An Initial Cognitive Model of a Radar Detection Task

Alexander R. Hough (alexander.hough.1 @us.af.mil)
Christopher Stevens (christopher.stevens.28 @us.af.mil)
Elizabeth Fox (elizabeth.fox.9 @us.af.mil)
Christopher Myers (christopher.myers.29 @us.af.mil)

Air Force Research Laboratory
Wright-Patterson AFB

Abstract

In adversarial operational environments like radar monitoring,
humans have to monitor large amounts of information, multi-
task, and manage threats. They may also face electronic dis-
ruption or attacks aimed at degrading radar monitor effective-
ness (a.k.a electronic warfare or EW). In these settings, it is
unclear how frequent changes in personnel, training, and up-
dates to visual displays affect an operator’s readiness. A recent
experiment used an analogous radar monitoring task to inves-
tigate effects of display density and electronic warfare on an
operator’s threat detection performance. Here, we present a
cognitive model capable of completing a scaled-down version
of that task to better understand the experimental results and
underlying cognitive processes. Similar to the human exper-
iment, our cognitive model completed conditions comprised
of changes to the nature of the task(s), the number of targets
to track, and the presence or absence of distractors, deemed
*friendlies’. Although this initial cognitive model uses primar-
ily default ACT-R parameters, it was able to capture patterns in
human performance across conditions. We present the results
and discuss limitations to address in future work.

Keywords: Cognitive model; ACT-R; Multiple object track-
ing; Multitasking

Introduction

Many tasks in modern environments require individuals to
maintain awareness of complex, evolving situations. For ex-
ample, air-traffic-control, lifeguarding, and childcare are all
situations in which an overlooked detail or event can lead to
serious consequences. It is important to understand the way
in which people maintain awareness in these complex situa-
tions, and the circumstances under which that awareness will
be impaired. Here we consider a particular variety of radar
monitoring that occurs in naval operational environments. In
these settings, operators must monitor visual displays with
many entities (tracks) and identify certain tracks for follow
on action. These situations often involve large amounts infor-
mation, multitasking, and continuous decision making. Op-
erators rely on systems like the Aegis Combat System (i.e.,
ACS) that continuously update visual displays with informa-
tion from multiple sources (Bath, 2020). Appropriate rep-
resentation of entity types (e.g., hostiles and friendlies) in
such systems is important for correctly identifying threats to
avoid accidents (Pogue, 2016) and it is not clear how frequent
changes to the system and training affects monitor’s readiness
(Fisher & Kingma, 2001).

Visual search literature provides constraints (Treisman &
Gelade, 1980; Glavan, Haggit, & Houpt, 2020) and mod-
els (Wolfe, 2021; Nyamsuren & Taatgen, 2013; Fleetwood

& Byrne, 2006) for representing human-like visual search.
However, dynamic stimuli are out of scope for most models.
Here, we present a cognitive model capable of completing a
laboratory radar monitoring task with dynamic stimuli. We
show how well it captures human performance and discuss
its limitations to address in future work.

MOT-EW Task

The MOT-EW task (Fox et al., 2023) served as an AEGIS
analog to investigate human performance in a laboratory set-
ting. The multiple object tracking (MOT) task (Figure 1) in-
volved four quadrants with moving hostiles and friendlies.
Hostiles (i.e., targets) were presented as red circles and
friendlies (i.e., distractors) were comprised of octagons and
diamonds that were pink or magenta. Objects had protruding
black track lines indicating the direction they were moving.
Hostiles were slightly larger and had longer track lines.
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Figure 1: Depiction of the MOT-EW task, alarm states for
quadrants, and EW attacks from Fox et al. (2023).

The task involved turning on quadrant alarms when at least
one hostile was present and turning off alarms when hostiles
were no longer present in that quadrant (See Figure 1a). The
electronic warfare (EW) task used the same stimuli, but in-
volved a hostile disappearing for 1-4 seconds once during 30
second windows. An EW alarm was turned on after a hostile
had disappeared and off when it returned (see Figure 1b). In
Fox et al. (2023), participants completed 18 conditions with



three independent variables: number of hostiles (i.e., 2, 4,
and 6), presence of friendlies (i.e., yes or no), and task (MOT,
EW, or MOT-EW). Each condition was completed in a sepa-
rate session that lasted approximately 12 minutes. Our goal
was to develop a cognitive model capable of capturing human
behavior in all of these 18 conditions.

