Adapting Holographic Declarative Memory for a Disaster Agent

Meera Ray | 1st Year PhD Student Advised by Dr. Christopher Dancy July 23rd 2024

Domain

FEMA overhauls disaster assistance program as climate crisis fuels more destructive extreme weather

criticisms include inequity of who can access help

Motivation

- Model the decisions disaster survivors make in accessing recovery resources, such as choosing shelters
- Incorporate social context by reading corpora into HDM
- HDM doesn't store entire chunks like DM → can't recall chunks → harder to write productions
- Want to "pull" slots associated with a chunk without sacrificing scalability and similarity gradation in vector representation
 - How to associate slots when adding to memory?
 - How to recall slots associated with a chunk?

Problem Statement

- Goal: After adding chunk $c = \{s_1 : v_1...s_n : v_n\}$ into memory, retrieve the entire chunk with a cue $q = \{s'_1 : v'_1...s'_m : v'_m\}$, where $q \subseteq c$.
- Constraint: maintain HDM's memory complexity O(u), u = number of unique words
- Avoid: O(n) memory complexity, n = number of words added to memory

What is Holographic Declarative Memory?

Kelly, M. A., Arora, N., West, R. L., & Reitter, D. (2020).

Architecture Ingredients

Holographic Reduced Representations

- Plate, T. A. (1995)
- Theory behind HDM: noisy relative reconstruction
- $C=A*B+..., B \approx C *B^{-1}$
- Can store memory traces and recall them based on a memory cue containing partial info

Oscillators for Temporal Memory

• Brown, G. D. A., Hulme, C., & Preece, T. (2000).

$$O_i = sin(\phi + t\theta_i)$$

$$\theta_i = 10^{-5} R2^i$$

$$R \sim \mathcal{N}(0,1)$$

$$\phi \sim \mathcal{U}(0, \pi/\theta)$$

$$T_i = \prod_{j=1}^4 \sin(O_j)$$

Putting it all together

Storing continuous time values with fractional binding (Komer 2019)

$$\widetilde{\mathbf{T}} = \mathcal{F}^{-1} \left\{ \sum_{l=1}^{320} \mathcal{F}(e_{t_l})^{\mathbf{T}(t)} \right\}$$
 (6)

$$mt \longleftarrow mt + \widetilde{\mathbf{T}} \circledast \sum_{c=1}^{n} s_c \circledast v_c$$
 (7)

$$Q = \sum_{c=1}^{m} s_c' \circledast v_c' \tag{8}$$

$$\hat{\mathbf{T}} = mt \circledast Q^{-1} \tag{9}$$

 Pick mt's with most similar reconstructed time context vectors

Challenges

Extremely High Variance in Oscillators

Self-Similarity functions

These are multiple draws from the same input parameters!

Picking Parameters

- oscillators
 - Scale
 - Variance
 - Number of oscillators
 - Size of learning context vector
- Thresholds or top n (see next slide)

Retrieval Criteria

- how to pick which results as acceptable answer?
- Plate 1995 notes that "no fixed threshold will be appropriate for choosing the winning match in every situation" and suggests taking the top result (if above a low threshold)
- HDM takes this approach, but I can't
- Some ideas:
 - Top n
 - picking n same as fixed threshold problem?
 - N = 3, 4, or 5 (Cowan, 2010) and dec region threshold
 - Relative difference threshold
 - Rank similarity scores and pick scores up 4x difference from next
 - Could a fixed threshold work?

Questions and Suggestions?

This material is based upon work supported by the Al Research Institutes Program funded by the National Science Foundation under Al Institute for Societal Decision Making (Al-SDM), Award No. 2229881.

