
ACT-R Tutorial 10-Dec-19 Unit Four

Unit 4: Activation of Chunks and Base-Level Learning

There are two objectives of this unit. The first is to introduce the subsymbolic quantity of 
activation associated with chunks.  The other is to show how those activation values are 
learned through the history of usage of the chunks.

4.1 Introduction

We have seen retrieval requests in productions many times in the tutorial, like this one 
from the count model in unit 1:

(p start
   =goal>
      ISA         count-from
      start       =num1
      count       nil
 ==>
   =goal>
      ISA         count-from
      count       =num1
   +retrieval>
      ISA         count-order
      first       =num1
)

In this case an attempt is being made to retrieve a chunk with a particular number (bound 
to  =num1) in its  first slot.  Up to now we have been working with the system at the 
symbolic level.  If there was a chunk that matched that  retrieval request it  would be 
placed into the  retrieval buffer, and if not then the request would fail and the buffer 
would indicate the failure.  The system was deterministic and we did not consider any 
timing cost associated with that memory retrieval or the possibility that a matching chunk 
in declarative memory might fail to be retrieved.  For the simple tasks we have looked at 
so far that was sufficient.

Most psychological tasks however are not that simple and issues such as accuracy and 
latency are measured over time or across different conditions.  For modeling these more 
involved tasks one will typically need to use the subsymbolic components of ACT-R to 
accurately model and predict human performance.  For the remainder of the tutorial, we 
will   be   looking   at   the   subsymbolic   components   that   control   the  performance  of   the 
system.  To use the subsymbolic components we need to turn them on by setting the :esc 
parameter (enable subsymbolic computations) to t:
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(sgp :esc t)

That setting will be included in all of the models from this point on in the tutorial.

4.2 Activation

Every chunk in ACT-R’s declarative memory has associated with it a numerical value 
called its activation.  The activation reflects the degree to which past experiences and 
current context indicate that chunk will be useful at any particular moment.   When a 
retrieval request is made the chunk with the greatest activation among those that match 
the specification of the request will be the one placed into the retrieval buffer.  There is 
one constraint on that however.  There is another parameter called the retrieval threshold 
which sets the minimum activation a chunk can have and still be retrieved.  It is set with 
the :rt parameter:

(sgp :rt -0.5)

If  the  chunk  with  the  highest  activation  among  those  that  match  the  request  has  an 
activation which is less than the retrieval threshold, then no chunk will be placed into the 
retrieval buffer and a buffer failure will be indicated.

The activation  Ai of a chunk  i is computed from three components – the base-level, a 
context component, and a noise component.  We will discuss the context component in 
the next unit.  So, for now the activation equation is:

ε+= ii BA

B
i
:  The base-level activation. This reflects the recency and frequency of practice of the 

chunk i.

ε :  The  noise value.   The noise  is  composed  of  two components:  a  permanent  noise 
associated  with  each  chunk  and  an  instantaneous  noise  computed  at  the  time  of  a 
retrieval request.

We will discuss these components in detail below.

4.3 Base-level Learning
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The equation describing learning of base-level activation for a chunk i is:

)ln(
1

∑
=

−=
n

j

d
ji tB

n: The number of presentations for chunk i.

tj: The time since the jth presentation.

d: The decay parameter which is set using the :bll (base-level learning) parameter.  This 
parameter is almost always set to 0.5.

This equation describes a process in which each time an item is presented there is an 
increase in its base-level activation, which decays away as a power function of the time 
since  that  presentation.   These  decay effects  are  summed and then passed through a 
logarithmic transformation. 

There are two types of events that are considered as presentations of a chunk. The first is 
its initial entry into declarative memory.  The other is when a chunk merges with a chunk 
that is already in declarative memory.  The next two subsections describe those events in 
more detail.

4.3.1 Chunks Entering Declarative Memory

When  a  chunk  is  initially  entered  into  declarative  memory  is  counted  as  its  first 
presentation.  There are two ways for a chunk to be entered into declarative memory, 
both of which have been discussed in the previous units. They are:

- Explicitly by the modeler using the add-dm command.  These chunks are entered 
at the time the call is executed, which is time 0 for a call in the body of the model 
definition.

- When the chunk is cleared from a buffer.   We have seen this happen in many of 
the  previous  models  as  visual  locations,  visual  objects,  and  goal  chunks  are 
cleared from their buffers they can then be found among the chunks in declarative 
memory.

4.3.2 Chunk Merging 

Something we have not seen previously is what happens when the chunk cleared from a 
buffer is an identical match to a chunk which is already in declarative memory.   If a 
chunk has the same set of slots and values as a chunk which already exists in the model’s 
declarative memory then instead of being added to declarative memory that chunk goes 
through a process we refer to as merging with the existing chunk in declarative memory. 
Instead  of  adding  the  new  chunk  to  declarative  memory  the  preexisting  chunk  in 
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declarative memory is credited with a presentation. Then the name of the new chunk (the 
one which is being merged into declarative memory) is changed to now reference the 
chunk that was already in declarative memory i.e. there is one chunk which now has two 
(or possibly more) names.  This mechanism results in repeated completions of the same 
operations (the clearing of a duplicate chunk) reinforcing the chunk that represents that 
situation instead of creating lots of identical chunks each with only one presentation. for 
example,  repeatedly attending the same visual stimuli  would result in strengthening a 
single chunk that represents that object.

