
ACT-R Tutorial 10-Dec-19 Unit Four

Unit 4: Activation of Chunks and Base-Level Learning

There are two objectives of this unit. The first is to introduce the subsymbolic quantity of
activation associated with chunks. The other is to show how those activation values are
learned through the history of usage of the chunks.

4.1 Introduction

We have seen retrieval requests in productions many times in the tutorial, like this one
from the count model in unit 1:

(p start
 =goal>
 ISA count-from
 start =num1
 count nil
 ==>
 =goal>
 ISA count-from
 count =num1
 +retrieval>
 ISA count-order
 first =num1
)

In this case an attempt is being made to retrieve a chunk with a particular number (bound
to =num1) in its first slot. Up to now we have been working with the system at the
symbolic level. If there was a chunk that matched that retrieval request it would be
placed into the retrieval buffer, and if not then the request would fail and the buffer
would indicate the failure. The system was deterministic and we did not consider any
timing cost associated with that memory retrieval or the possibility that a matching chunk
in declarative memory might fail to be retrieved. For the simple tasks we have looked at
so far that was sufficient.

Most psychological tasks however are not that simple and issues such as accuracy and
latency are measured over time or across different conditions. For modeling these more
involved tasks one will typically need to use the subsymbolic components of ACT-R to
accurately model and predict human performance. For the remainder of the tutorial, we
will be looking at the subsymbolic components that control the performance of the
system. To use the subsymbolic components we need to turn them on by setting the :esc
parameter (enable subsymbolic computations) to t:

1

ACT-R Tutorial 10-Dec-19 Unit Four

(sgp :esc t)

That setting will be included in all of the models from this point on in the tutorial.

4.2 Activation

Every chunk in ACT-R’s declarative memory has associated with it a numerical value
called its activation. The activation reflects the degree to which past experiences and
current context indicate that chunk will be useful at any particular moment. When a
retrieval request is made the chunk with the greatest activation among those that match
the specification of the request will be the one placed into the retrieval buffer. There is
one constraint on that however. There is another parameter called the retrieval threshold
which sets the minimum activation a chunk can have and still be retrieved. It is set with
the :rt parameter:

(sgp :rt -0.5)

If the chunk with the highest activation among those that match the request has an
activation which is less than the retrieval threshold, then no chunk will be placed into the
retrieval buffer and a buffer failure will be indicated.

The activation Ai of a chunk i is computed from three components – the base-level, a
context component, and a noise component. We will discuss the context component in
the next unit. So, for now the activation equation is:

ε+= ii BA

B
i
: The base-level activation. This reflects the recency and frequency of practice of the

chunk i.

ε : The noise value. The noise is composed of two components: a permanent noise
associated with each chunk and an instantaneous noise computed at the time of a
retrieval request.

We will discuss these components in detail below.

4.3 Base-level Learning

2

ACT-R Tutorial 10-Dec-19 Unit Four

The equation describing learning of base-level activation for a chunk i is:

)ln(
1

∑
=

−=
n

j

d
ji tB

n: The number of presentations for chunk i.

tj: The time since the jth presentation.

d: The decay parameter which is set using the :bll (base-level learning) parameter. This
parameter is almost always set to 0.5.

This equation describes a process in which each time an item is presented there is an
increase in its base-level activation, which decays away as a power function of the time
since that presentation. These decay effects are summed and then passed through a
logarithmic transformation.

There are two types of events that are considered as presentations of a chunk. The first is
its initial entry into declarative memory. The other is when a chunk merges with a chunk
that is already in declarative memory. The next two subsections describe those events in
more detail.

4.3.1 Chunks Entering Declarative Memory

When a chunk is initially entered into declarative memory is counted as its first
presentation. There are two ways for a chunk to be entered into declarative memory,
both of which have been discussed in the previous units. They are:

- Explicitly by the modeler using the add-dm command. These chunks are entered
at the time the call is executed, which is time 0 for a call in the body of the model
definition.

- When the chunk is cleared from a buffer. We have seen this happen in many of
the previous models as visual locations, visual objects, and goal chunks are
cleared from their buffers they can then be found among the chunks in declarative
memory.

4.3.2 Chunk Merging

Something we have not seen previously is what happens when the chunk cleared from a
buffer is an identical match to a chunk which is already in declarative memory. If a
chunk has the same set of slots and values as a chunk which already exists in the model’s
declarative memory then instead of being added to declarative memory that chunk goes
through a process we refer to as merging with the existing chunk in declarative memory.
Instead of adding the new chunk to declarative memory the preexisting chunk in

3

ACT-R Tutorial 10-Dec-19 Unit Four

declarative memory is credited with a presentation. Then the name of the new chunk (the
one which is being merged into declarative memory) is changed to now reference the
chunk that was already in declarative memory i.e. there is one chunk which now has two
(or possibly more) names. This mechanism results in repeated completions of the same
operations (the clearing of a duplicate chunk) reinforcing the chunk that represents that
situation instead of creating lots of identical chunks each with only one presentation. for
example, repeatedly attending the same visual stimuli would result in strengthening a
single chunk that represents that object.