MOT-EW Model

We implemented a cognitive model, we simply call the MOT-
EW model, in the ACT-R cognitive architecture (Anderson,
2007). ACT-R includes both symbolic and sub-symbolic
structures, and modules that represent systems of the mind.
The MOT-EW model uses the goal, vision, motor, and proce-
dural modules. The goal module serves as the models focus
and stores goal relevant information. The vision module al-
lows the model to perceive visual stimuli and direct attention.
The motor module allows the model to turn on/off alarms us-
ing a keyboard. The procedural module uses condition-action
rules (i.e., productions) to represent knowledge about how to
do things and to drive the behavior of the model.

Our approach was to construct the simplest model without
modifying parameters to test the ’out-of-the-box™ capability
of ACT-R to complete the MOT-EW task. However, we had
to make three modifications so the model could reasonably
perform the task: 1) We modified the experimental task, 2)
changed one parameter, and 3) deviated from typical visual
perception methods allowing the model to reach and maintain
human-like performance. We start by explaining the MOT-
EW model task and then describe the model.

Model Task

Our overall goal for designing the model was to remain as
faithful as possible to the experimental task, and to default
ACT-R assumptions and design patterns. However, due to
several constraints we had to make changes to both the vir-
tual version of the task and the model. The first change we
made to the task was reducing the number of friendlies on the
screen. We reduced the number of friendlies for two reasons
(Figure 2). First, if we included several hundred objects, the
ACT-R visicon (i.e., collection of information available to the
visual module ”what” system) would get bogged down updat-
ing positions of moving objects. Interestingly, we did learn
that the model is capable of handling at least 100 objects, but
time and computation costs become unacceptable. Second,
ACT-R has limited visual search capabilities. By default, it
is possible to build a model that searches for more than one
feature simultaneously (e.g. find a red circle). However, this
will result in flat response time curves with respect to set size,
contrary to what has been well established in the visual search
literature for decades (Treisman & Gelade, 1980).

It would also result in the inability to account for effects of
the presence of friendlies, which were observed in the orig-
inal experiment (Fox et al., 2023). Alternatively, one could
search for one feature at a time (e.g. find a red object) and
search through the available objects linearly until an object is
found that matches both desired criteria (Fleetwood & Byrne,
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Figure 2: Depiction of model MOT-EW task and alarm states
for quadrants and EW attacks.

2006). This produces set size effects, but still becomes pro-
hibitively slow for a display with hundreds of objects. These
limitations have motivated previous extensions to the vision
module, such as PAAV (Nyamsuren & Taatgen, 2013) and
JSegMan (Tehranchi & Ritter, 2018). However, these ca-
pabilities do not currently exist in a form that is compatible
with the version of ACT-R we used for the model (7.14). We
also made two minor changes to the task representation. The
model task uses colored letters instead of colored shapes and
the location of alarms were modified. Letter locations can be
modified, which ensured moving letters were still considered
the same object. The model task is therefore, a scaled-down
version of the experimental task.

Model Description

The model uses only four modules (i.e., goal, vision, motor,
and procedural memory) and there is no semantic or procedu-
ral learning. There are several important parameters related
to the task: visual attention latency, the speed of productions
(i.e., processes), and visual finsts (i.e., number and span). All
but one parameter, number of visual finsts, are left at default
values. The number of visual finsts controls how many visual
objects can be marked as attended and the span controls how
long they remain marked. We have changed the number of vi-
sual finsts to 16 (default is 4). In addition, we deviated from
the standard visual find-attend-encode loop. Typically, an ob-
ject is found, the model shifts its attention to that object, and
the object is then encoded (i.e., identified). In two instances,
we allow the model to skip the attend step to simulate hu-
man’s ability to extract information peripherally without di-
rectly fixating on it. We further explain why we adjusted the
number of visual finsts and deviated from the standard visual
processing loop in the following sections to provide context.