4.4 Optimized Learning

Because of the need to separately calculate the effect of each presentation, the learning 
rule is computationally expensive and for some models the real time cost of computation 
is too great to be able to actually run the model in a reasonable amount time.  To reduce 
the computational cost there is an approximation that one can use when the presentations 
are approximately uniformly distributed over the time since the item was created.  This 
approximation can be enabled by turning on the optimized learning parameter - :ol.  In 
fact,  its  default  setting  is  on  (the  value  t).  When  optimized  learning  is  enabled,  the 
following equation applies:
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n: The number of presentations of chunk i.

L: The lifetime of chunk i (the time since its creation).

d:  The decay parameter.

4.5 Noise

The noise component of the activation equation contains two sources of noise.  There is a 
permanent noise which can be associated with a chunk and an instantaneous noise value 
which will  be recomputed at each retrieval  attempt.   Both noise values are generated 
according  to  a  logistic  distribution  characterized  by  a  parameter  s.  The  mean  of  the 
logistic distribution is 0 and the variance, σ2, is related to the s value by this equation: 
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The permanent noise s value is set with the :pas parameter and the instantaneous noise s 
value  is  set  with  the  :ans  parameter.   Typically,  we  are  only  concerned  with  the 
instantaneous noise (the variance from trial to trial) and leave the permanent noise turned 
off (a value of nil).

4.6 Probability of Recall

If we make a retrieval request and there is a matching chunk in declarative memory, that 
chunk  will  only  be  retrieved  if  its  activation  exceeds  the  retrieval  threshold,  τ.  The 
probability  of  this  happening  depends  on  the  expected  activation  of  the  chunk  (its 
activation without the instantaneous noise added in), Ai, and the amount of instantaneous 
noise in the system based on its s parameter:

s

Ai i

e
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+
= τ
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Inspection  of  that  formula  shows  that,  as  Ai tends  higher,  the  probability  of  recall 
approaches 1, whereas, as τ tends higher, the probability decreases. In fact, when τ = Ai, 
the probability of recall is .5. The s parameter controls the sensitivity of recall to changes 
in activation. If  s is close to 0, the transition from near 0% recall to near 100% will be 
abrupt, whereas when  s is larger, the transition will be a slow sigmoidal curve.  It is 
important to note however that this is only a description of what can happen with the 
retrieval of a chunk.  When a retrieval request is made the chunk’s activation plus the 
instantaneous noise will either be above the threshold or not.

4.7 Retrieval Latency

The activation  of a chunk also determines  how quickly it  can be retrieved.   When a 
retrieval request is made, the time it takes until the chunk that is retrieved is available in 
the retrieval buffer is given by this equation:
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AFeTime −=

A: The activation of the chunk which is retrieved.

F: The latency factor (set using the :lf parameter). 

If no chunk matches the retrieval request, or no chunk has an activation which is greater 
than the retrieval threshold then a failure will occur.  The time it takes for the failure to be 
signaled is:

τ−= FeTime

τ: The retrieval threshold.

F: The latency factor.

4.8 The Paired-Associate Example

Now that we have described how activation works, we will look at an example model 
which shows the effect of base-level learning.  Anderson (1981) reported an experiment 
in which subjects studied and recalled a list of 20 paired associates for 8 trials.   The 
paired associates consisted of 20 nouns like “house” associated with the digits 0 - 9. 
Each digit was used as a response twice.  Below is the mean percent correct and mean 
latency to type the correct digit for each of the trials.  Note subjects got 0% correct on the 
first trial because they were just studying them for the first time and the mean latency is 0 
only because there were no correct responses.

Trial Accuracy Latency

1 .000 0.000

2 .526 2.156

3 .667 1.967
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4 .798 1.762

5 .887 1.680

6 .924 1.552

7 .958 1.467

8 .954 1.402

The paired-model.lisp file in the unit4 directory contains a model for this task and the 
code  to  run  the  experiment  can  be  found  in  the  paired  file  in  the  Lisp  and  Python 
directories.  The experiment code is written to allow one to run a general form of the 
experiment.  Both the number of pairs to present and the number of trials to run can be 
specified.  You can run the model through n trials of m paired associates (m no greater 
than 20) with the paired-task function in the Lisp version and the task function in the 
paired module of the Python version:

? (paired-task m n)

>>> paired.task(m,n)

If you would like to do the task as a person you can provide a true value for the optional  
third parameter.  To run yourself through 3 trials with 2 pairs that would look like this:

? (paired-task 2 3 t)

>>> paired.task(2,3,True)

For each of the m words you will see the stimulus for 5 seconds during which you have 
the opportunity to make your response.  Then you will see the associated number for 5 
seconds.  The simplest form of the experiment is one in which a single pair is presented 
twice.  To run the model through that task use the appropriate one of these function calls:

? (paired-task 1 2)

>>> paired.task(1,2)