4.4 Optimized Learning

Because of the need to separately calculate the effect of each presentation, the learning
rule is computationally expensive and for some models the real time cost of computation
is too great to be able to actually run the model in a reasonable amount time. To reduce
the computational cost there is an approximation that one can use when the presentations
are approximately uniformly distributed over the time since the item was created. This
approximation can be enabled by turning on the optimized learning parameter - :ol. In
fact, its default setting is on (the value t). When optimized learning is enabled, the
following equation applies:

)ln(*
1

ln Ld
d

n
Bi −







−
=

n: The number of presentations of chunk i.

L: The lifetime of chunk i (the time since its creation).

d: The decay parameter.

4.5 Noise

The noise component of the activation equation contains two sources of noise. There is a
permanent noise which can be associated with a chunk and an instantaneous noise value
which will be recomputed at each retrieval attempt. Both noise values are generated
according to a logistic distribution characterized by a parameter s. The mean of the
logistic distribution is 0 and the variance, σ2, is related to the s value by this equation:

4

ACT-R Tutorial 10-Dec-19 Unit Four

2
2

2

3
s

πσ =

The permanent noise s value is set with the :pas parameter and the instantaneous noise s
value is set with the :ans parameter. Typically, we are only concerned with the
instantaneous noise (the variance from trial to trial) and leave the permanent noise turned
off (a value of nil).

4.6 Probability of Recall

If we make a retrieval request and there is a matching chunk in declarative memory, that
chunk will only be retrieved if its activation exceeds the retrieval threshold, τ. The
probability of this happening depends on the expected activation of the chunk (its
activation without the instantaneous noise added in), Ai, and the amount of instantaneous
noise in the system based on its s parameter:

s

Ai i

e

abilityrecallprob −

+
= τ

1

1

Inspection of that formula shows that, as Ai tends higher, the probability of recall
approaches 1, whereas, as τ tends higher, the probability decreases. In fact, when τ = Ai,
the probability of recall is .5. The s parameter controls the sensitivity of recall to changes
in activation. If s is close to 0, the transition from near 0% recall to near 100% will be
abrupt, whereas when s is larger, the transition will be a slow sigmoidal curve. It is
important to note however that this is only a description of what can happen with the
retrieval of a chunk. When a retrieval request is made the chunk’s activation plus the
instantaneous noise will either be above the threshold or not.

4.7 Retrieval Latency

The activation of a chunk also determines how quickly it can be retrieved. When a
retrieval request is made, the time it takes until the chunk that is retrieved is available in
the retrieval buffer is given by this equation:

5

ACT-R Tutorial 10-Dec-19 Unit Four

AFeTime −=

A: The activation of the chunk which is retrieved.

F: The latency factor (set using the :lf parameter).

If no chunk matches the retrieval request, or no chunk has an activation which is greater
than the retrieval threshold then a failure will occur. The time it takes for the failure to be
signaled is:

τ−= FeTime

τ: The retrieval threshold.

F: The latency factor.

4.8 The Paired-Associate Example

Now that we have described how activation works, we will look at an example model
which shows the effect of base-level learning. Anderson (1981) reported an experiment
in which subjects studied and recalled a list of 20 paired associates for 8 trials. The
paired associates consisted of 20 nouns like “house” associated with the digits 0 - 9.
Each digit was used as a response twice. Below is the mean percent correct and mean
latency to type the correct digit for each of the trials. Note subjects got 0% correct on the
first trial because they were just studying them for the first time and the mean latency is 0
only because there were no correct responses.

Trial Accuracy Latency

1 .000 0.000

2 .526 2.156

3 .667 1.967

6

ACT-R Tutorial 10-Dec-19 Unit Four

4 .798 1.762

5 .887 1.680

6 .924 1.552

7 .958 1.467

8 .954 1.402

The paired-model.lisp file in the unit4 directory contains a model for this task and the
code to run the experiment can be found in the paired file in the Lisp and Python
directories. The experiment code is written to allow one to run a general form of the
experiment. Both the number of pairs to present and the number of trials to run can be
specified. You can run the model through n trials of m paired associates (m no greater
than 20) with the paired-task function in the Lisp version and the task function in the
paired module of the Python version:

? (paired-task m n)

>>> paired.task(m,n)

If you would like to do the task as a person you can provide a true value for the optional
third parameter. To run yourself through 3 trials with 2 pairs that would look like this:

? (paired-task 2 3 t)

>>> paired.task(2,3,True)

For each of the m words you will see the stimulus for 5 seconds during which you have
the opportunity to make your response. Then you will see the associated number for 5
seconds. The simplest form of the experiment is one in which a single pair is presented
twice. To run the model through that task use the appropriate one of these function calls:

? (paired-task 1 2)

>>> paired.task(1,2)

Here is the trace of the model doing such a task. The first time the model has an
opportunity to learn the pair and the second time it has a chance to recall the response
from that learned pair:

7

ACT-R Tutorial 10-Dec-19 Unit Four

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
 0.000 VISION visicon-update
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED ATTEND-PROBE
 0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 0.050 PROCEDURAL CLEAR-BUFFER VISUAL
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.135 VISION Encoding-complete VISUAL-LOCATION0-0 NIL
 0.135 VISION SET-BUFFER-CHUNK VISUAL TEXT0
 0.135 PROCEDURAL CONFLICT-RESOLUTION
 0.185 PROCEDURAL PRODUCTION-FIRED READ-PROBE
 0.185 PROCEDURAL CLEAR-BUFFER VISUAL
 0.185 PROCEDURAL CLEAR-BUFFER IMAGINAL
 0.185 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.185 DECLARATIVE start-retrieval
 0.185 PROCEDURAL CONFLICT-RESOLUTION
 0.385 IMAGINAL SET-BUFFER-CHUNK IMAGINAL CHUNK0
 0.385 PROCEDURAL CONFLICT-RESOLUTION
 3.141 DECLARATIVE RETRIEVAL-FAILURE
 3.141 PROCEDURAL CONFLICT-RESOLUTION
 3.191 PROCEDURAL PRODUCTION-FIRED CANNOT-RECALL
 3.191 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 3.191 PROCEDURAL CLEAR-BUFFER VISUAL
 3.191 VISION CLEAR
 3.191 PROCEDURAL CONFLICT-RESOLUTION
 3.241 PROCEDURAL CONFLICT-RESOLUTION
 5.000 ------ Stopped because time limit reached
 5.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1 NIL
 5.000 VISION visicon-update
 5.000 PROCEDURAL CONFLICT-RESOLUTION
 5.050 PROCEDURAL PRODUCTION-FIRED DETECT-STUDY-ITEM
 5.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
 5.050 PROCEDURAL CLEAR-BUFFER VISUAL
 5.050 PROCEDURAL CONFLICT-RESOLUTION
 5.135 VISION Encoding-complete VISUAL-LOCATION1-0 NIL
 5.135 VISION SET-BUFFER-CHUNK VISUAL TEXT1
 5.135 PROCEDURAL CONFLICT-RESOLUTION
 5.185 PROCEDURAL PRODUCTION-FIRED ASSOCIATE
 5.185 PROCEDURAL CLEAR-BUFFER IMAGINAL
 5.185 PROCEDURAL CLEAR-BUFFER VISUAL
 5.185 VISION CLEAR
 5.185 PROCEDURAL CONFLICT-RESOLUTION
 5.235 PROCEDURAL CONFLICT-RESOLUTION
10.000 ------ Stopped because time limit reached
10.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION2 NIL
10.000 VISION visicon-update
10.000 PROCEDURAL CONFLICT-RESOLUTION
10.050 PROCEDURAL PRODUCTION-FIRED ATTEND-PROBE
10.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
10.050 PROCEDURAL CLEAR-BUFFER VISUAL
10.050 PROCEDURAL CONFLICT-RESOLUTION
10.135 VISION Encoding-complete VISUAL-LOCATION2-0 NIL
10.135 VISION SET-BUFFER-CHUNK VISUAL TEXT2
10.135 PROCEDURAL CONFLICT-RESOLUTION
10.185 PROCEDURAL PRODUCTION-FIRED READ-PROBE
10.185 PROCEDURAL CLEAR-BUFFER VISUAL
10.185 PROCEDURAL CLEAR-BUFFER IMAGINAL
10.185 PROCEDURAL CLEAR-BUFFER RETRIEVAL
10.185 DECLARATIVE start-retrieval
10.185 PROCEDURAL CONFLICT-RESOLUTION
10.385 IMAGINAL SET-BUFFER-CHUNK IMAGINAL CHUNK1

8

ACT-R Tutorial 10-Dec-19 Unit Four

10.385 PROCEDURAL CONFLICT-RESOLUTION
11.145 DECLARATIVE RETRIEVED-CHUNK CHUNK0-0
11.145 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL CHUNK0-0
11.145 PROCEDURAL CONFLICT-RESOLUTION
11.195 PROCEDURAL PRODUCTION-FIRED RECALL
11.195 PROCEDURAL CLEAR-BUFFER RETRIEVAL
11.195 PROCEDURAL CLEAR-BUFFER MANUAL
11.195 PROCEDURAL CLEAR-BUFFER VISUAL
11.195 MOTOR PRESS-KEY KEY 9
11.195 VISION CLEAR
11.195 PROCEDURAL CONFLICT-RESOLUTION
11.245 PROCEDURAL CONFLICT-RESOLUTION
11.445 PROCEDURAL CONFLICT-RESOLUTION
11.495 PROCEDURAL CONFLICT-RESOLUTION
11.595 PROCEDURAL CONFLICT-RESOLUTION
11.745 PROCEDURAL CONFLICT-RESOLUTION
15.000 ------ Stopped because time limit reached
15.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION3 NIL
15.000 VISION visicon-update
15.000 PROCEDURAL CONFLICT-RESOLUTION
15.050 PROCEDURAL PRODUCTION-FIRED DETECT-STUDY-ITEM
15.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
15.050 PROCEDURAL CLEAR-BUFFER VISUAL
15.050 PROCEDURAL CONFLICT-RESOLUTION
15.135 VISION Encoding-complete VISUAL-LOCATION3-0 NIL
15.135 VISION SET-BUFFER-CHUNK VISUAL TEXT3
15.135 PROCEDURAL CONFLICT-RESOLUTION
15.185 PROCEDURAL PRODUCTION-FIRED ASSOCIATE
15.185 PROCEDURAL CLEAR-BUFFER IMAGINAL
15.185 PROCEDURAL CLEAR-BUFFER VISUAL
15.185 VISION CLEAR
15.185 PROCEDURAL CONFLICT-RESOLUTION
15.235 PROCEDURAL CONFLICT-RESOLUTION
20.000 ------ Stopped because time limit reached

