
ACT-R Tutorial 10-Dec-19 Unit Two

Unit 2: Perception and Motor Actions in ACT-R

2.1 ACT-R Interacting with the World

This unit will introduce some of the mechanisms which allow ACT-R to interact with the world,
which for the purposes of the tutorial will be experiments presented via the computer. This is
made possible with the addition of perceptual and motor modules which were originally
developed by Mike Byrne as a separate system called ACT-R/PM but which are now an
integrated part of the ACT-R architecture. These additional modules provide a model with visual,
motor, auditory, and vocal capabilities based on human performance, and also include
mechanisms for interfacing those modules to the world. The auditory, motor, and vocal modules
are based upon the corresponding components of the EPIC architecture developed by David
Kieras and David Meyer, but the vision module is based on visual attention work which was done
in ACT-R. The interface to the world which we will use in the tutorial allows the model to
interact with the computer i.e. process visual items presented, press keys, and move and click the
mouse, for tasks which are created using tools built into ACT-R for generating user interfaces. It
is also possible for one to extend that interface or implement new interfaces to allow models to
interact with other environments, but that is beyond the scope of the tutorial.

2.1.1 Experiments

From this point on in the tutorial most of the models will be performing an experiment or task
which requires interacting with the world in some way. That means that one will also have to run
the corresponding task for the model to interact with in addition to running the model. All of the
tasks for the tutorial models have been written in both ANSI Common Lisp and Python 3. The
tutorial will show how to run both versions of the task, and the experiment description document
in each unit will describe the code which implements both versions of all of the tasks. From the
model’s perspective, it does not matter which implementation of the task is used, and the single
model file included with the tutorial can be run with either version producing the same results.

2.2 The First Experiment

The first experiment is very simple and consists of a display in which a single letter is presented.
The participant’s task is to press the key corresponding to that letter. When any key is pressed, the
display is cleared and the experiment ends. This experiment can be run for either a human
participant or for an ACT-R model to perform, and the model in the demo2-model.lisp file in the
tutorial is able to perform this task. If you wish to run the task for a human participant then you
must have the ACT-R Environment running for the experiment window to actually be displayed
i.e. you should not close the Control Panel window after starting the ACT-R software.

2.2.1 Running the Lisp version

1

ACT-R Tutorial 10-Dec-19 Unit Two

The first thing you will need to do to run the Lisp version of the experiment is load the
experiment code. That can be done using the “Load ACT-R code” button in the Environment just
as you loaded the model files in unit 1. The file is called demo2.lisp and is found in the lisp
directory of the ACT-R tutorial. When you load that file it will also load a model which can
perform the task from the demo2-model.lisp file in the tutorial/unit2 directory, and if you look at
the top of the Control Panel you will see that it says DEMO2 under “Current Model”. To run the
experiment you will call the demo2-experiment function, and it has one optional parameter which
indicates whether a human participant will be performing the task. As a first run you should
perform the task yourself, and to do that you will evaluate the demo2-experiment function at the
prompt in the ACT-R window and pass it a value of t (the Lisp symbol representing true):

? (demo2-experiment t)

When you enter that a window titled “Letter recognition” will appear with a letter in it (the
window may be obscured by other open windows so you may have to arrange things to ensure
you can see everything you want). When you press a key while that experiment window is the
active window the experiment window will clear and that is the end of the experiment. The letter
you typed will be returned by the demo2-experiment function.

2.2.2 Running the Python version

To run the Python version you should first run an interactive Python session on your machine
(instructions on how to do that are not part of this tutorial and you will need to consult the Python
documentation for details). Then you can import the demo2 module which can be found in the
python directory of the ACT-R tutorial. For the examples in this tutorial we will assume that that
directory is the current directory for the Python session or that directory has been added to the
search path, and we will also assume that the Python prompt is the three character sequence
“>>>”. When you import that module it will first output a line indicating that it has connected
your Python session to the ACT-R software running on your machine:

>>> import demo2
ACT-R connection has been started.