Here  is  the  trace  of  the  model  doing such a  task.   The first  time  the  model  has  an  
opportunity to learn the pair and the second time it has a chance to recall the response 
from that learned pair:
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 0.000   GOAL           SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000   VISION         SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
 0.000   VISION         visicon-update
 0.000   PROCEDURAL     CONFLICT-RESOLUTION
 0.050   PROCEDURAL     PRODUCTION-FIRED ATTEND-PROBE
 0.050   PROCEDURAL     CLEAR-BUFFER VISUAL-LOCATION
 0.050   PROCEDURAL     CLEAR-BUFFER VISUAL
 0.050   PROCEDURAL     CONFLICT-RESOLUTION
 0.135   VISION         Encoding-complete VISUAL-LOCATION0-0 NIL
 0.135   VISION         SET-BUFFER-CHUNK VISUAL TEXT0
 0.135   PROCEDURAL     CONFLICT-RESOLUTION
 0.185   PROCEDURAL     PRODUCTION-FIRED READ-PROBE
 0.185   PROCEDURAL     CLEAR-BUFFER VISUAL
 0.185   PROCEDURAL     CLEAR-BUFFER IMAGINAL
 0.185   PROCEDURAL     CLEAR-BUFFER RETRIEVAL
 0.185   DECLARATIVE    start-retrieval
 0.185   PROCEDURAL     CONFLICT-RESOLUTION
 0.385   IMAGINAL       SET-BUFFER-CHUNK IMAGINAL CHUNK0
 0.385   PROCEDURAL     CONFLICT-RESOLUTION
 3.141   DECLARATIVE    RETRIEVAL-FAILURE
 3.141   PROCEDURAL     CONFLICT-RESOLUTION
 3.191   PROCEDURAL     PRODUCTION-FIRED CANNOT-RECALL
 3.191   PROCEDURAL     CLEAR-BUFFER RETRIEVAL
 3.191   PROCEDURAL     CLEAR-BUFFER VISUAL
 3.191   VISION         CLEAR
 3.191   PROCEDURAL     CONFLICT-RESOLUTION
 3.241   PROCEDURAL     CONFLICT-RESOLUTION
 5.000   ------         Stopped because time limit reached
 5.000   VISION         SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1 NIL
 5.000   VISION         visicon-update
 5.000   PROCEDURAL     CONFLICT-RESOLUTION
 5.050   PROCEDURAL     PRODUCTION-FIRED DETECT-STUDY-ITEM
 5.050   PROCEDURAL     CLEAR-BUFFER VISUAL-LOCATION
 5.050   PROCEDURAL     CLEAR-BUFFER VISUAL
 5.050   PROCEDURAL     CONFLICT-RESOLUTION
 5.135   VISION         Encoding-complete VISUAL-LOCATION1-0 NIL
 5.135   VISION         SET-BUFFER-CHUNK VISUAL TEXT1
 5.135   PROCEDURAL     CONFLICT-RESOLUTION
 5.185   PROCEDURAL     PRODUCTION-FIRED ASSOCIATE
 5.185   PROCEDURAL     CLEAR-BUFFER IMAGINAL
 5.185   PROCEDURAL     CLEAR-BUFFER VISUAL
 5.185   VISION         CLEAR
 5.185   PROCEDURAL     CONFLICT-RESOLUTION
 5.235   PROCEDURAL     CONFLICT-RESOLUTION
10.000   ------         Stopped because time limit reached
10.000   VISION         SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2 NIL
10.000   VISION         visicon-update
10.000   PROCEDURAL     CONFLICT-RESOLUTION
10.050   PROCEDURAL     PRODUCTION-FIRED ATTEND-PROBE
10.050   PROCEDURAL     CLEAR-BUFFER VISUAL-LOCATION
10.050   PROCEDURAL     CLEAR-BUFFER VISUAL
10.050   PROCEDURAL     CONFLICT-RESOLUTION
10.135   VISION         Encoding-complete VISUAL-LOCATION2-0 NIL
10.135   VISION         SET-BUFFER-CHUNK VISUAL TEXT2
10.135   PROCEDURAL     CONFLICT-RESOLUTION
10.185   PROCEDURAL     PRODUCTION-FIRED READ-PROBE
10.185   PROCEDURAL     CLEAR-BUFFER VISUAL
10.185   PROCEDURAL     CLEAR-BUFFER IMAGINAL
10.185   PROCEDURAL     CLEAR-BUFFER RETRIEVAL
10.185   DECLARATIVE    start-retrieval
10.185   PROCEDURAL     CONFLICT-RESOLUTION
10.385   IMAGINAL       SET-BUFFER-CHUNK IMAGINAL CHUNK1
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10.385   PROCEDURAL     CONFLICT-RESOLUTION
11.145   DECLARATIVE    RETRIEVED-CHUNK CHUNK0-0
11.145   DECLARATIVE    SET-BUFFER-CHUNK RETRIEVAL CHUNK0-0
11.145   PROCEDURAL     CONFLICT-RESOLUTION
11.195   PROCEDURAL     PRODUCTION-FIRED RECALL
11.195   PROCEDURAL     CLEAR-BUFFER RETRIEVAL
11.195   PROCEDURAL     CLEAR-BUFFER MANUAL
11.195   PROCEDURAL     CLEAR-BUFFER VISUAL
11.195   MOTOR          PRESS-KEY KEY 9
11.195   VISION         CLEAR
11.195   PROCEDURAL     CONFLICT-RESOLUTION
11.245   PROCEDURAL     CONFLICT-RESOLUTION
11.445   PROCEDURAL     CONFLICT-RESOLUTION
11.495   PROCEDURAL     CONFLICT-RESOLUTION
11.595   PROCEDURAL     CONFLICT-RESOLUTION
11.745   PROCEDURAL     CONFLICT-RESOLUTION
15.000   ------         Stopped because time limit reached
15.000   VISION         SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION3 NIL
15.000   VISION         visicon-update
15.000   PROCEDURAL     CONFLICT-RESOLUTION
15.050   PROCEDURAL     PRODUCTION-FIRED DETECT-STUDY-ITEM
15.050   PROCEDURAL     CLEAR-BUFFER VISUAL-LOCATION
15.050   PROCEDURAL     CLEAR-BUFFER VISUAL
15.050   PROCEDURAL     CONFLICT-RESOLUTION
15.135   VISION         Encoding-complete VISUAL-LOCATION3-0 NIL
15.135   VISION         SET-BUFFER-CHUNK VISUAL TEXT3
15.135   PROCEDURAL     CONFLICT-RESOLUTION
15.185   PROCEDURAL     PRODUCTION-FIRED ASSOCIATE
15.185   PROCEDURAL     CLEAR-BUFFER IMAGINAL
15.185   PROCEDURAL     CLEAR-BUFFER VISUAL
15.185   VISION         CLEAR
15.185   PROCEDURAL     CONFLICT-RESOLUTION
15.235   PROCEDURAL     CONFLICT-RESOLUTION
20.000   ------         Stopped because time limit reached