The basic structure of the screen processing productions should be familiar by now. The
one thing to note is that because this model must wait for stimuli to appear on screen it
takes advantage of the buffer stuffing mechanism in the visual-location buffer so that it
can wait for the change instead of continuously checking. The way it does that is by
having the first production that will match, for either the probe or the associated number,
have a visual-location buffer test on its LHS and no productions which make requests for
visual-locations. Thus, those productions will only match once buffer stuffing places a
chunk into the visual-location buffer. Here are the attend-probe and detect-study-item
productions for reference:

(p attend-probe
 =goal>
 isa goal
 state start
 =visual-location>
 ?visual>
 state free
 ==>
 +visual>

9

ACT-R Tutorial 10-Dec-19 Unit Four

 cmd move-attention
 screen-pos =visual-location
 =goal>
 state attending-probe
)

(p detect-study-item
 =goal>
 isa goal
 state read-study-item
 =visual-location>
 ?visual>
 state free
 ==>
 +visual>
 cmd move-attention
 screen-pos =visual-location
 =goal>
 state attending-target
)

Because the buffer is cleared automatically by strict harvesting and no later productions
issue a request for a visual-location these productions must wait for buffer stuffing to put
a chunk into the visual-location buffer before they can match. Since none of the other
productions match in the mean time the model will just wait for the screen to change
before doing anything else.

Now we will focus on the productions which are responsible for forming the association
and retrieving the chunk. When the model attends to the probe with the read-probe
production two actions are taken (in addition to the updating of the goal state):

(p read-probe
 =goal>
 isa goal
 state attending-probe
 =visual>
 isa visual-object
 value =val
 ?imaginal>
 state free
 ==>
 +imaginal>
 isa pair
 probe =val
 +retrieval>
 isa pair
 probe =val

10

ACT-R Tutorial 10-Dec-19 Unit Four

 =goal>
 state testing
)

It makes a request to the imaginal buffer to create a chunk which will hold the value read
from the screen in the probe slot. It also makes a request to the retrieval buffer to
retrieve a chunk from declarative memory which has that same value in the probe slot.

We will come back to the retrieval request shortly. For now we will focus on the
creation of the chunk for representing the pair of items in the imaginal buffer.

The associate production fires after the model reads the number which is associated with
the probe:

(p associate
 =goal>
 isa goal
 state attending-target
 =visual>
 isa visual-object
 value =val
 =imaginal>
 isa pair
 probe =probe
 ?visual>
 state free
 ==>
 =imaginal>
 answer =val
 -imaginal>
 =goal>
 state start
 +visual>
 cmd clear
)

This production sets the answer slot of the chunk in the imaginal buffer to the answer
which was read from the screen. It also clears that chunk from the buffer so that it is
entered into declarative memory. That will result in a chunk like this being added to the
model’s declarative memory:

CHUNK0-0
 PROBE "zinc"
 ANSWER "9"

11

ACT-R Tutorial 10-Dec-19 Unit Four

This chunk serves as the memory of this trial. An important thing to note is that the
chunk in the buffer is not added to the model’s declarative memory until that buffer is
cleared. Often that happens when the model later harvests that chunk from the buffer, but
in this case the model does not harvest the chunk later so it is explicitly cleared in the last
production which modifies it. One could imagine adding additional productions which
would rehearse that information clearing the buffer as it does so, but for the
demonstration model that is not done.

This production also makes a request to the visual buffer to stop attending to the item.
That is done so that the model does not perform the automatic re-encoding when the
screen is updated.

Now, consider the retrieval request in the read-probe production again:

 +retrieval>
 isa pair
 probe =val

The declarative memory module will attempt to retrieve a chunk with the requested probe
value. Depending on whether a chunk can be retrieved, one of two production rules may
apply corresponding to either the successful retrieval of such a chunk or the failure to
retrieve a matching chunk:

(p recall
 =goal>
 isa goal
 state testing
 =retrieval>
 isa pair
 answer =ans
 ?manual>
 state free
 ?visual>
 state free
 ==>
 +manual>
 cmd press-key
 key =ans
 =goal>
 state read-study-item
 +visual>
 cmd clear
)

12

ACT-R Tutorial 10-Dec-19 Unit Four

(p cannot-recall
 =goal>
 isa goal
 state testing
 ?retrieval>
 buffer failure
 ?visual>
 state free
 ==>
 =goal>
 state read-study-item
 +visual>
 cmd clear
)

The probability of the recall production firing and the mean latency for the recall will be
determined by the activation of the corresponding chunk. The probability will increase
with repeated presentations and successful retrievals, while the latency will decrease.
That is because each repeated presentation will result in creating a new chunk in the
imaginal buffer which will merge with the existing chunk for that trial in declarative
memory thus increasing its activation. Similarly, when it successfully retrieves a chunk
for a trial and the recall production fires that chunk in the retrieval buffer will be cleared
by the strict harvesting mechanism and then merge with the chunk in declarative memory
again increasing its activation.

