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Biospecimen and Performance Data Sources

Project
Study Identifier 

(Acronym)
Cohort Stressors

Stress 

Duration
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NCT02057094

(SERE)

N = 71

all males

MARSOC SERE school:

mental, physical, environmental
18 days

NCT02731066

(HIGH)

N = 23

all males

Simulated SUSOPS with energy 

deficit at sustained high altitude:

mental, physical, environmental

21 days

NCT02734238

(OPS)

N = 50

all males

Sea level training with energy deficit:

mental, physical
28 days

NCT04120363

(OPS II)

N = 32

all males

Simulated multi-stressor SUSOPS:

mental, physical
21 days

PEERLESS

(TACP TOPT)

N = 74

all males

TACP TOPT selection course:

mental, physical, environmental
5 days
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Sleep Deprivation

(Sleep Dep)
N* = 30

Sleep deprivation:

mental, physical
27 hours

Cognitive Fatigue

(Cog Fatigue)
N* = 30

Cognitive fatigue:

mental
14 hours

Physical Fatigue

(Phys Fatigue)

N* = 30

DoD-affiliated personnel

Physical fatigue:

mental, physical
5 days

N* - expected number of participants
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Suite of Cognitive Tasks in ROPER & A2PEX
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Study

Procedural Working Memory Visual/Spatial Reasoning/Decision Making Multimodal/Multitasking

PVT/

SRT PRO RT

Go/

No-Go N-Back

Code-

Digit 

Sub

Match to 

Sample

Scanning 

Visual 

Vigilance

Neuro-

tracker/

VisTrack

Grammatical 

Reasoning

Math 

Processing

Balloon 

Analog 

Risk Task

Ultimatum 

Game

AF-

MATB CA2PES VirTra

SP-

VISTa

R
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R

SERE x x

HIGH x x x x x x x

OPS x x x x x x x

OPS II x x x x x x

TOPT x x x x x x x x

A
2

P
E

X

Sleep 

Deprivation x x x x x x x x

Cognitive 

Fatigue x x x x x x x x

Physical 

Fatigue x x x x
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Unique Modeling Opportunities

• Idiographic, Cross-task Parameterization Variation

– Many participants performing multiple tasks across multiple days while stressed

• Parameter Optimization methodology

– Must develop efficient methods for exploration of very large parameter space

• ACT-R models as a source for the Compu-Cognome

– Architectural parameterization provides a way to identify cognitive markers of 

resilience (or any phenotype of interest)



Compu-Cognomics as a Piece of the Multi-Omics Methodology

● The suffix –ome refers to a totality or collective

● Compu-Cognome serves as additional data 

sources for multi-omic analyses

● Unique scientific opportunity to build an 

analytical bridge from “molecules to minds”

○ From traditional multi-omic data to 

observable behavior (the phenome)

○ Through the explanatory mechanisms 

available in the Compu-Cognome of 

cognitive architectural theory
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Transcriptomics Proteomics

Methylomics

Compu-

Cognomics

Compu-Cognome (n) – collection of quantitative, symbolic, 

and neurofunctional mechanisms that explain and predict 

variation in cognitive performance.
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Constructing a Compu-Cognome
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Architectural Parameters Across Tasks (partial example)

● Unique opportunity in 

ROPER/A2PEX to gain a 

better understanding of the 

space of architectural 

parameters and their 

relationship to performance 

across a range of tasks
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Mechanism Parameter Meaning

TASKS (example subset)

PVT N-Back Go/No-Go

Declarative Memory :ans activation noise (s) x

:bll activation decay  (d) x

:mp mismatch penalty (similarity weighting; P) x

:lf latency factor (retrieval time; F) x

Procedural Memory :dat default action time (cognitive cycle time) x x x

:egs expected gain noise added to utility x x x

:ut utility threshold x x x

:iu initial utility value x x x

:p production value (cost) x

:ppm production partial matching x

Goal/Intention :g goal value (cost) x

:ga spreading activation value from goal buffer x

:imaginal-

activation spreading activation value from imaginal buffer x

Fatigue :utmc utility threshold minute constant x x x

:utbmc utility threshold biomath model constant x x x

:fpdec fatigue procedural decrement x x x

:fpmc fatigue procedural minute constant x x x

:fpbmc fatigue procedural biomath model constant x x x



OPS-II PVT – Preliminary Analyses

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Phase 1: 7 days

Baseline

8 hrs sleep

Phase 2: 20 days

Stress Period

4-8 hrs sleep

Phase 3: 11 days 

Recovery

8 hrs sleep

Stress Cycle – 5 days

2 days – 8 hrs sleep

3 days – 4 hrs sleep

ROPER

SERE

OPSI

OPS II

Cognitive

Psychomotor Vigilance Test

Scanning Visual Vigilance

N-Back

Match to Sample

Balloon Analogue Risk Task

Provoked Aggression

Psychometric

BiologicalHIGH

TOPT
Dorrian, J., Rogers, N. L., & Dinges, D. F. (2005). Psychomotor vigilance 
performance: Neurocognitive assay sensitive to sleep loss. In C. A. Kushida
(Ed.), Sleep deprivation: Clinical issues, pharmacology and sleep loss 
effects (pp. 39–70). New York: Marcel Dekker, Inc.
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Cognitive 