The MOT and EW tasks have their own set of processes,
but share several general productions. They are completed
separately in single task conditions or serially interleaved dur-
ing dual task conditions. The model was provided informa-



tion about the task (i.e., MOT, EW, or DUAL) at the start of
each session (i.e., condition), but was not provided with in-
formation about the amount of hostiles or friendlies. We start
by describing the MOT processes, followed by EW, and then
the full model that interleaves both.

MOT Processes. For the MOT task, the model has to dif-
ferentiate between quadrants, determine their unique alarm
state, and identify which do and do not have a hostile. To
accomplish this, the model searches through quadrants one
at a time in a clockwise direction and makes alarm decisions
(Figure 3). Once a quadrant is selected (e.g., search NW),
the model orients to that quadrant’s coordinates and checks
the alarm state (i.e., check-alarm). Rather than attending and
encoding the alarm state, the model finds the quadrant and
encodes alarm state information or color peripherally without
shifting attention directly. Alarm state information for the
current quadrant is held in the goal buffer. After checking the
alarm state, the model finds objects in the quadrant (i.e., find-
object). If a friendly is found, it is marked as attended without
shifting attention (i.e., friendly-no-attend), like the quadrant
alarm state. The model continues to find objects until there
are no new objects to find (i.e., all objects marked) or a hos-
tile is found. In rare cases, the model shifts attention to a
hostile, but there is no object at that location. This occurs be-
cause the object can potentially move beyond the focal area of
the model. A reorient production (i.e., reorient) handles these
rare cases and reorients the model to find the nearest object
to the attended location, which should be the intended target.
This represents a fixation that was slightly off and corrected.

Once all objects are searched or a hostile is found, the
model makes an alarm decision. If the quadrant was com-
pletely searched and no hostile was found, the model turns off
the alarm if it is currently on (i.e., turn-off-alarm), or moves
to the next quadrant if it is already off (i.e., alarm-off-ok).
If a hostile is found the model shifts attention to the loca-
tion of the hostile (i.e., hostile-attend). The subsequent pro-
duction encodes the hostile and either turns on the alarm if
currently off (i.e., turn-on-alarm), or moves to the next quad-
rant if already on (i.e., alarm-on-ok). The model turns on and
off alarms by pressing a keyboard key corresponding to the
quadrant using the punch command that assumes fingers are
resting on the home keys. After making a decision, the quad-
rant is marked as searched in a goal buffer slot and visual
finsts are cleared. The model leverages visual finsts to ensure
that quadrants are searched and setting the number of finsts
to 16 ensures that the model does not get stuck in an endless
loop within a quadrant (e.g., number of objects exceeds the
parameter). Furthermore, clearing visual finsts ensures that
the model does not skip over a marked object that moves into
another quadrant within the default finst span time of 3 sec-
onds. This could result in missing a hostile and either not
turning on a quadrant alarm or incorrectly turning one off.
The model completes the same process for each quadrant un-
til all quadrants are searched and then model starts another
quadrant search cycle (i.e., all-quads-searched).

Now that the MOT processes have been described, we pro-
vide an explanation for why we chose to skip the attend step
for quadrant alarms and friendlies. The standard time for each
production is 50ms, shifting attention takes 85ms, and punch-
ing (i.e. pressing a key) takes 210ms. The standard find-
attend-encode loop would take 235ms to encode a single ob-
ject or alarm state and changing an alarm state takes 260ms.
Therefore, it would take 730ms just to encode a quadrant
alarm state, encode a single object, and change an alarm state.
Additionally, it would take 965ms to encode two objects,
1200ms for three, and 1435 for four. For comparison, the
average human response time for changing quadrant alarm
states is 900ms for the single MOT task and that includes
conditions ranging from 2-6 hostiles and 498-994 friendlies.
Reasonable response times are important, because they are
related to alarm state change accuracy. By eliminating the
need for the model to attend to alarm states and friendlies, we
were able to achieve an average 1020ms response time across
varied hostiles and friendlies in the scaled-down MOT model
task. This decision also aligns with the human ability to ex-
tract information without direct fixation (Wolfe, 2021) and
change alarm states quickly. These decisions are more impor-
tant for EW processes, where the standard find-attend-encode
loop would result in unreasonable response times, even in this
scaled-down version of the experiment.
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Figure 3: Diagram of processes to complete both MOT and
EW tasks.