The basic structure of the screen processing productions should be familiar by now.  The 
one thing to note is that because this model must wait for stimuli to appear on screen it 
takes advantage of the buffer stuffing mechanism in the visual-location buffer so that it 
can wait for the change instead of continuously checking.  The way it does that is by 
having the first production that will match, for either the probe or the associated number, 
have a visual-location buffer test on its LHS and no productions which make requests for 
visual-locations.  Thus, those productions will only match once buffer stuffing places a 
chunk into the visual-location buffer.  Here are the attend-probe and detect-study-item 
productions for reference:

(p attend-probe
    =goal>
      isa      goal
      state    start
    =visual-location>
    ?visual>
     state     free
   ==>
    +visual>               
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      cmd      move-attention
      screen-pos =visual-location
    =goal>
      state    attending-probe
)

(p detect-study-item
    =goal>
      isa      goal
      state    read-study-item
    =visual-location>
    ?visual>
      state    free
   ==>
    +visual>               
      cmd      move-attention
      screen-pos =visual-location
    =goal>
      state    attending-target
) 

Because the buffer is cleared automatically by strict harvesting and no later productions 
issue a request for a visual-location these productions must wait for buffer stuffing to put 
a chunk into the visual-location buffer before they can match.  Since none of the other 
productions match in the mean time the model will just wait for the screen to change 
before doing anything else.

Now we will focus on the productions which are responsible for forming the association 
and retrieving the chunk.  When the model attends to the probe with the  read-probe 
production two actions are taken (in addition to the updating of the goal state):

(p read-probe
    =goal>
      isa      goal
      state    attending-probe
    =visual>
      isa      visual-object
      value    =val
    ?imaginal>
      state    free
   ==>
    +imaginal>
      isa      pair
      probe    =val
    +retrieval>
      isa      pair
      probe    =val
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    =goal>
      state    testing
)

It makes a request to the imaginal buffer to create a chunk which will hold the value read 
from the screen in the probe slot.   It  also makes a request to the  retrieval buffer to 
retrieve a chunk from declarative memory which has that same value in the probe slot.  

We will  come back to  the  retrieval request  shortly.   For  now we will  focus  on the 
creation of the chunk for representing the pair of items in the imaginal buffer.  

The associate production fires after the model reads the number which is associated with 
the probe:

(p associate
    =goal>
      isa      goal
      state    attending-target
    =visual>
      isa      visual-object
      value    =val
   =imaginal>
      isa      pair
      probe    =probe
    ?visual>
      state    free
  ==>
   =imaginal>
      answer   =val
   -imaginal>
   =goal>
      state    start  
   +visual>
      cmd      clear
)
 

This production sets the answer slot of the chunk in the  imaginal buffer to the answer 
which was read from the screen.  It also clears that chunk from the buffer so that it is 
entered into declarative memory.  That will result in a chunk like this being added to the 
model’s declarative memory:

CHUNK0-0
   PROBE  "zinc"
   ANSWER  "9"
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This chunk serves as the memory of this trial.   An important thing to note is that the 
chunk in the buffer is not added to the model’s declarative memory until that buffer is 
cleared.  Often that happens when the model later harvests that chunk from the buffer, but 
in this case the model does not harvest the chunk later so it is explicitly cleared in the last 
production which modifies it.  One could imagine adding additional productions which 
would  rehearse  that  information  clearing  the  buffer  as  it  does  so,  but  for  the 
demonstration model that is not done. 

This production also makes a request to the  visual buffer to stop attending to the item. 
That is done so that the model does not perform the automatic re-encoding when the 
screen is updated. 