The demo2 module will also have ACT-R load the model for this task, which is found in the
demo2-model.lisp file in the tutorial/unit2 directory, and if you look at the top of the Control
Panel you will see that it now says DEMO2 under “Current Model”. To run the experiment you
will call the experiment function in that module, and it has one optional parameter which
indicates whether a human participant will be performing the task. As a first run you should
perform the task yourself, and to do that you will call the experiment function at the Python
prompt and pass it the value True:

>>> demo2.experiment(True)

2

ACT-R Tutorial 10-Dec-19 Unit Two

When you enter that a window titled “Letter recognition” will appear with a letter in it (the
window may be obscured by other open windows so you may have to arrange things to ensure
you can see everything you want). When you press a key while that experiment window is the
active window the experiment window will clear and that is the end of the experiment. The letter
you typed will be returned by the experiment function.

2.2.3 Running the model in the experiment

You can run the model through the experiment by calling the function without including the true
value which indicates a human participant. That would look like this for the two different
versions:

? (demo2-experiment)

or
>>> demo2.experiment()

Regardless of which version you run, you will see the following trace of the model performing the
task:

0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
0.000 VISION PROC-DISPLAY
0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
0.000 VISION visicon-update
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.000 PROCEDURAL PRODUCTION-SELECTED FIND-UNATTENDED-LETTER
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED FIND-UNATTENDED-LETTER
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.050 VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.050 PROCEDURAL PRODUCTION-SELECTED ATTEND-LETTER
0.050 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
0.050 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
0.100 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.100 PROCEDURAL MODULE-REQUEST VISUAL
0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.100 PROCEDURAL CLEAR-BUFFER VISUAL
0.100 VISION Move-attention VISUAL-LOCATION0-1 NIL
0.100 PROCEDURAL CONFLICT-RESOLUTION
0.185 VISION Encoding-complete VISUAL-LOCATION0-1 NIL
0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0
0.185 PROCEDURAL CONFLICT-RESOLUTION
0.185 PROCEDURAL PRODUCTION-SELECTED ENCODE-LETTER
0.185 PROCEDURAL BUFFER-READ-ACTION GOAL
0.185 PROCEDURAL BUFFER-READ-ACTION VISUAL
0.185 PROCEDURAL QUERY-BUFFER-ACTION IMAGINAL

3

ACT-R Tutorial 10-Dec-19 Unit Two

0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
0.235 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.235 PROCEDURAL MODULE-REQUEST IMAGINAL
0.235 PROCEDURAL CLEAR-BUFFER VISUAL
0.235 PROCEDURAL CLEAR-BUFFER IMAGINAL
0.235 PROCEDURAL CONFLICT-RESOLUTION
0.435 IMAGINAL CREATE-NEW-BUFFER-CHUNK IMAGINAL
0.435 IMAGINAL SET-BUFFER-CHUNK IMAGINAL CHUNK0
0.435 PROCEDURAL CONFLICT-RESOLUTION
0.435 PROCEDURAL PRODUCTION-SELECTED RESPOND
0.435 PROCEDURAL BUFFER-READ-ACTION GOAL
0.435 PROCEDURAL BUFFER-READ-ACTION IMAGINAL
0.435 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
0.485 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.485 PROCEDURAL MODULE-REQUEST MANUAL
0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL
0.485 PROCEDURAL CLEAR-BUFFER MANUAL
0.485 MOTOR PRESS-KEY KEY v
0.485 PROCEDURAL CONFLICT-RESOLUTION
0.735 MOTOR PREPARATION-COMPLETE
0.735 PROCEDURAL CONFLICT-RESOLUTION
0.785 MOTOR INITIATION-COMPLETE
0.785 PROCEDURAL CONFLICT-RESOLUTION
0.885 KEYBOARD output-key DEMO2 v
0.885 VISION PROC-DISPLAY
0.885 VISION visicon-update
0.885 PROCEDURAL CONFLICT-RESOLUTION
0.970 VISION Encoding-complete VISUAL-LOCATION0-1 NIL
0.970 VISION No visual-object found
0.970 PROCEDURAL CONFLICT-RESOLUTION
1.035 MOTOR FINISH-MOVEMENT
1.035 PROCEDURAL CONFLICT-RESOLUTION
1.035 ------ Stopped because no events left to process

Unlike the previous unit where we had to run the model explicitly using the Run button on the
Control Panel, the code which implements this experiment automatically runs the model to do the
task. It is not necessary that it operate that way, but it is often convenient to build the experiments
for the models to do so, particularly in tasks like those used in later units where we will be
running the models through the experiments many times to collect performance measures.