This model gives a pretty good fit to the data as illustrated below in a run of 100
simulated subjects using the paired-experiment function in Lisp or the experiment
function from the paired module in Python (because of stochasticity the results are more
reliable if there are more runs and to generate that many runs in a reasonable amount of
time one must turn off the trace and remove the seed parameter to allow for differences
from run to run):

? (paired-experiment 100)

>>> paired.experiment(100)

Latency:
CORRELATION: 0.997
MEAN DEVIATION: 0.090
Trial 1 2 3 4 5 6 7 8
 0.000 2.173 1.886 1.682 1.549 1.451 1.350 1.301

Accuracy:
CORRELATION: 0.992
MEAN DEVIATION: 0.049
Trial 1 2 3 4 5 6 7 8
 0.000 0.553 0.773 0.879 0.910 0.929 0.949 0.954

13

ACT-R Tutorial 10-Dec-19 Unit Four

4.9 Parameter estimation

To get the model to fit the data requires not only writing a plausible set of productions
which can accomplish the task, but also setting the ACT-R parameters that control the
behavior as described in the equations governing the operation of declarative memory.
Running the model without enabling the base-level learning component of declarative
memory produces results like this:
Latency:
CORRELATION: 0.925
MEAN DEVIATION: 0.280
Trial 1 2 3 4 5 6 7 8
 0.000 1.556 1.551 1.541 1.550 1.545 1.546 1.546

Accuracy:
CORRELATION: 0.884
MEAN DEVIATION: 0.223
Trial 1 2 3 4 5 6 7 8
 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

That shows perfect recall after one presentation and essentially no difference in the time
to respond across trials. Just turning on base-level learning by specifying the :bll
parameter with the recommended value of .5 results in these results:

Latency:
CORRELATION: 0.000
MEAN DEVIATION: 1.619
Trial 1 2 3 4 5 6 7 8
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Accuracy:
CORRELATION: 0.000
MEAN DEVIATION: 0.777
Trial 1 2 3 4 5 6 7 8
 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

That shows a complete failure to retrieve any of the facts which would happen because
they have an activation below the retrieval threshold (which defaults to 0). Lowering the
retrieval threshold so that they can be retrieved results in something like this:

Latency:
CORRELATION: 0.939
MEAN DEVIATION: 1.522

Trial 1 2 3 4 5 6 7 8
 0.000 3.413 3.841 4.071 3.693 2.968 2.567 2.321

Accuracy:
CORRELATION: 0.821
MEAN DEVIATION: 0.296

14

ACT-R Tutorial 10-Dec-19 Unit Four

Trial 1 2 3 4 5 6 7 8
 0.000 0.050 0.080 0.470 1.000 1.000 1.000 1.000

That shows some of the general trends, but does not fit the data well. The behavior of
this model and the one that you will write for the assignment of this unit really depends
on the settings of four parameters. Here are those parameters and their settings in this
model. The retrieval threshold is set at -2. This determines how active a chunk has to be
to be retrieved 50% of the time. The instantaneous activation noise is set at 0.5. This
determines how quickly probability of retrieval changes as we move past the threshold.
The latency factor is set at 0.4. This determines the magnitude of the activation effects on
latency. Finally, the decay rate for base-level learning is set to the value 0.5 which is
where we recommend it be set for most tasks that involve the base-level learning
mechanism.

How to determine those values can be a tricky process because the equations are all
related and thus they cannot be independently manipulated for a best fit. Typically some
sort of searching is required, and there are many ways to accomplish that. For the tutorial
models there will typically be only one or two parameters that you will need to adjust and
we recommend that you work through the process “by hand” adjusting the parameters
individually to see the effect that they have on the model. There are other ways of
determining parameters that can be used, but we will not be covering any such
mechanisms in the tutorial.

4.10 The Activation trace

A parameter named :act is also set in the sgp call in this model. This is the activation
trace parameter. If it is turned on, it causes the declarative memory system to print the
details of the activation computations that occur during a retrieval request in the trace. If
you set it to t and reload the model and run for two trials of one pair (like the trace above)
you will find these additional details where the retrieval requests are handled by the
declarative module:
 0.185 DECLARATIVE start-retrieval
No matching chunk found retrieval failure
...
10.185 DECLARATIVE start-retrieval
Chunk CHUNK0-0 matches
Computing activation for chunk CHUNK0-0
Computing base-level
Starting with blc: 0.0
Computing base-level from 1 references (5.185)
 creation time: 5.185 decay: 0.5 Optimized-learning: T
base-level value: -0.11157179
Total base-level: -0.11157179
Adding transient noise 0.29328185
Adding permanent noise 0.0
Chunk CHUNK0-0 has an activation of: 0.18171006
Chunk CHUNK0-0 has the current best activation 0.18171006
Chunk CHUNK0-0 with activation 0.18171006 is the best
...

15

ACT-R Tutorial 10-Dec-19 Unit Four

You may find this detailed accounting of the activation computation useful in debugging
your models and in understanding how the system computes activation values.

