Idiographic, Cross-task Architectural Parameter Variation as Compu-Cognomic Data

Edward Cranford¹ Katherine Judy² Connor Manion² Weiss O'Connor² Katherine Mortimore¹ Kevin Gluck¹

¹ Institute for Human & Machine Cognition
 ² United States Air Force Academy

Contact: ecranford@ihmc.org

Presentation at ACT-R Workshop

23 July 2024

Human-Centered Science and Technology

ihmc

Understanding HRP from molecule to whole human

Biospecimen and Performance Data Sources

Project Study Ide (Acronym)		Study Identifier (Acronym)	Cohort	Stressors	Stress Duration
A2PEX ROPER		NCT02057094 (SERE)	N = 71 all males	MARSOC SERE school: mental, physical, environmental	18 days
	(Retrospective Studies)	NCT02731066 (HIGH)	N = 23 all males	Simulated SUSOPS with energy deficit at sustained high altitude: mental, physical, environmental	21 days
		NCT02734238 (OPS)	N = 50 all males	Sea level training with energy deficit: mental, physical	28 days
		NCT04120363 (OPS II)	N = 32 all males	Simulated multi-stressor SUSOPS: mental, physical	21 days
		PEERLESS (TACP TOPT)	N = 74 all males	TACP TOPT selection course: mental, physical, environmental	5 days
	udies in ogress)	Sleep Deprivation (Sleep Dep)	N* = 30	Sleep deprivation: mental, physical	27 hours
		Cognitive Fatigue (Cog Fatigue)	N* = 30	Cognitive fatigue: mental	14 hours
	Pr S	Physical Fatigue (Phys Fatigue)	N* = 30 DoD-affiliated personnel	Physical fatigue: mental, physical	5 days

N* - expected number of participants

†ihmc

5

Suite of Cognitive Tasks in ROPER & A2PEX

	Procedural			Working Memory			Visual/Spatial		Reasoning/Decision Making			Multimodal/Multitasking					
	Study	PVT/ SRT	PRO RT	Go/ No-Go	N-Back	Code- Digit Sub	Match to Sample	Scanning Visual Vigilance	Neuro- tracker/ VisTrack	Grammatical Reasoning	Math Processing	Balloon Analog Risk Task	Ultimatum Game	AF- MATB	CA2PES	VirTra	SP- VISTa
ROPER	SERE	x								x							
	HIGH	x			x		x	x		x		x	x				
	OPS	x			x		x	x		x		x	x				
	OPS II	x			x		x	x				x	x				
	ТОРТ	x	x	x		x	х		х		x					x	
A2PEX	Sleep Deprivation	x		x	x				х		x			x	x		x
	Cognitive Fatigue	x		x	x				x		x			x	х		x
	Physical Fatigue	x		x	x												x

†ihmc

Unique Modeling Opportunities

- Idiographic, Cross-task Parameterization Variation
 - Many participants performing multiple tasks across multiple days while stressed
- Parameter Optimization methodology
 - Must develop efficient methods for exploration of very large parameter space
- ACT-R models as a source for the Compu-Cognome
 - Architectural parameterization provides a way to identify cognitive markers of resilience (or any phenotype of interest)

Compu-Cognomics as a Piece of the Multi-Omics Methodology

- The suffix -ome refers to a totality or collective
- Compu-Cognome serves as additional data sources for multi-omic analyses
- Unique scientific opportunity to build an analytical bridge from "molecules to minds"
 - From traditional multi-omic data to observable behavior (the phenome)
 - Through the explanatory mechanisms available in the Compu-Cognome of cognitive architectural theory

i ihmc

Compu-Cognome (n) – collection of quantitative, symbolic, and neurofunctional mechanisms that explain and predict variation in cognitive performance.

8

Constructing a Compu-Cognome

Architectural Parameters Across Tasks (partial example)

 Unique opportunity in ROPER/A2PEX to gain a better understanding of the space of architectural parameters and their relationship to performance across a range of tasks

tihmc

			TASKS (example subset)				
Mechanism	Parameter	Meaning	Ρντ	N-Back	Go/No-Go		
Declarative Memory	:ans	activation noise (s)		х			
	:bll	activation decay (d)		X			
	:mp	mismatch penalty (similarity weighting; P)		x			
	:lf	latency factor (retrieval time; F)		x			
Procedural Memory	:dat	default action time (cognitive cycle time)	х	x	x		
	:egs	expected gain noise added to utility	х	x	х		
	:ut	utility threshold	х	x	х		
	:iu	initial utility value	х	x	х		
	:p	production value (cost)			х		
	:ppm	production partial matching	X				
Goal/Intention	:g	goal value (cost)			x		
	:ga	spreading activation value from goal buffer		x			
	:imaginal- activation	spreading activation value from imaginal buffer		x			
Fatigue	:utmc	utility threshold minute constant	x	x	X		
	:utbmc	utility threshold biomath model constant	х	х	x		
	:fpdec	fatigue procedural decrement	x	X	x		
	:fpmc	fatigue procedural minute constant	x	X	x		
	:fpbmc	fatigue procedural biomath model constant	X	X	X		

OPS-II PVT – Preliminary Analyses

PVT Model & Fatigue Module

• PVT Model

- 3 Production Rules
 - Wait explicitly waits during the delay
 - Attend shifts attention to the stimulus
 - Respond executes a key press once the stimulus has been attended
- Fatigue Module

i ihmc

- Introduces *microlapses* requires rescheduling of conflict resolution
- Utility and Utility Threshold attenuated by biomathematical model of alertness¹ based on given sleep schedule