Now, consider the retrieval request in the read-probe production again:

    +retrieval>
      isa      pair
      probe    =val

The declarative memory module will attempt to retrieve a chunk with the requested probe 
value.  Depending on whether a chunk can be retrieved, one of two production rules may 
apply corresponding to either the successful retrieval of such a chunk or the failure to 
retrieve a matching chunk:

(p recall
    =goal>
      isa      goal 
      state    testing
    =retrieval>
      isa      pair
      answer   =ans
    ?manual>   
      state    free
    ?visual>
      state    free
   ==>
    +manual>              
      cmd      press-key     
      key      =ans
    =goal>
      state    read-study-item
    +visual>
      cmd      clear
)
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(p cannot-recall
    =goal>
      isa      goal 
      state    testing
    ?retrieval>
      buffer   failure
    ?visual>
      state    free
   ==>
    =goal>
     state    read-study-item
    +visual>
     cmd      clear
)

The probability of the recall production firing and the mean latency for the recall will be 
determined by the activation of the corresponding chunk.  The probability will  increase 
with repeated  presentations  and successful  retrievals,  while  the latency will  decrease. 
That is because each repeated presentation will  result  in creating a new chunk in the 
imaginal buffer which will merge with the existing chunk for that trial in declarative 
memory thus increasing its activation.  Similarly, when it successfully retrieves a chunk 
for a trial and the recall production fires that chunk in the retrieval buffer will be cleared 
by the strict harvesting mechanism and then merge with the chunk in declarative memory 
again increasing its activation.

This  model  gives  a  pretty  good fit  to  the  data  as  illustrated  below in  a  run  of  100 
simulated  subjects  using  the  paired-experiment  function  in  Lisp  or  the  experiment 
function from the paired module in Python (because of stochasticity the results are more 
reliable if there are more runs and to generate that many runs in a reasonable amount of 
time one must turn off the trace and remove the seed parameter to allow for differences 
from run to run):

? (paired-experiment 100) 

>>> paired.experiment(100)

Latency:
CORRELATION:  0.997
MEAN DEVIATION:  0.090
Trial    1       2       3       4       5       6       7       8
        0.000   2.173   1.886   1.682   1.549   1.451   1.350   1.301

Accuracy:
CORRELATION:  0.992
MEAN DEVIATION:  0.049
Trial    1       2       3       4       5       6       7       8
        0.000   0.553   0.773   0.879   0.910   0.929   0.949   0.954
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4.9 Parameter estimation

To get the model to fit the data requires not only writing a plausible set of productions 
which can accomplish the task, but also setting the ACT-R parameters that control the 
behavior as described in the equations governing the operation of declarative memory. 
Running the model without enabling the base-level learning component of declarative 
memory produces results like this:
Latency:
CORRELATION:  0.925
MEAN DEVIATION:  0.280
Trial    1       2       3       4       5       6       7       8
        0.000   1.556   1.551   1.541   1.550   1.545   1.546   1.546

Accuracy:
CORRELATION:  0.884
MEAN DEVIATION:  0.223
Trial    1       2       3       4       5       6       7       8
        0.000   1.000   1.000   1.000   1.000   1.000   1.000   1.000

That shows perfect recall after one presentation and essentially no difference in the time 
to  respond  across  trials.  Just  turning  on  base-level  learning  by  specifying  the  :bll 
parameter with the recommended value of .5 results in these results: 

Latency:
CORRELATION:  0.000
MEAN DEVIATION:  1.619
Trial    1       2       3       4       5       6       7       8
        0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000

Accuracy:
CORRELATION:  0.000
MEAN DEVIATION:  0.777
Trial    1       2       3       4       5       6       7       8
        0.000   0.000   0.000   0.000   0.000   0.000   0.000   0.000

That shows a complete failure to retrieve any of the facts which would happen because 
they have an activation below the retrieval threshold (which defaults to 0).  Lowering the 
retrieval threshold so that they can be retrieved results in something like this:

Latency:
CORRELATION:  0.939
MEAN DEVIATION:  1.522

Trial    1       2       3       4       5       6       7       8
        0.000   3.413   3.841   4.071   3.693   2.968   2.567   2.321

Accuracy:
CORRELATION:  0.821
MEAN DEVIATION:  0.296
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Trial    1       2       3       4       5       6       7       8
        0.000   0.050   0.080   0.470   1.000   1.000   1.000   1.000

That shows some of the general trends, but does not fit the data well.  The behavior of 
this model and the one that you will write for the assignment of this unit really depends 
on the settings of four parameters.  Here are those parameters and their settings in this 
model.  The retrieval threshold is set at -2.  This determines how active a chunk has to be 
to be retrieved 50% of the time. The instantaneous activation noise is set at 0.5. This 
determines how quickly probability of retrieval changes as we move past the threshold. 
The latency factor is set at 0.4. This determines the magnitude of the activation effects on 
latency.  Finally, the decay rate for base-level learning is set to the value 0.5 which is 
where  we  recommend  it  be  set  for  most  tasks  that  involve  the  base-level  learning 
mechanism.

How to determine  those values can be a tricky process because the equations  are  all 
related and thus they cannot be independently manipulated for a best fit.  Typically some 
sort of searching is required, and there are many ways to accomplish that.  For the tutorial 
models there will typically be only one or two parameters that you will need to adjust and 
we recommend that you work through the process “by hand” adjusting the parameters 
individually to see the effect  that  they have on the model.   There are  other  ways  of 
determining  parameters  that  can  be  used,  but  we  will  not  be  covering  any  such 
mechanisms in the tutorial.