4.11 The :ncnar Parameter

There is one final parameter being set in the model which you have not seen before -
:ncnar (normalize chunk names after run). This parameter does not affect the model’s
performance on the tasks, but it does affect the actual time it takes to run the simulation.
The details on what exactly it does can be found in the code description text for this unit.
The reason it is turned off (set to nil) in the models for this unit is to decrease the time it
takes to run the simulations.

4.12 Unit Exercise: Alpha-Arithmetic

The following data were obtained by N. J. Zbrodoff on judging alphabetic arithmetic
problems. Participants were presented with an equation like A + 2 = C and had to
respond yes or no whether the equation was correct based on counting in the alphabet –
the preceding equation is correct, but B + 3 = F is not.

She manipulated whether the addend was 2, 3, or 4 and whether the problem was true or
false. She had 2 versions of each of the 6 kinds of problems (3 addends x 2 responses)
each with a different letter (a through f). She then manipulated the frequency with which
problems were studied in sets of 24 trials:

- In the Control condition, each of the 2, 3, and 4 addend problems occurred twice.

- In the Standard condition, the 2 addend problems occurred three times, the 3
addend problems twice, and the 4 addend problems once.

- In the Reverse condition, the 2 addend problems occurred once, the 3 addend
problems twice, and the 4 addend problems three times.

Each participant saw problems based on one of the three conditions. There were 8
repetitions of a set of 24 problems in a block (192 problems), and there were 3 blocks for
576 problems in all. The data presented below are in seconds to correctly judge the
problems true or false based on the block and the addend. They are aggregated over both
true and false responses:

Control Group (all problems equally frequently)
 Two Three Four
Block 1 1.840 2.460 2.820
Block 2 1.210 1.450 1.420
Block 3 1.140 1.210 1.170

Standard Group (smaller problems more frequent)
 Two Three Four
Block 1 1.840 2.650 3.550

16

ACT-R Tutorial 10-Dec-19 Unit Four

Block 2 1.060 1.450 1.920
Block 3 0.910 1.080 1.480

Reverse Group (larger problems more frequent)
 Two Three Four
Block 1 2.250 2.530 2.440
Block 2 1.470 1.460 1.100
Block 3 1.240 1.120 0.870

The interesting phenomenon concerns the interaction between the effect of the addend
and amount of practice. Presumably, the addend effect originally occurs because subjects
have to engage in counting, but latter they come to rely mostly on retrieval of answers
they have stored from previous computations.

The task for this unit is to develop a model of the control group data. Functions to run the
experiment can be found in the appropriate zbrodoff file and most of a model that can
perform the task is provided in the zbrodoff-model.lisp file with the unit materials. The
model as given does the task by counting through the alphabet and numbers “in its head”
to arrive at an answer which it compares to the initial equation to determine how to
respond. The timing for this model to complete the task is determined by the perceptual
and motor actions which it performs: reading the display, subvocalizing the items as it
counts through the alphabet (similar to the speak action we saw earlier in the tutorial for
the speech module), and pressing the response key. Here is the performance of this
model on the task when run through the whole experiment once:

CORRELATION: 0.289
MEAN DEVIATION: 1.309

 2 (64) 3 (64) 4 (64)
Block 1 2.301 (64) 2.806 (64) 3.287 (64)
Block 2 2.290 (64) 2.804 (64) 3.301 (64)
Block 3 2.286 (64) 2.797 (64) 3.290 (64)

It is always correct (the 64 on the top row indicates how many presentations per cell and
the number correct is then displayed for each cell) but it does not get any faster from
block to block because it always uses the counting strategy. Your first task is to extend
the model so that it attempts to remember previous instances of the trials. If it can
remember the answer it does not have to resort to the counting strategy and can respond
much faster.

The model encodes each trail in a chunk which has the result of its counting for the trial.
A completed problem for a trial where the stimulus was “A+2 = C” would look like this:

CHUNK0-0
 RESULT "c"
 ARG1 "a"
 ARG2 "2"

17

ACT-R Tutorial 10-Dec-19 Unit Four

The result slot contains the result of counting 2 letters from A. An important thing to
note is that the actual target letter for the trial is stored in the goal buffer for comparison
after the model has finished counting to a result. The model only encodes the result of
the counting in the chunk that represents a trial in the imaginal buffer. Thus the same
chunk will result from a trial where the stimulus presented is “A+2 = D” because it only
counts A plus 2 and then compares the result of that, C, to the letter presented to
determine if the problem is correct or not (since C is not D this problem would be
incorrect). The assumption is that the person is actually learning the letter counting facts
and not just memorizing the stimulus-response pairings for the task. The model will learn
one chunk for each of the additions which it encounters, which will be a total of six after
it completes a set of trials.

A strong recommendation for adding the retrieval strategy to the model is to continue to
use the existing encoding productions before the retrieval, the existing response
productions (final-answer-yes and final-answer-no) after a successful retrieval, and the
given counting productions if it fails to retrieve. It may be necessary to modify
productions at the end of the encoding process and/or the beginning of the counting
process to add the retrieval process into the model, but the response productions should
not be modified in any way and you should not add any additional productions for
responding. Using the given response productions is important because they already
handle the important steps necessary for the model to repeatedly perform this task
successfully: they create a new goal chunk which will make sure the model is ready for
the next trial, they make the correct response based on the comparison of the value read
from the screen and the correct value of the sum which has been encoded in the imaginal
buffer, and that imaginal buffer chunk is cleared so that it can enter declarative memory
and strengthen the knowledge for that fact.