Looking at that trace we see production firing being intermixed with actions of the vision,
imaginal, and motor modules as the model encodes the stimulus and issues a response. If you
watch the window while the model is performing the task you will also see a red circle drawn.
That is a debugging aid which indicates the model’s current point of visual attention, and can be
turned off if you do not want to see it. You may also notice that the task always presents the letter
“V”. That is done so that it always generates the same trace. In the following sections we will
look at how the model perceives the letter being presented, how it issues a response, and then
briefly discuss some parameters in ACT-R that control things like the attention marker and the
pseudo-random number generator.

4

ACT-R Tutorial 10-Dec-19 Unit Two

2.3 Control and Representation

Before looking at the details of the new modules used in this unit we will first look at a difference
in how the information for the task is represented compared to the unit 1 models. If you open the
demo2-model.lisp file and look at the model definition you will find two chunk-types created for
this model:

(chunk-type read-letters state)
(chunk-type array letter)

The chunk-type read-letters specifies one slot which is called state and will be used to track the
current task state for the model. The other chunk-type, array, also has only one slot, which is
called letter, and will hold a representation of the letter which is seen by the model.

In unit 1, the chunk that was placed into the goal buffer had slots which held all of the
information relevant to performing the task. That approach is how ACT-R models were typically
built in older versions of the architecture, but now a more distributed representation of the
model’s task information across two buffers is the recommended approach to modeling with
ACT-R. The goal buffer should be used to hold control state information – the internal
representation of what the model is doing and where it is in the task. A different buffer, the
imaginal buffer, should be used to hold the chunk which contains the current problem state
information – the information needed to perform the task. In the demo2 model, the goal buffer
will hold a chunk based on the read-letters chunk-type, and the imaginal buffer will hold a chunk
based on the array chunk-type.

2.3.1 The State Slot

In this model, the state slot of the chunk in the goal buffer will maintain information about what
the model is doing, and it is used to explicitly indicate which productions are appropriate at any
time. This is often done when writing ACT-R models because it provides an easy means of
specifying an ordering of the productions and it can make it easier to understand the way the
model operates by looking at the productions. It is however not always necessary to do so, and
there are other means by which the same control flow can be accomplished. In fact, as we will
see in a later unit there can be consequences to keeping extra information in a buffer. However,
because it does make the production sequencing in a model clearer you will see a slot named state
(or something similar) in many of the models in the tutorial. As an additional challenge for this
unit, you should try to modify the demo2 model so that it works without needing to maintain an
explicit state marker and thus not need to use the goal buffer at all.

5

ACT-R Tutorial 10-Dec-19 Unit Two

2.4 The Imaginal Module

The first new module we will describe in this unit is the imaginal module. This module has a
buffer called imaginal which is used to create new chunks. These chunks will be the model’s
internal representation of information – its internal image (hence the name). Like any buffer, the
chunk in the imaginal buffer can be modified by the productions to build that representation
using RHS modification actions as shown in unit 1.

An important issue with the imaginal buffer is how a chunk first gets into the buffer. Unlike the
goal buffer’s chunk which we have been creating and placing there in advance of the model
starting, the imaginal module will create the chunk for the imaginal buffer in response to a
request from a production.

All requests to the imaginal module through the imaginal buffer are requests to create a new
chunk. The imaginal module will create a new chunk using the slots and values provided in the
request and place that chunk into the imaginal buffer. An example of this is shown in the action
of the encode-letter production of the demo2 model:

(P encode-letter
 ...
==>
 =goal>
 state respond
 +imaginal>
 isa array
 letter =letter
)

We will come back to the condition of that production later. For now, we are interested in this
request on the RHS:

 +imaginal>
 isa array
 letter =letter

This request of the imaginal buffer is asking the imaginal module to create a chunk which has a
slot named letter that has the value of the variable =letter. We see the request and its results in
these lines of the trace:

0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
...
0.235 PROCEDURAL MODULE-REQUEST IMAGINAL

6

ACT-R Tutorial 10-Dec-19 Unit Two

...
0.235 PROCEDURAL CLEAR-BUFFER IMAGINAL
...
0.435 IMAGINAL CREATE-NEW-BUFFER-CHUNK IMAGINAL
0.435 IMAGINAL SET-BUFFER-CHUNK IMAGINAL CHUNK0

When the encode-letter production fires it makes that request and automatically clears the buffer
at that time as happens for all buffer requests. Then, we see that the imaginal module reports that
it is creating a new chunk and that chunk is then placed into the buffer.

