1)
 (user3 1 pos2)
 (user4 1 neg1 neg2)
 (user5 1 neg1)
 (user6 1 neg2)))

Results (Measuring Trust in Emilia)

Homophily Model: Nonlinear trust dynamics mean a single confederate helps maintain trust ...crystallized but is relatively weak (.53 Pro/.47 Anti) Similarity Model: Eventually asymptotes to average stance over time, with caveat

Long-Form Results

- Starting strength is less important than experience
- More experienced models are more robust against flipping stance

Name	Trust	Iago	Rode	Cass	Mont	Lodo	Brab	Grat	Bianca	Emilia
S.7	.31	.69	.67	.68	.63	.58	.57	.49	.50	.30
S.8	.22	.69	.66	.67	.63	.57	.57	.49	.49	.32
S.9.	.28	.68	.66	.66	.62	.56	.57	.49	.49	.31
S1.	.25	.67	.66	.66	.62	.57	.56	.50	.49	.32
H.7	.52	.13	.22	.23	.28	.41	.42	.47	.46	.89
H.8	.54	.13	.22	.23	.28	.41	.41	.47	.46	.89
H.9	.55	.13	.22	.23	.28	.41	.41	.47	.46	.89
H1.0	.56	.13	.22	.23	.28	.41	.41	.47	.46	.89
H.7NE	.36	.86	.78	.77	.72	.59	.58	.52	.54	.12
H.8NE	.38	.86	.77	.77	.72	.59	.57	.53	.53	.12
H.9NE	.36	.86	.78	.77	.72	.59	.58	.53	.54	.12
H1.NE	.54	.13	.22	.23	.28	.41	.42	.47	.46	.89

Table 1: Runs labeled **H** are from the homophily model while runs prefaced with **S** are from the similarity model. **NE** means that the model is not experienced. The not experienced model from .7-.9 flips belief while the others do not.

• With enough consistent countermessaging, even an experienced model can be flipped

Weaponization of Critical Thinking

- Critical Thinking, especially counterfactual reasoning, has historically been taught as a debiasing technique
 - Paradoxically, those who critically reason are more likely to fall prey to certain biases due to their inherent skepticism
- By not committing to one hypothesis (to avoid contextual spreading activation) and considering/storing both (i.e., all) positions (to avoid base-level influence), in theory you can be more 'rational'
 - You are also told to be aware of the source and trust 'reliable' sources
- I argue that without proper metacognitive training (learning how to learn and be critical), this can be easily manipulated
 - Homophily and similar opinions: Frequency -> Familiarity -> Trust/Reliability

Implication of the Metacognitive Perspective

- The human mind wasn't designed with strategies to process the availability of online information without using heuristics
 - Availability confuses our metacognitive ability to process effort and risk
 - Affective content exacerbates the need to engage
- 'Echo chambers' eliminate the confederate in conformity research
 - Recency, frequency, and order effects (and environment) all point towards crystallization and polarization
 - Flipping a few people won't be enough to move the needle
- Consistent messaging from a single reasonably trusted source is more important than fewer sources or mixed-messaging

What's Next?

- Systematic investigation of major cognitive biases computationally to show similar effects from basic mechanisms
 - What environmental features and/or rehearsal strategies are implicated?
- Operationalizing 'optimal' stance flipping behavior and (in/out-)group dynamics
- Validation against human data
 - Does anyone have any?
- Find collaborators 😳