After your model is able to utilize a retrieval strategy along with the counting strategy
given, your next step is to adjust the parameters so that the model’s performance better
fits the experimental data. The results should look something like this after you have the
retrieval strategy working with the parameters as set in the starting model:

CORRELATION: 0.962
MEAN DEVIATION: 0.659

 2 (64) 3 (64) 4 (64)
Block 1 1.284 (64) 1.337 (64) 1.394 (64)
Block 2 1.074 (64) 1.059 (64) 1.102 (64)
Block 3 1.054 (64) 1.069 (64) 1.081 (64)

The model is responding correctly on all trials, the correlation is good, but the deviation
is quite high because the model is too fast overall. The model’s performance will depend
on the same four parameters as the paired associate model: latency factor, activation
noise, base-level decay rate, and retrieval threshold. In the model you are given, the first
three are set to the same values as in the paired associate model and represent reasonable
values for this task. The retrieval threshold (the :rt parameter) is set to its default value of

18

ACT-R Tutorial 10-Dec-19 Unit Four

0. This is the parameter you should adjust first to improve the fit to the data. Here is our
fit to the data adjusting only the retrieval threshold:

CORRELATION: 0.988
MEAN DEVIATION: 0.176

 2 (64) 3 (64) 4 (64)
Block 1 1.884 (64) 2.188 (64) 2.530 (64)
Block 2 1.376 (64) 1.486 (64) 1.617 (64)
Block 3 1.231 (64) 1.278 (64) 1.366 (64)

If you would like to try to fit the data even better then you could also adjust the latency
factor and activation noise parameters as well. The base-level decay rate parameter
should be left at the value .5 (that is a recommended value which should not be adjusted
in most models). Here is our best fit with adjusting all three parameters:

CORRELATION: 0.991
MEAN DEVIATION: 0.082

 2 (64) 3 (64) 4 (64)
Block 1 1.994 (64) 2.375 (64) 2.755 (64)
Block 2 1.267 (64) 1.361 (64) 1.448 (64)
Block 3 1.092 (64) 1.110 (64) 1.132 (64)

This experiment is more complicated than the ones that you have seen previously. It runs
continuously for many trials and the learning that occurs across trials is important. Thus
the model cannot treat each trial as an independent event and be reset before each one as
has been done for the previous units. While writing your model and testing the fit to the
data you will probably want to test it on smaller runs than the whole task. There are five
functions provided for running the experiment and subcomponents of the whole
experiment.

The function to present a single problem to the model is called zbrodoff-problem in the
Lisp version and problem in the zbrodoff module of the Python version. It takes four
required parameters which are all single character strings and an optional fifth parameter.
The first three parameters are the elements of the equation to present. The fourth is the
correct key which should be pressed for the trial, where k is the correct key for a true
problem and d for a false problem. The optional parameter indicates whether or not to
show the task display. If the optional parameter is not provided then the window will not
be shown (a virtual window will be used) and if it is a true value then it will show the
task window. These examples would present the “a + 2 = c” problem (which is true) to
the model with a window that is visible:

? (zbrodoff-problem "a" "2" "c" "k" t)

>>> zbrodoff.problem('a','2','c','k',True)

Here are the twelve different problems which are used in this experiment:

true: a+2=c, d+2=f, b+3=3, e+3=h, c+4=g, f+4=j

19

ACT-R Tutorial 10-Dec-19 Unit Four

false: a+2=d, d+2=g, b+3=f, e+3=i, c+4=h, f+4=k

The single problem function should be used until you are certain that your model is able
to successfully use a retrieval strategy along with counting. To do that you will want to
present the model with the same trial again and again and make sure that at some point it
can retrieve the correct fact and respond correctly. You will also want to test it with both
true and false facts to make sure it can retrieve the right information and respond
correctly in both cases. Finally you should check the model’s declarative memory to
make sure that it is only creating the correct facts – it should not be learning chunks
which represent the wrong addition.

Once you are confident that your model is learning the correct chunks and can use both
retrieval and counting to respond correctly you can use the functions to present a set or
block of items: zbrodoff-set and zbrodoff-block in Lisp and set and block from the
zbrodoff module in Python. Those will run the model over multiple trials and print the
results. Each takes one optional parameter to control whether the task display is shown,
and if it is not provided they will not show the display. The set function runs the model
through 24 trials of the task presenting each problem twice in a randomly generated
order. The block function runs through 192 trials, which is 8 repetitions of the 24 trial
set. Here are examples of running a set of trials in Lisp and a block in Python:

? (zbrodoff-set)

 2 (8) 3 (8) 4 (8)
Block 1 2.307 (8) 2.807 (8) 3.295 (8)

>>> zbrodoff.block()

 2 (64) 3 (64) 4 (64)
Block 1 2.031 (64) 2.258 (64) 2.659 (64)