Something to notice in the trace is that the chunk was not immediately placed into the buffer as a
result of the request. It took .2 seconds before the chunk was made available. This is an
important aspect of the imaginal module – it takes time to build a representation. The amount of
time that it takes the imaginal module to create a chunk is a fixed cost, and the default time is .2
seconds (that can be changed with a parameter). In addition to the time cost, the imaginal module
is only able to create one new chunk at a time. That does not affect this model because it is only
creating the one new chunk in the imaginal buffer, but in models which require a richer
representation that bottleneck may be a constraint on how fast the model can perform the task. In
such situations one should first verify that the module is available to create a new chunk before
making a request. That is done with a query of the buffer on the LHS, as is done in this
production to check that the state of the module is free:

(P encode-letter
 =goal>
 ISA read-letters
 state attend
 =visual>
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 state respond
 +imaginal>
 isa array
 letter =letter
)

Additional information about querying modules will be described later in the unit.

In this model, the imaginal buffer will hold a chunk which contains a representation of the letter
which the model reads from the screen. For this simple task, that representation is not necessary
because the model could use the information directly from the visual buffer to do the task, but for
most tasks there will be more than one piece of information which must be acquired incrementally
which requires storing the intermediate values as it progresses.

7

ACT-R Tutorial 10-Dec-19 Unit Two

2.5 The Vision Module

Many tasks involve interacting with visible stimuli and the vision module provides the model
with a means for acquiring visual information. It is designed as a system for modeling visual
attention. It assumes that there are lower-level perceptual processes that generate the
representations with which it operates, but it does not model those perceptual processes in detail.
The experiment generation tools in ACT-R create tasks in which the vision module can parse text,
lines, and button features from the displays created. It is possible to extend that set of features or
to provide an entirely new interface with different capabilities, but that is beyond the scope of this
tutorial.

The vision module has two buffers. There is a visual buffer that holds a chunk which represents
an object in the visual scene and a visual-location buffer that holds a chunk which represents the
location of an object in the visual scene. Visual interaction is shown in the demo2 model in the
two productions find-unattended-letter and attend-letter.

2.5.1 Visual-Location buffer

The find-unattended-letter production applies whenever the goal buffer’s chunk has the value
start in the state slot (which is how the chunk is initially created):

(P find-unattended-letter
 =goal>
 ISA read-letters
 state start
 ==>
 +visual-location>
 :attended nil
 =goal>
 state find-location
)

It makes a request of the visual-location buffer and it changes the goal buffer chunk’s state slot to
the value find-location. It is important to note that those values for the state slot of that chunk are
arbitrary. The values used in this model were chosen to help make clear what the model is doing,
but the model would continue to operate the same if all of the corresponding references were
consistently changed to other values instead.

A visual-location request asks the vision module to find the location of an object in its visual
scene (which for this model is the current experiment’s window) that meets the specified

8

ACT-R Tutorial 10-Dec-19 Unit Two

requirements, build a chunk to represent the location of that object if one exists, and place that
chunk in the visual-location buffer.

The following portion of the trace reflects the actions performed by this production:

0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.050 VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0

We see the notice of the visual-location request and the automatic clearing of the visual-location
buffer due to the request being made by the production. Then the vision module reports that it is
finding a location, and after that it places a chunk into the buffer. Notice that there was no time
involved in handling the request – all those actions took place at time 0.050 seconds. The visual-
location requests always finish immediately which reflects the assumption that there is a
perceptual system operating in parallel within the vision module that makes these visual features
immediately available.

If you run the model through the task again and step through the model’s actions using the
Stepper you can use the “Buffers” tool to see that the chunk visual-location0-1 will be in the
visual-location buffer after that last event:

VISUAL-LOCATION0-1
 KIND TEXT
 VALUE TEXT
 COLOR BLACK
 HEIGHT 10
 WIDTH 7
 SCREEN-X 430
 SCREEN-Y 456
 DISTANCE 1080
 SIZE 0.19999999

There are a lot of slots in the chunk placed into the visual­location buffer, and when making the
request to find a location all of those features can be used to constrain the results. None of them
are important for this unit, but we will describe the screen­x and screen­y slots here. They
encode the position of the object in the visual scene. For the experiment windows created by the
ACT­R interface tools the upper­left corner of the screen is screen­x 0 and screen­y 0. The x
coordinates increase from left to right, and the y coordinates increase from top to bottom. The
value for a feature in the experiment window is the position of the experiment window’s upper­
left corner on the screen plus the position of the item in the window – it is the global position on
the whole screen not the relative position within the window. Typically, the specific values are
not that important for the model and do not need to be specified when making a request for a

9

ACT-R Tutorial 10-Dec-19 Unit Two

location. There is a set of descriptive specifiers that can be used for requests on those slots, like
lowest or highest, but those details will not be discussed until unit 3.