4.10 The Activation trace

A parameter named :act is also set in the sgp call in this model.  This is the activation 
trace parameter.  If it is turned on, it causes the declarative memory system to print the 
details of the activation computations that occur during a retrieval request in the trace.  If 
you set it to t and reload the model and run for two trials of one pair (like the trace above) 
you  will  find these additional  details  where the  retrieval  requests  are  handled  by the 
declarative module:
 0.185   DECLARATIVE    start-retrieval
No matching chunk found retrieval failure
...
10.185   DECLARATIVE    start-retrieval
Chunk CHUNK0-0 matches
Computing activation for chunk CHUNK0-0
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (5.185)
  creation time: 5.185 decay: 0.5  Optimized-learning: T
base-level value: -0.11157179
Total base-level: -0.11157179
Adding transient noise 0.29328185
Adding permanent noise 0.0
Chunk CHUNK0-0 has an activation of: 0.18171006
Chunk CHUNK0-0 has the current best activation 0.18171006
Chunk CHUNK0-0 with activation 0.18171006 is the best
...
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You may find this detailed accounting of the activation computation useful in debugging 
your models and in understanding how the system computes activation values.

4.11 The :ncnar Parameter

There is one final parameter being set in the model which you have not seen before - 
:ncnar (normalize chunk names after run).  This parameter does not affect the model’s 
performance on the tasks, but it does affect the actual time it takes to run the simulation. 
The details on what exactly it does can be found in the code description text for this unit. 
The reason it is turned off (set to nil) in the models for this unit is to decrease the time it 
takes to run the simulations.

4.12 Unit Exercise: Alpha-Arithmetic

The following data were obtained by N. J. Zbrodoff on judging alphabetic  arithmetic 
problems.   Participants  were presented  with an equation  like A + 2 = C and had to 
respond yes or no whether the equation was correct based on counting in the alphabet – 
the preceding equation is correct, but B + 3 = F is not.  

She manipulated whether the addend was 2, 3, or 4 and whether the problem was true or 
false.  She had 2 versions of each of the 6 kinds of problems (3 addends x 2 responses) 
each with a different letter (a through f). She then manipulated the frequency with which 
problems were studied in sets of 24 trials:

- In the Control condition, each of the 2, 3, and 4 addend problems occurred twice.

- In the  Standard condition,  the 2 addend problems occurred  three  times,  the 3 
addend problems twice, and the 4 addend problems once.  

- In the Reverse condition,  the 2 addend problems occurred once,  the 3 addend 
problems twice, and the 4 addend problems three times.  

Each  participant  saw problems based on one of  the  three  conditions.   There  were  8 
repetitions of a set of 24 problems in a block (192 problems), and there were 3 blocks for  
576 problems in all.   The data presented below are in seconds to correctly judge the 
problems true or false based on the block and the addend.  They are aggregated over both 
true and false responses:

Control Group (all problems equally frequently)
           Two    Three    Four
Block 1   1.840   2.460   2.820
Block 2   1.210   1.450   1.420
Block 3   1.140   1.210   1.170

Standard Group (smaller problems more frequent)
           Two    Three    Four
Block 1   1.840   2.650   3.550
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Block 2   1.060   1.450   1.920
Block 3   0.910   1.080   1.480

Reverse Group (larger problems more frequent)
           Two    Three    Four
Block 1   2.250   2.530   2.440
Block 2   1.470   1.460   1.100
Block 3   1.240   1.120   0.870

The interesting phenomenon concerns the interaction between the effect of the addend 
and amount of practice.  Presumably, the addend effect originally occurs because subjects 
have to engage in counting, but latter they come to rely mostly on retrieval of answers 
they have stored from previous computations.

The task for this unit is to develop a model of the control group data. Functions to run the 
experiment can be found in the appropriate zbrodoff file and most of a model that can 
perform the task is provided in the zbrodoff-model.lisp file with the unit materials.  The 
model as given does the task by counting through the alphabet and numbers “in its head” 
to  arrive at  an answer which it  compares  to the initial  equation to determine  how to 
respond.  The timing for this model to complete the task is determined by the perceptual  
and motor actions which it performs: reading the display, subvocalizing the items as it 
counts through the alphabet (similar to the speak action we saw earlier in the tutorial for 
the speech module),  and pressing the response key.   Here is  the performance of this 
model on the task when run through the whole experiment once:

CORRELATION:  0.289
MEAN DEVIATION:  1.309

              2 (64)      3 (64)      4 (64)
Block  1  2.301 (64)  2.806 (64)  3.287 (64)
Block  2  2.290 (64)  2.804 (64)  3.301 (64)
Block  3  2.286 (64)  2.797 (64)  3.290 (64)
 

It is always correct (the 64 on the top row indicates how many presentations per cell and 
the number correct is then displayed for each cell) but it does not get any faster from 
block to block because it always uses the counting strategy.  Your first task is to extend 
the model  so that  it  attempts  to remember  previous  instances  of  the trials.   If  it  can 
remember the answer it does not have to resort to the counting strategy and can respond 
much faster. 

The model encodes each trail in a chunk which has the result of its counting for the trial.  
A completed problem for a trial where the stimulus was “A+2 = C” would look like this:

CHUNK0-0
   RESULT  "c"
   ARG1  "a"
   ARG2  "2"
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The result slot contains the result of counting 2 letters from A.  An important thing to 
note is that the actual target letter for the trial is stored in the goal buffer for comparison 
after the model has finished counting to a result.  The model only encodes the result of 
the counting in the chunk that represents a trial in the imaginal buffer.  Thus the same 
chunk will result from a trial where the stimulus presented is “A+2 = D” because it only 
counts  A  plus  2  and  then  compares  the  result  of  that,  C,  to  the  letter  presented  to 
determine  if  the  problem is  correct  or  not  (since  C is  not  D this  problem would  be 
incorrect).  The assumption is that the person is actually learning the letter counting facts 
and not just memorizing the stimulus-response pairings for the task. The model will learn 
one chunk for each of the additions which it encounters, which will be a total of six after 
it completes a set of trials.