After making sure the model can successfully complete a set and block of trials then you
will want to test it with the function which resets the model and then runs one pass
through the whole experiment: zbrodoff-experiment in Lisp and experiment in the
zbrodoff module in Python. It has two optional parameters. The first determines whether
the task window is visible or not, and the second determines whether the results are
printed. The defaults are to not show the window and to show the results, which is
probably how you want to run it:

? (zbrodoff-experiment)

 2 (64) 3 (64) 4 (64)
Block 1 1.953 (64) 2.285 (64) 2.730 (64)
Block 2 1.226 (64) 1.184 (64) 1.403 (64)
Block 3 1.123 (64) 1.074 (64) 1.085 (64)

>>> zbrodoff.experiment()

20

ACT-R Tutorial 10-Dec-19 Unit Four

 2 (64) 3 (64) 4 (64)
Block 1 2.298 (64) 2.812 (64) 3.300 (64)
Block 2 2.298 (64) 2.803 (64) 3.297 (64)
Block 3 2.287 (64) 2.798 (64) 3.290 (64)

If the model is able to successfully complete the experiment you can move on to the
function that runs the experiment multiple times, averages the results, and compares the
results to the human data: zbrodoff-compare in Lisp and compare in the zbrodoff
module in Python. Those functions take one parameter indicating the number of times to
run the full experiment. It may take a while to run, especially if you request a lot of
trials. Here are some examples:
? (zbrodoff-compare 10)
CORRELATION: 0.288
MEAN DEVIATION: 1.309

 2 (64) 3 (64) 4 (64)
Block 1 2.296 (64) 2.799 (64) 3.296 (64)
Block 2 2.297 (64) 2.797 (64) 3.293 (64)
Block 3 2.298 (64) 2.796 (64) 3.295 (64)

>>> zbrodoff.compare(10)
CORRELATION: 0.288
MEAN DEVIATION: 1.311

 2 (64) 3 (64) 4 (64)
Block 1 2.301 (64) 2.798 (64) 3.300 (64)
Block 2 2.299 (64) 2.798 (64) 3.297 (64)
Block 3 2.294 (64) 2.796 (64) 3.301 (64)

An important thing to note is that among those functions the only ones that reset the
model are the ones that run the full experiment. So if you are using the other functions
while testing the model keep in mind that unless you explicitly reset the model (by
pressing the “Reset” button on the Control Panel, reloading the model, or calling the
ACT-R reset function from the ACT-R prompt or the actr.reset function in Python) then
the model will still have all the chunks which it has learned since the last time it was reset
(or loaded) in its declarative memory.

As you look at the starting model you will see one additional setting at the end of the
model definition which you have not seen before:

 (set-all-base-levels 100000 -1000)

This sets the base-level activation of all the chunks in declarative memory that exist when
it is called (which are the sequence chunks provided) to very large values by setting the
parameters n and L of the optimized base-level equation for each one. The first
parameter, 100000, specifies n and the second parameter, -1000, specifies the creation
time of the chunk. This ensures that the initial chunks which encode the sequencing of
numbers and letters maintain a very high base-level activation and do not fall below the

21

ACT-R Tutorial 10-Dec-19 Unit Four

retrieval threshold over the course of the task. The assumption is that counting and the
order of the alphabet are very well learned tasks for the model and the human participants
in the experiment and that knowledge does not have any significant effect of learning or
decay during the course of the experiment.

Because this experiment involves a lot of trials and you need to run several experiments
to get the average results of the model there are some additional things that can be done
to improve the performance of running the experiment i.e. the real time it takes to run the
model through the experiment not the simulated time the model reports for doing the
task. Probably the most important will be to turn off the model’s trace by setting the :v
parameter to nil. The starting model has that setting, but while you are testing and
debugging your addition of a retrieval process you will probably want to turn it back on
by setting it to t so that you can see what is happening in your model. Something else
which you will want to do when running the whole experiment is to close any of the
Recordable data tools which you may have opened in the ACT-R Environment because
there is a cost to recording the underlying data needed for those tools, and also turn off
the running indicator if you have enabled it because there is also a cost to update that
display. The final thing which you may want to do is to use the Lisp version of the
experiment from the ACT-R prompt instead of the version connected from Python
because there is some additional cost to running the Python version of the experiments
and for this task that might be noticeable over many runs.

References

Anderson, J.R. (1981). Interference: The relationship between response latency and
response accuracy. Journal of Experimental Psychology: Human Learning and Memory,
7, 326-343.

Zbrodoff, N. J. (1995). Why is 9 + 7 harder than 2 + 3? Strength and interference as
explanations of the problem-size effect. Memory & Cognition, 23 (6), 689-700.

22

	Unit 4: Activation of Chunks and Base-Level Learning
	4.1 Introduction
	4.2 Activation
	4.3 Base-level Learning
	4.3.1 Chunks Entering Declarative Memory
	4.3.2 Chunk Merging

	4.4 Optimized Learning
	4.5 Noise
	4.6 Probability of Recall
	4.7 Retrieval Latency
	4.8 The Paired-Associate Example
	4.9 Parameter estimation
	4.10 The Activation trace
	4.11 The :ncnar Parameter
	4.12 Unit Exercise: Alpha-Arithmetic
	References