FP = :fp-percent * (1 - :fpbmc * biomath-prediction) * (1 + time-on-task) :fpmc Utility = alertUtility * FP

UT = :ut * (1 - :utbmc * biomath-prediction) * (1 + time-on-task):utmc

Gunzelmann et al. (2009) model accounted very well for sleep deprivation effects on PVT performance.²

PVT and Fatigue Module Acknowledgements:

Glenn Gunzelmann, Rick Moore, Tim Halverson, Bella Veksler, Kevin Gluck, Michael Krusmark, Taylor Curley, and Dan Bothell

 ¹McCauley, P., Kalachev, L. V, Mollicone, D. J., Banks, S., Dinges, D. F., & Van Dongen, H. P. a. (2013). Dynamic circadian modulation in a biomathematical model for the effects of sleep and sleep loss on waking neurobehavioral performance. *Sleep*, 36(12), 1987–97.
 ²Gunzelmann, G., Gross, J. B., Gluck, K. A., & Dinges, D. F. (2009). Sleep deprivation and sustained attention performance: Integrating mathematical and cognitive modeling. *Cognitive Science*, 33(5), 880-910.

Heterogeneity in robustness and resilience to stress

- Avg performance degrades from Baseline to Stress and rebounds during Recovery
- Extreme heterogeneity at the individual level

 Robustness: ability to maintain performance level

i ihmc

• Resilience: ability to recover to baseline

13

Parameter Optimization for Modeling Individual Performance Over Time

- Simulated Annealing
 - random search optimization method with systematic component for searching for the global optimum
 - Speed vs Completeness in search space
 - Escapes local minima (with enough iterations)
 - Handles complex parameter spaces well
 - optimSA package in R can only specify one objective function
- Objective Function

t ihmc

- RMSE between distributions of RTs for Humans vs Model
- Also explored squared Pearson Correlation Coefficient (r²)
- Initial Param Opt with 4 Edge-case Participants
 - Very low temp and few iterations
 - only ~150 samples per participant (7hr to solution)

		Resilience			
		Best	Worst		
Robustness	Best	<u>A00-07-3350</u>	<u>A00-07-0209</u>		
	Worst	<u>A00-07-2429</u>	<u>A00-07-7829</u>		

14

Identifying Parameters to Characterize Individuals

r² better at fitting longitudinal patterns

RMSE

What's Next?

- Expand set of models
 - Acquired models of N-back and Go/No-Go. Can we find any more?
 - Will create our own models of other tasks.
- Scale up parameter optimization methods to model individual heterogeneity in stress response
 - Multiple studies X many participants X multiple tasks X multiple days

Modeling Approach Considerations

- Modeling individual tasks separately does not inherently account for intraindividual architectural constraints
 - Theoretically, same architectural parameters for explaining performance in one task should also explain performance in another task
- Modeling multiple tasks performed by the same model is desirable
 - Cognitive Supermodels¹ (Salvucci, <u>ACT-R Workshop 2010</u>)
 - Primitive Operations² (Taatgen, <u>ACT-R Workshop 2017</u>)

¹Salvucci D. D. (2013). Integration and reuse in cognitive skill acquisition. Cognitive science, 37(5), 829–860. https://doi.org/10.1111/cogs.12032
²Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psychological Review, 120(3), 439–471.

Decisions for Scaling up Parameter Optimization

- Programming language:
 - R fits within current data pipeline, many parameter optimization packages available
 - Python newer and more advanced parameter optimization packages available 0
 - LÍSP fits current modeling language; potentially computationally faster; need to code our own algorithm = more overhead
- **Optimization Method:**
 - Multitude of possibilities to choose from! (brute-force; random; SA; Genetic; Bayesian; etc.)
 - Important needs:
 - Computational efficiency
 - Parallelization (may need high performance computing center/cluster)
 - Systematic search
 - Multiple Objective Functions?
- Objective Functions:

i ihmc

- RMSE/D Root Mean Squared Error/Deviation
 r² squared Pearson correlation coefficient
- R² Coefficient of Determination
- Maximum Likelihood Estimation (Stocco et al., in prep; Fisher, Houpt, & Gunzelmann, 2022)
- Multiple Objective Functions?
- Data interpolation could help reduce model run time (Moore & Gunzelmann, 2014)

Moore, R. L. & Gunzelmann, G. (2014). An interpolation approach for fitting computationally intensive models. Cognitive Systems Research, 29-30, 53-65.

Unique Modeling Opportunities

- Idiographic, Cross-task Parameterization Variation
 - Many participants performing multiple tasks across multiple days
- Parameter Optimization methodology
 - Must develop efficient methods for exploration of very large parameter space
- ACT-R models as a source for the Compu-Cognome
 - Architectural parameterization provides a way to identify cognitive markers of resilience (or any phenotype of interest)

Acknowledgments

U.S. Army Research Institute of Environmental Medicine

Thank You!

Questions?

Contact: ecranford@ihmc.org

FLORIDA INSTITUTE FOR HUMAN & MACHINE COGNITION

BACKUP

Resilience to Optimize PERformance (ROPER)

What are the fundamental bases of stress response heterogeneity?

†ihmc

Compu-Cognomics as a Piece of the Multi-Omics Methodology

- Compu-Cognome serves as additional data sources for multi-omic analyses
- Unique scientific opportunity to build an analytical bridge from "molecules to minds"
 - Phenomic and multiomic data to observable behavior
 - Through the explanatory mechanisms available in the Compu-Cognome of cognitive architectural theory

†ihmc

ul Shores