A strong recommendation for adding the retrieval strategy to the model is to continue to 
use  the  existing  encoding  productions  before  the  retrieval,  the  existing  response 
productions (final-answer-yes and final-answer-no) after a successful retrieval, and the 
given  counting  productions  if  it  fails  to  retrieve.   It  may  be  necessary  to  modify 
productions  at  the  end of  the encoding process  and/or  the beginning of  the counting 
process to add the retrieval process into the model, but the response productions should 
not be modified  in  any way and you  should  not add  any additional  productions  for 
responding.  Using  the  given  response  productions  is  important  because  they  already 
handle  the  important  steps  necessary  for  the  model  to  repeatedly  perform  this  task 
successfully: they create a new goal chunk which will make sure the model is ready for 
the next trial, they make the correct response based on the comparison of the value read 
from the screen and the correct value of the sum which has been encoded in the imaginal 
buffer, and that imaginal buffer chunk is cleared so that it can enter declarative memory 
and strengthen the knowledge for that fact.

After your model is able to utilize a retrieval strategy along with the counting strategy 
given, your next step is to adjust the parameters so that the model’s performance better 
fits the experimental data.  The results should look something like this after you have the 
retrieval strategy working with the parameters as set in the starting model:

CORRELATION:  0.962
MEAN DEVIATION:  0.659

              2 (64)      3 (64)      4 (64)
Block  1  1.284 (64)  1.337 (64)  1.394 (64)
Block  2  1.074 (64)  1.059 (64)  1.102 (64)
Block  3  1.054 (64)  1.069 (64)  1.081 (64)

The model is responding correctly on all trials, the correlation is good, but the deviation 
is quite high because the model is too fast overall.  The model’s performance will depend 
on the same four  parameters  as the paired  associate  model:  latency factor,  activation 
noise, base-level decay rate, and retrieval threshold.  In the model you are given, the first  
three are set to the same values as in the paired associate model and represent reasonable 
values for this task.  The retrieval threshold (the :rt parameter) is set to its default value of 
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0.  This is the parameter you should adjust first to improve the fit to the data.  Here is our 
fit to the data adjusting only the retrieval threshold:

CORRELATION:  0.988
MEAN DEVIATION:  0.176

              2 (64)      3 (64)      4 (64)
Block  1  1.884 (64)  2.188 (64)  2.530 (64)
Block  2  1.376 (64)  1.486 (64)  1.617 (64)
Block  3  1.231 (64)  1.278 (64)  1.366 (64)

If you would like to try to fit the data even better then you could also adjust the latency 
factor  and  activation  noise  parameters  as  well.  The  base-level  decay  rate  parameter 
should be left at the value .5 (that is a recommended value which should not be adjusted 
in most models).  Here is our best fit with adjusting all three parameters:

CORRELATION:  0.991
MEAN DEVIATION:  0.082

              2 (64)      3 (64)      4 (64)
Block  1  1.994 (64)  2.375 (64)  2.755 (64)
Block  2  1.267 (64)  1.361 (64)  1.448 (64)
Block  3  1.092 (64)  1.110 (64)  1.132 (64)

This experiment is more complicated than the ones that you have seen previously.  It runs 
continuously for many trials and the learning that occurs across trials is important. Thus 
the model cannot treat each trial as an independent event and be reset before each one as 
has been done for the previous units.  While writing your model and testing the fit to the 
data you will probably want to test it on smaller runs than the whole task.  There are five 
functions  provided  for  running  the  experiment  and  subcomponents  of  the  whole 
experiment.  

The function to present a single problem to the model is called zbrodoff-problem in the 
Lisp version and problem in the zbrodoff module of the Python version.  It takes four 
required parameters which are all single character strings and an optional fifth parameter. 
The first three parameters are the elements of the equation to present. The fourth is the 
correct key which should be pressed for the trial, where k is the correct key for a true 
problem and d for a false problem.  The optional parameter indicates whether or not to 
show the task display.  If the optional parameter is not provided then the window will not  
be shown (a virtual window will be used) and if it is a true value  then it will show the 
task window.  These examples would present the “a + 2 = c” problem (which is true) to  
the model with a window that is visible:

? (zbrodoff-problem "a" "2" "c" "k" t) 

>>> zbrodoff.problem('a','2','c','k',True)

Here are the twelve different problems which are used in this experiment: 

true:  a+2=c, d+2=f, b+3=3, e+3=h, c+4=g, f+4=j
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false: a+2=d, d+2=g, b+3=f, e+3=i, c+4=h, f+4=k
                  

The single problem function should be used until you are certain that your model is able 
to successfully use a retrieval strategy along with counting.  To do that you will want to  
present the model with the same trial again and again and make sure that at some point it  
can retrieve the correct fact and respond correctly.  You will also want to test it with both 
true  and  false  facts  to  make  sure  it  can  retrieve  the  right  information  and  respond 
correctly in both cases.  Finally you should check the model’s declarative memory to 
make sure that it  is only creating the correct facts – it should not be learning chunks 
which represent the wrong addition.