EW Processes. To complete the EW task, the model lever-
ages MOT productions, which are considered general visual
search processes (i.e., check-alarm and find-object). The
model continuously checks whether an EW attack is occur-
ring (i.e., a hostile has disappeared), and the EW alarm is
turned on when an EW attack is ongoing and off when it ends
(i.e., hostile reappears). The model starts the EW task by ori-
enting to the entire screen (i.e., ew-search) and treating all
four quadrants as the search area. Next, it checks the alarm
state the same way as it does for MOT (i.e., check-alarm) and
stores the alarm state in a slot in the goal buffer. The model
then searches for objects (i.e. find-object), but contrary to
the MOT, it is an exhaustive search. There are a maximum
of 16 objects in one of the conditions (i.e., 6 hostiles and 10



friendlies) and this is why we set the number of visual finsts
to 16. Although exhaustive, the model completes EW search
similar to MOT. It perceives friendlies without attending and
marks them as attended (i.e., friendly-no-attend). Using a
find-attend-encode loop for all objects would be more of an
issue for EW as there are more objects to search. It would
take between 1200ms (i.e., 2 hostiles without friendlies) and
4255ms (i.e., 6 hostiles and 10 friendlies) to do a complete
search and change the alarm state. For reference, the aver-
age human reaction time across number of objects was 734ms
(1006ms for our model). Just like during MOT, if the model
finds a hostile it shifts attention to its location (i.e., hostile-
attend). However, rather than moving right to an alarm deci-
sion as in the MOT, the model encodes the hostile and keeps
a count of how many hostiles have been attended (i.e., count-
hostiles). Similar to participants, the model does not know
how many hostiles to expect at the start of the session. For
generality across conditions, the model updates a slot in the
goal buffer that stores the amount of hostiles to expect. This
slot is set to the highest number of hostiles counted during a
session. For instance, if there are four hostiles and no EW at-
tacks occur during the first five seconds, the model will count
and set expected hostiles to four. If there was an EW attack
at the start of the session, the model would count three and
miss the EW attack. Once the model has performed its ex-
haustive search, it compares how many hostiles were counted
with the amount expected (i.e,. conditions for alarm deci-
sions). If it found the amount expected it turns off the EW
alarm (i.e., turn-off-EW-alarm) if already on or it does noth-
ing if the alarm is already off (i.e., EW-alarm-off-ok). If it
found less hostiles than expected, it turns on the EW alarm if
currently off (i.e., turn-on-EW-alarm) or does nothing if the
alarm is already on (i.e., EW-alarm-on-ok). There is one ad-
ditional alarm decision production (i.e., hostile-vanish-turn-
on-EW-alarm) that is analogous to a person seeing a hostile
disappear. A hostile could disappear after the model finds
a hostile and starts shifting attention to that hostile. This
hostile-vanish production handles this by turning on the EW
alarm. Once a decision is made, the finsts are cleared and the
model starts another EW check.

MOT-EW Processes. The complete model (Figure 3) is
used for single and dual task conditions. During the dual task
conditions, the model has to change quadrant alarm states
based on hostile presence and change the EW alarm depend-
ing on whether an EW attack is occurring. The current model
treats these as separate tasks and interleaves them. MOT pro-
cesses are given priority and EW checks are initiated after all
four quadrants have been searched. Therefore, a full quadrant
search and EW check can be considered a complete cycle in
the dual task conditions. After all quadrants are searched, the
all-quads-search production fires, followed by the EW-search
production that begins the EW check. One exception to this
cycle is the production that turns on the EW alarm if a hostile
disappears while shifting attention to a hostile (i.e., hostile-
vanish-turn-on-alarm), which can supersede the cycle.