Testing



Gunzelmann et al. (2009) model accounted very well for 
sleep deprivation effects on PVT performance.2

PVT Model & Fatigue Module

● PVT Model
○ 3 Production Rules

■ Wait – explicitly waits during the delay

■ Attend – shifts attention to the stimulus

■ Respond – executes a key press once the 

stimulus has been attended

● Fatigue Module
○ Introduces microlapses – requires 

rescheduling of conflict resolution

○ Utility and Utility Threshold attenuated 

by biomathematical model of alertness1

based on given sleep schedule

PVT and Fatigue Module Acknowledgements:

Glenn Gunzelmann, Rick Moore, Tim Halverson, Bella Veksler, 

Kevin Gluck, Michael Krusmark, Taylor Curley, and Dan Bothell
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1McCauley, P., Kalachev, L. V, Mollicone, D. J., Banks, S., Dinges, D. F., & Van 

Dongen, H. P. a. (2013). Dynamic circadian modulation in a 

biomathematical model for the effects of sleep and sleep loss on waking 

neurobehavioral performance. Sleep, 36(12), 1987–97.
2Gunzelmann, G., Gross, J. B., Gluck, K. A., & Dinges, D. F. (2009). Sleep 

deprivation and sustained attention performance: Integrating 

mathematical and cognitive modeling. Cognitive Science, 33(5), 880-910.

𝑭𝑷 = :fp−percent ∗ (𝟏 − :fpbmc ∗ biomath−prediction) ∗ (𝟏 + time−on−task):fpmc

𝑼𝒕𝒊𝒍𝒊𝒕𝒚 = 𝒂𝒍𝒆𝒓𝒕𝑼𝒕𝒊𝒍𝒊𝒕𝒚 ∗ 𝑭𝑷

𝑼𝑻 = :ut ∗ 𝟏 − :utbmc ∗ biomath−prediction ∗ (𝟏 + time−on−task):utmc
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Heterogeneity in robustness and resilience to stress

● Avg performance degrades 

from Baseline to Stress and 

rebounds during Recovery

● Extreme heterogeneity at the 

individual level

● Robustness: ability to maintain 

performance level

● Resilience: ability to recover to baseline
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Robustness Resiliency



Parameter Optimization for Modeling Individual Performance Over Time

● Simulated Annealing
○ random search optimization method with systematic 

component for searching for the global optimum
■ Speed vs Completeness in search space

● Escapes local minima (with enough iterations)

■ Handles complex parameter spaces well

■ optimSA package in R can only specify one objective function

● Objective Function
○ RMSE between distributions of RTs for Humans vs Model

○ Also explored squared Pearson Correlation Coefficient (r2)

● Initial Param Opt with 4 Edge-case Participants
○ Very low temp and few iterations

■ only ~150 samples per participant (7hr to solution)
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Identifying Parameters to Characterize Individuals
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ResilienceBest Worst
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Param

Best 

Val

:dat 0.05

:egs 0.36

:ut 2.26

:iu 2.2

:utmc 0.0

:utbmc 0.02

:fpdec 1.0

:fpmc -0.03

:fpbmc 0.03

Param

Best 

Val

:dat 0.06

:egs 0.27

:ut 2.15

:iu 2.73

:utmc -0.01

:utbmc 0.01

:fpdec 1.0

:fpmc -0.07

:fpbmc 0.02

Param

Best 

Val

:dat 0.05

:egs 0.33

:ut 2.23

:iu 2.73

:utmc -0.1

:utbmc 0.0

:fpdec 0.96

:fpmc -0.1

:fpbmc 0.02

Param

Best 

Val

:dat 0.05

:egs 0.38

:ut 2.46

:iu 2.46

:utmc 0.0

:utbmc 0.01

:fpdec 1.0

:fpmc -0.01

:fpbmc 0.01



r2 better at fitting longitudinal patterns
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RMSE r2