2.5.1.1 The attended request parameter

If we look at the request which was made of the visual­location buffer in the find­unattended­
letter production:

+visual-location>
 :attended nil

we see that all it consists of is “:attended nil” in the request. This :attended specification is
called a request parameter. It acts like a slot in the request, but does not correspond to a slot in
the chunk which was created. A request parameter is valid for any request to a buffer regardless
of any chunk­type that is specified (or when no chunk­type is specified as is the case here).
Request parameters are used to supply general information to the module about a request which
may not correspond to any information that would be included in a chunk that is placed into a
buffer. A request parameter is specific to a particular buffer and will always start with a “:”
which distinguishes it from an actual slot of some chunk­type.

For a visual­location request one can use the :attended request parameter to specify whether the
vision module should try to find the location of an object which the model has previously looked
at (attended to) or not. If it is specified as nil, then the request is for a location which the model
has not attended, and if it is specified as t, then the request is for a location which has been
attended previously. There is also a third option, new, which means that the model has not
attended to the location and that the object has also recently appeared in the visual scene.

2.5.2 The attend-letter production

The attend-letter production applies when the goal state is find-location, there is a chunk in the
visual-location buffer, and the vision module is not currently active with respect to the visual
buffer:

(P attend-letter
 =goal>
 ISA read-letters
 state find-location
 =visual-location>
 ?visual>
 state free

10

ACT-R Tutorial 10-Dec-19 Unit Two

==>
 +visual>
 cmd move-attention
 screen-pos =visual-location
 =goal>
 state attend
)

On the LHS of this production are two tests that have not been used in previous models. The first
of those is a test of the visual-location buffer which has no constraints specified for the slots of
the chunk in that buffer. All that is necessary for this production is that there is a chunk in the
buffer and the details of its slot values do not matter. The other is a query of the visual buffer.

2.5.3 Checking a module’s state

On the LHS of attend-letter a query is made of the visual buffer to test that the state of the
vision module is free. All buffers will respond to a query for their module’s state and the possible
values for that query are busy, free, or error as was shown in unit 1. The test of state free is a
check to make sure the buffer being queried is available for a new request. If the state is free,
then it is safe to issue a new request through that buffer, but if it is busy then it is usually not safe
to do so.

Typically, a module is only able to handle one request to a buffer at a time, and that is the case for
both the imaginal and visual buffers which require some time to produce a result. Since all of the
model’s modules operate in parallel it might be possible for the procedural module to select a
production which makes a request to a module that is still working on a previous request. If a
production were to fire at such a point and issue a request to a module which is currently busy and
only able to handle one request at a time, that is referred to as “jamming” the module. When a
module is jammed, it will output a warning message in the trace to let you know what has
happened. What a module does when jammed varies from module to module. Some modules
ignore the new request, whereas others abandon the previous request and start the new one. As a
general practice it is best to avoid jamming modules. Thus, when there is the possibility of
jamming a module one should query its state before making a request.

Note that we did not query the state of the visual-location buffer in the find-unattended-letter
production before issuing the visual-location request. That is because we know that those
requests always complete immediately and thus the state of the vision module for the visual-
location buffer is always free. We did however test the state of the imaginal module before
making the request to the imaginal buffer in the encode-letter production. That query is not
necessary in this model and removing it will not change the way the model performs. That is
because that is the only request to the imaginal module in the model and that production will not
fire again because of the change to the goal buffer chunk’s state slot. Thus there is no risk of
jamming the imaginal module in this model, but omitting queries which appear to be unnecessary

11

ACT-R Tutorial 10-Dec-19 Unit Two

is a risky practice. It is always a good idea to query the state in every production that makes a
request that could potentially jam a module even if you know that it will not happen because of
the structure of the other productions in the current model. Doing so makes it clear to anyone else
who may read the model, and it also protects you from problems if you decide later to apply that
model to a different task where the assumption which avoids the jamming no longer holds.