Results

We assess model performance and show how well it fits col-
lected human data from the MOT-EW experiment (Fox et al.,
2023). The experiment included 28 participants and a within-
subjects 3 (amount of hostiles: 2, 4, and 6) x 3 (task: MOT,
EW, and MOT-EW) x 2 (friendlies: present and not present)
design. We simulated 25 participants for all 18 conditions. As
the model does not possess individual differences, the model
essentially simulates one participant completing the experi-
ment 25 times. To assess how well the model captured the
human data, we compared single and dual task performance
for MOT and EW separately. We included both accuracy
and response time for correct responses (i.e., time for correct
alarm changes) as the dependent measures. For each com-
parison, we assess behavior patterns in dependent measures
across variations in the number of objects (i.e., amount of
hostiles and presence of friendlies). We used correlations to
assess the ability for the model to capture patterns across con-
ditions and use root mean squared error (RMSE) to assess the
average difference between the model and human data.
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Figure 4: Model fit to human accuracy (a) and RT for correct
responses (b) across all MOT conditions.

MOT Task

For the MOT (Figure 4), the model captured human behav-
ior patterns for single and dual task conditions for both ac-
curacy and response time (p < .05). However, the average
difference for dual task accuracy (RMSE = .19) and response
time (RMSE = 820ms) was higher than single task accuracy
(RMSE = .07) and response time (RMSE = 210ms). The
model had a larger difference between single and dual task
accuracy (.15) and response time (787ms) than the human



data (.02 and 106ms, respectively). Therefore, the model was
better able to capture human performance in the single task
MOT, then dual task. We also assessed the overall relation-
ship between accuracy and response time in single and dual
conditions for the human data and model. For the single task
MOT, there were non significant negative relationships be-
tween accuracy and reaction time for both human (r(10) =
-.78, p = .07) and model data (r(10) = -.63, p = .177). How-
ever, there were significant negative relationships in the dual
task MOT for both human (r(10) = -.82, p = .044) and model
(r(10) =-91, p = .010).
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Figure 5: Model fit to human accuracy (a) and RT for correct
responses (b) across all EW conditions.

EW Task

For the EW task, there were clearer average differences be-
tween human and model performance. The model captured
the pattern for the EW single task accuracy, but not dual task
accuracy (p > .05). The model had a higher average differ-
ence for EW accuracy in single (RMSE = .21) and dual task
(RMSE = .41) compared to the MOT (RMSE = .07 and RMSE
= .19, respectively). Similar to the MOT, the model had a
greater difference in EW accuracy between single and dual
task (.2) compared to humans (.01). The model was able to
capture EW response time patterns for both single and dual
task (p < .05) and similar to the MOT, the average difference
was higher for the dual task (RMSE = .5) compared to the sin-
gle (RMSE = .33). However, the average difference for EW
dual task was lower than the MOT dual task (.5 compared to
.82), suggesting EW processes had a stronger negative effect
on MOT in the dual task conditions than vice versa. Again,
the human data demonstrated a lesser difference between sin-
gle (.01) and dual task (415ms) compared to the model (.2

and 594ms, respectively). We also assessed the relationship
between accuracy and response time for the human data and
model. In the single task EW, there were significant nega-
tive relationships for both human ((10) = -.98, p = .001) and
model (r(10) = -.98, p = .001). There were also significant
negative relationships in the dual task EW for human (r(10)
=-.94, p = .004) and model (r(10) =-.97, p =.001).

Table 1: Relationships between accuracy and RT.

Condition df r )4
Single MOT 10 -.78 .066

§ DualMOT 10 -82 .044%
E  SingleEW 10 -98 .001*
T DualEW 10 -94 .005*
— Single MOT 10 -.63 .177
S  DualMOT 10 -91 .010%
S SingleEW 10 -98 .001*

Dual EW 10 -97 .001%

Discussion

The model was able to capture behavior patterns for both ac-
curacy and response time, via significant correlations, for all
but one task and condition (i.e., EW dual task accuracy). Al-
though, the average difference in performance as measured by
RMSE varied and in some cases, was rather high. MOT per-
formance was captured better than EW, particularly with the
single task. There was more deviation in MOT accuracy and
response time for the dual task compared to the single task,
which was not found in the human data. Interestingly, the
model dual task average difference for MOT response time
was greater than EW. This suggested that completing EW had
a stronger effect on MOT performance in the dual task condi-
tions than number of hostiles and presence of friendlies.