Param

Best 

Val

:dat 0.06

:egs 0.27

:ut 2.15

:iu 2.73

:utmc -0.01

:utbmc 0.01

:fpdec 1.0

:fpmc -0.07

:fpbmc 0.02

Param

Best 

Val

:dat 0.06

:egs 0.26

:ut 2.03

:iu 2.02

:utmc -0.01

:utbmc 0.03

:fpdec 0.97

:fpmc -0.07

:fpbmc 0.02

Param

Best 

Val

:dat 0.05

:egs 0.38

:ut 2.46

:iu 2.46

:utmc 0.0

:utbmc 0.01

:fpdec 1.0

:fpmc -0.01

:fpbmc 0.01

Param

Best 

Val

:dat 0.06

:egs 0.36

:ut 2.27

:iu 2.94

:utmc -0.02

:utbmc 0.02

:fpdec 0.97

:fpmc 0.0

:fpbmc 0.04



What’s Next?

● Expand set of models
○ Acquired models of N-back and Go/No-Go. Can we find any more?

○ Will create our own models of other tasks.

● Scale up parameter optimization methods to model individual heterogeneity in 

stress response
○ Multiple studies X many participants X multiple tasks X multiple days
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Modeling Approach Considerations

● Modeling individual tasks separately does not inherently account for intra-

individual architectural constraints
○ Theoretically, same architectural parameters for explaining performance in one task 

should also explain performance in another task

● Modeling multiple tasks performed by the same model is desirable
○ Cognitive Supermodels1 (Salvucci, ACT-R Workshop 2010)

○ Primitive Operations2 (Taatgen, ACT-R Workshop 2017)
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1Salvucci D. D. (2013). Integration and reuse in cognitive skill 

acquisition. Cognitive science, 37(5), 829–860. 

https://doi.org/10.1111/cogs.12032
2Taatgen, N. A. (2013). The nature and transfer of cognitive skills. 

Psychological Review, 120(3), 439–471.

https://act-r.psy.cmu.edu/wordpress/wp-content/themes/ACT-R/workshops/2010/talks/Salvucci-ACTR10.pdf
http://act-r.psy.cmu.edu/wordpress/wp-content/uploads/2017/12/taatgen-2017.pdf


Decisions for Scaling up Parameter Optimization

● Programming language:
○ R – fits within current data pipeline, many parameter optimization packages available
○ Python – newer and more advanced parameter optimization packages available
○ LISP – fits current modeling language; potentially computationally faster; need to code our own 

algorithm = more overhead
● Optimization Method:

○ Multitude of possibilities to choose from! (brute-force; random; SA; Genetic; Bayesian; etc.)
○ Important needs:

■ Computational efficiency
■ Parallelization (may need high performance computing center/cluster)
■ Systematic search
■ Multiple Objective Functions?

● Objective Functions:
○ RMSE/D – Root Mean Squared Error/Deviation
○ r2 – squared Pearson correlation coefficient
○ R2 – Coefficient of Determination
○ Maximum Likelihood Estimation (Stocco et al., in prep; Fisher, Houpt, & Gunzelmann, 2022)
○ Multiple Objective Functions?

● Data interpolation could help reduce model run time (Moore & Gunzelmann, 2014)
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Stocco, A., Mitsopoulos, K., Yang, Y. C., Hake, H. S., Haile, T., Leonard, B., & Gluck, K. (in prep). Fitting, Evaluating, and Comparing Cognitive Architecture Models 

Using Likelihood Measures: A Tutorial With Examples in ACT-R.

Fisher, C. R., Houpt, J. W., & Gunzelmann, G. (2022). Fundamental tools for developing likelihood functions within ACT-R. Journal of mathematical Psychology, 107, 1-17.

Moore, R. L. & Gunzelmann, G. (2014). An interpolation approach for fitting computationally intensive models. Cognitive Systems Research, 29-30, 53-65.
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Unique Modeling Opportunities

• Idiographic, Cross-task Parameterization Variation

– Many participants performing multiple tasks across multiple days

• Parameter Optimization methodology

– Must develop efficient methods for exploration of very large parameter space

• ACT-R models as a source for the Compu-Cognome

– Architectural parameterization provides a way to identify cognitive markers of 

resilience (or any phenotype of interest)
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Questions?

Contact: ecranford@ihmc.org



23



BACKUP
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Resilience to Optimize PERformance (ROPER)

What are the fundamental bases of stress response heterogeneity?
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Compu-Cognomics as a Piece of the Multi-Omics Methodology

● Compu-Cognome serves as 

additional data sources for 

multi-omic analyses

● Unique scientific opportunity 

to build an analytical bridge 

from “molecules to minds”
○ Phenomic and multiomic

data to observable behavior

○ Through the explanatory 

mechanisms available in the 

Compu-Cognome of 

cognitive architectural theory
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