In addition to the state, there are also other queries that one can make of a buffer. Unit 1
presented the general queries that are available to all buffers. Some buffers also provide queries
that are specific to the details of the module and those will be described as needed in the tutorial.
To see the status of all the information which can be queried for a buffer you can use the
“Buffers” tool in the Control Panel which was used in the last unit to display information about
the chunk in a buffer. The see the status of a buffer press the button labeled “Status” at the top
right on the buffer viewer. That will change the information shown from the contents of the
buffer to its status details. Those details show the standard queries for each buffer along with the
current value (either t or nil) for such a query at this time along with any additional queries which
may be specific to that buffer and which may take a slightly different form (details on all of the
queries for each buffer can be found in the reference manual).

2.5.4 Chunk-type for the visual-location buffer

You may have noticed that we did not specify a chunk-type with either the request to the visual-
location buffer in the find-unattended-letter production or its testing in the condition of the
attend-letter production. That was because we didn’t specify any slots in either of those places
(recall that :attended is a request parameter and not a slot) thus there is no need to specify a
chunk-type for verification that the slots used are correct. If we did need to request or test
specific features with the visual-location buffer there is a chunk-type named visual-location
which one can use to do so which has the slots screen-x, screen-y, distance, kind, color, value,
height, width, and size.

2.5.5 Visual buffer

On the RHS of attend-letter it makes a request of the visual buffer which specifies two slots:
cmd and screen-pos:

 +visual>
 cmd move-attention
 screen-pos =visual-location

Unlike the other buffers which we have seen so far, the visual buffer is capable of performing
different actions in response to a request. The cmd slot in a request to the visual buffer indicates
which specific action is being requested. In this request that is the value move-attention which
indicates that the production is asking the vision module to move its attention to some location,

12

ACT-R Tutorial 10-Dec-19 Unit Two

create a chunk which encodes the object that is there, and place that chunk into the visual buffer.
The location to which the module should move its attention is specified in the screen-pos (short
for screen-position) slot of the request. In this production that location is the chunk that is in the
visual-location buffer. The following portion of the trace shows this request and the results:

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
...
0.100 PROCEDURAL MODULE-REQUEST VISUAL
...
0.100 PROCEDURAL CLEAR-BUFFER VISUAL
0.100 VISION Move-attention VISUAL-LOCATION0-1 NIL
...
0.185 VISION Encoding-complete VISUAL-LOCATION0-1 NIL
0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0

The request to move-attention is made at time 0.100 seconds and the vision module reports
receiving that request at that time as well. Then 0.085 seconds pass before the vision module
reports that it has completed encoding the object at that location, and it places a chunk into the
visual buffer at time 0.185 seconds. Those 85 ms represent the time to shift attention and create
the visual object. Altogether, counting the two production firings (one to request the location and
one to request the attention shift) and the 85 ms to execute the attention shift and object encoding,
it takes 185 ms to create the chunk that encodes the letter on the screen.

If you step through the model you will find this chunk in the visual buffer after those actions have
occurred:

TEXT0-0
 SCREEN-POS VISUAL-LOCATION0-0
 VALUE "v"
 COLOR BLACK
 HEIGHT 10
 WIDTH 7
 TEXT T

Most of the chunks created for the visual buffer by the vision module are going to have a
common set of slots. Those will include the screen-pos slot which holds the location chunk
which represents where the object is located (which will typically have the same information as
the location to which attention was moved) and then color, height, and width slots which hold
information about the visual features of the object that was attended. In addition, depending on
the details of the object which was attended, other slots may provide more details. When the
object is text, the value slot will hold a string that contains the text encoded from the screen. As
seen above for the text item there is also a slot named text which has the value t (the Lisp truth
symbol) to indicate that the item is classified as text. Information about the chunk-types available
for visual items will be described below.

After a chunk has been placed in the visual buffer this model harvests that chunk with the
encode-letter production:

(P encode-letter

13

ACT-R Tutorial 10-Dec-19 Unit Two

 =goal>
 ISA read-letters
 state attend
 =visual>
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 state respond
 +imaginal>
 isa array
 letter =letter
)

which makes a request to the imaginal buffer to create a new chunk which will hold a
representation of the letter as was described in the section above on the imaginal module.