The model was not able to capture EW behavior as well.
In contrast to MOT performance, model performance for EW
is consistently lower for both single and dual. This suggests
the EW model processes are not as well aligned with humans
and is likely contributing to the performance decrement seen
in the MOT during dual task. The model takes longer than
humans to change EW alarm states, suggesting humans are
doing EW checks differently or potentially adopting differ-
ent EW strategies across conditions. For example, the model
EW checks involve exhaustive search regardless of condition,
and tasks are treated as separate and are interleaved serially
instead of processed in parallel (e.g., multitasking). Given
the nature of the model EW checks, there should be a rather
linear decrease in EW performance as the number objects to
search increases and this is evident in the EW figures (Figure
5). We see a similar pattern with the stronger negative trend
in the MOT dual task accuracy. The trend for the MOT dual
task reaction time is consistent with that of single task, but re-



sponses took an average of 787ms longer across conditions.
As stated, this model was intended to test out of the box
capabilities of ACT-R and serve as a baseline. We believe we
have achieved close to the best performance possible using
canonical ACT-R without adjusting more than one parameter.
There are of course, limitations with the existing model. Next
we discuss these limitations and ideas to improve the model.

Limitations and Future Work

The model has several limitations: 1) There is no variation
in task execution for single and dual task conditions (i.e., no
strategies or individual differences), 2) the speed of process-
ing and visual attention is notably slower than humans, and 3)
EW performance is notably worse than MOT and is the likely
cause for the decrease in dual task MOT performance.

The model has a rigid approach to completing the MOT,
EW, and interleaving them in the dual task condition. There
are no strategies and the model does not learn. In the hu-
man data, there is more variation within and between partici-
pants compared to the model. However, this is not surprising
given the model could be considered one individual complet-
ing the experiment repeatedly. Using current and future hu-
man data could identify strategies, condition specific strate-
gies, and perhaps clusters of individuals or types that have
similar patterns of behavior. This would inform the ability of
the model to capture individual differences and adding learn-
ing mechanisms enables strategy shifts across conditions. In
addition, we could consider threaded cognition (Salvucci &
Taatgen, 2008) as a method to enable multitasking rather than
treating tasks as separately and interleaving them.

As mentioned, ACT-R does not currently have vi-
sual search capabilities beyond deterministic or featureless
strategy-based search. To facilitate visual search, we devi-
ated from the typical find-attend-encode loop and allowed the
model to attend some stimuli peripherally. This decision was
guided by the visual search literature (Wolfe, 2021) and was
a plausible way to speed up visual search processes. Despite
our efforts, it was clear that the model took longer to change
alarm states than humans, which also relates to accuracy. Fur-
thermore, the model interacted with a scaled-down version
of the task presented to human participants. To address vi-
sual search capabilities and improve model performance, we
plan to revive or implement features from the PAAV mod-
ule (Nyamsuren & Taatgen, 2013). PAAV has both bottom
up (e.g., color and shape salience) and top-down (e.g., strat-
egy based) features that enable more directed visual search
observed in humans. Furthermore, this should eliminate the
need for exhaustive serial search. After making progress with
visual search capabilities, we plan to scale up the model task
to better align with the experimental task.

The model performed worse for the EW task, which also
appeared to reduce MOT performance in the dual task condi-
tions. We believe this resulted from: 1) flawed EW processes
that are likely not as well aligned with human behavior and 2)
limited visual search capabilities that encouraged exhaustive
serial search. We plan to address both of these points with fu-

ture work outlined in the above sections: 1) better understand
and implement strategies and 2) make some improvements to
visual search capabilities.

Conclusions

We successfully developed and implemented a simplified
model in ACT-R capable of performing a complex radar de-
tection task and testing hypotheses about the underlying cog-
nitive processes. The model provided a reasonable fit to hu-
man data across 18 conditions and serves as a solid base-
line by demonstrating the out of the box capabilities of ACT-
R. Future work will extend this model to address identified
limitations of the architecture, model performance, and the
scaled-down model task.
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