Once you are confident that your model is learning the correct chunks and can use both 
retrieval and counting to respond correctly you can use the functions to present a set or 
block of items:  zbrodoff-set and  zbrodoff-block in Lisp and  set  and  block  from the 
zbrodoff module in Python.  Those will run the model over multiple trials and print the 
results.  Each takes one optional parameter to control whether the task display is shown, 
and if it is not provided they will not show the display.  The set function runs the model 
through 24 trials  of the task presenting  each problem twice in  a  randomly generated 
order.  The block function runs through 192 trials, which is 8 repetitions of the 24 trial 
set.  Here are examples of running a set of trials in Lisp and a block in Python:

? (zbrodoff-set)

              2 ( 8)      3 ( 8)      4 ( 8)
Block  1  2.307 ( 8)  2.807 ( 8)  3.295 ( 8)

>>> zbrodoff.block()

              2 (64)      3 (64)      4 (64)
Block  1  2.031 (64)  2.258 (64)  2.659 (64)

After making sure the model can successfully complete a set and block of trials then you 
will  want to  test  it  with the function which resets  the model  and then runs one pass 
through  the  whole  experiment:  zbrodoff-experiment in  Lisp  and  experiment in  the 
zbrodoff module in Python.  It has two optional parameters.  The first determines whether 
the task window is visible  or not,  and the second determines  whether the results  are 
printed.   The defaults  are to not show the window and to show the results,  which is 
probably how you want to run it:

? (zbrodoff-experiment)

              2 (64)      3 (64)      4 (64)
Block  1  1.953 (64)  2.285 (64)  2.730 (64)
Block  2  1.226 (64)  1.184 (64)  1.403 (64)
Block  3  1.123 (64)  1.074 (64)  1.085 (64)

>>> zbrodoff.experiment()
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              2 (64)      3 (64)      4 (64)
Block  1  2.298 (64)  2.812 (64)  3.300 (64)
Block  2  2.298 (64)  2.803 (64)  3.297 (64)
Block  3  2.287 (64)  2.798 (64)  3.290 (64)

If the model is able to successfully complete the experiment you can move on to the 
function that runs the experiment multiple times, averages the results, and compares the 
results  to  the  human  data:  zbrodoff-compare in  Lisp  and  compare in  the  zbrodoff 
module in Python.  Those functions take one parameter indicating the number of times to 
run the full experiment.  It may take a while to run, especially if you request a lot of 
trials.  Here are some examples:
? (zbrodoff-compare 10)
CORRELATION:  0.288
MEAN DEVIATION:  1.309

              2 (64)      3 (64)      4 (64)
Block  1  2.296 (64)  2.799 (64)  3.296 (64)
Block  2  2.297 (64)  2.797 (64)  3.293 (64)
Block  3  2.298 (64)  2.796 (64)  3.295 (64)

>>> zbrodoff.compare(10)
CORRELATION:  0.288
MEAN DEVIATION:  1.311

              2 (64)      3 (64)      4 (64)
Block  1  2.301 (64)  2.798 (64)  3.300 (64)
Block  2  2.299 (64)  2.798 (64)  3.297 (64)
Block  3  2.294 (64)  2.796 (64)  3.301 (64)

An important thing to note is that among those functions the only ones that reset the 
model are the ones that run the full experiment.  So if you are using the other functions 
while  testing  the  model  keep in  mind  that  unless  you  explicitly  reset  the  model  (by 
pressing the “Reset” button on the Control Panel,  reloading the model,  or calling the 
ACT-R reset function from the ACT-R prompt or the actr.reset function in Python) then 
the model will still have all the chunks which it has learned since the last time it was reset 
(or loaded) in its declarative memory.

As you look at the starting model you will see one additional setting at the end of the 
model definition which you have not seen before:

 (set-all-base-levels 100000 -1000)

This sets the base-level activation of all the chunks in declarative memory that exist when 
it is called (which are the sequence chunks provided) to very large values by setting the 
parameters  n and  L  of  the  optimized  base-level  equation  for  each  one.  The  first 
parameter, 100000, specifies  n and the second parameter, -1000, specifies the creation 
time of the chunk.  This ensures that the initial chunks which encode the sequencing of 
numbers and letters maintain a very high base-level activation and do not fall below the 
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retrieval threshold over the course of the task.  The assumption is that counting and the 
order of the alphabet are very well learned tasks for the model and the human participants 
in the experiment and that knowledge does not have any significant effect of learning or 
decay during the course of the experiment.

Because this experiment involves a lot of trials and you need to run several experiments 
to get the average results of the model there are some additional things that can be done 
to improve the performance of running the experiment i.e. the real time it takes to run the 
model through the experiment not the simulated time the model reports for doing the 
task.  Probably the most important will be to turn off the model’s trace by setting the :v  
parameter  to  nil.   The starting  model  has  that  setting,  but  while  you  are testing and 
debugging your addition of a retrieval process you will probably want to turn it back on 
by setting it to t so that you can see what is happening in your model.  Something else 
which you will want to do when running the whole experiment is to close any of the 
Recordable data tools which you may have opened in the ACT-R Environment because 
there is a cost to recording the underlying data needed for those tools, and also turn off 
the running indicator if you have enabled it because there is also a cost to update that 
display.   The final thing which you may want to do is to use the Lisp version of the 
experiment  from  the  ACT-R  prompt  instead  of  the  version  connected  from  Python 
because there is some additional cost to running the Python version of the experiments 
and for this task that might be noticeable over many runs.
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