2.5.6 Chunk-types for the visual buffer

As with the visual-location buffer you may have noticed that we also didn’t specify a chunk-type
with the request of the visual buffer in the attend-letter production or the harvesting of the chunk
in the encode-letter production. Unlike the visual-location buffer, there actually are slots
specified in both of those cases for the visual buffer. Thus, for added safety we should have
specified a chunk-type in both of those places to validate the slots being used.

For the chunks placed into the visual buffer by the vision module when attending to an item there
is a chunk-type called visual-object which provides these slots: screen-pos, value, status, color,
height, width, and distance. For the objects which the vision module can process by default the
visual-object chunk-type is always an acceptable choice. Therefore a safer specification of the
encode-letter production would include the declaration in red:

(P encode-letter
 =goal>
 ISA read-letters
 state attend
 =visual>
 isa visual-object
 value =letter
 ?imaginal>
 state free
==> ...)

14

ACT-R Tutorial 10-Dec-19 Unit Two

If one extends the capabilities of the vision module so that it can process other items in the visual
scene then different chunk-types which include additional features may be required. As was
noted above, there is also a slot named text in the chunk in the visual buffer for this task. We will
come back to that in a later unit of the tutorial.

For the request to the visual buffer there are a couple of options available for how to include a
chunk-type declaration to verify the slots. The first option is to use the chunk-type named vision-
command which includes all of the slots for all of the requests which can be made to the visual
buffer:

 +visual>
 isa vision-command
 cmd move-attention
 screen-pos =visual-location

Because that contains slots for all of the different requests which the visual buffer can handle it is
not as safe as a more specific chunk-type which only contains the slots for the specific command
being used. For the move-attention command there is another chunk-type called move-attention
which only contains the slots that are valid for the move-attention request. Therefore, a more
specific declaration for the request to the visual buffer for the vision module to move attention to
an object would be:

 +visual>
 isa move-attention
 cmd move-attention
 screen-pos =visual-location

Specifying move-attention twice in that request looks a little awkward. There is a way to avoid
that redundancy and still maintain the safety of the chunk-type declaration, but we will not
describe that until later in the tutorial.

2.5.7 Other Vision module actions

If you look closely at the trace you will find that there are seven other events which are attributed
to the vision module that we have not yet described:

0.000 VISION PROC-DISPLAY
0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
0.000 VISION visicon-update
...
0.885 VISION PROC-DISPLAY
0.885 VISION visicon-update
...
0.970 VISION Encoding-complete VISUAL-LOCATION0-1 NIL

15

ACT-R Tutorial 10-Dec-19 Unit Two

0.970 VISION No visual-object found

These actions represent activity which the vision module has performed without being requested
to do so. The ones which indicate actions of proc-display and visicon-update are notices of
internal updates which may be useful for the modeler to know, but are not directly relevant to the
model itself. The proc-display actions indicate that something has happened in the world which
has caused the vision module to reprocess the information which is available to it. The one at
time 0 happens because that is when the model first begins to interact with the display, and the
one at time .885 occurs because when the model pressed the key the screen was erased. Those
are followed at the same times (though not necessarily immediately) by actions which say
visicon-update. The visicon-update action is an indication that the reprocessing of the visual
information in a proc-display resulted in an actual change to the information available in the
vision module.

The other event at time 0 is the result of a mechanism in the vision module which we will not
discuss until the next tutorial unit, so for now you should just ignore it. The actions at time .970
will be described in the next section.

2.5.8 Visual Re-encoding

There two lines in the trace of the model at time .970 performed by the vision module were not
the result of a request in a production:

0.970 VISION Encoding-complete VISUAL-LOCATION0-1 NIL
0.970 VISION No visual-object found

The first of those is an encoding-complete action as we saw above when the module was
requested to move-attention to a location. This encoding-complete is triggered by the proc-
display which occurred at time 0.885 in response to the screen being cleared after the key press.
If the vision module is attending to a location when it reprocesses the visual scene it will
automatically re-encode the information at the attended location to encode any changes that may
have occurred there. This re-encoding takes 85 ms just as an explicit request to attend an item
does. If the visual-object chunk representing that item is still in the visual buffer it will be
updated to reflect any changes. If there is no longer a visual item on the display at the location
where the model is attending (as is the case here) then the trace will show a line indicating that no
object was found. That will result in the vision module noting a failure in the visual buffer and a
state of error through the visual buffer until there is another successful encoding (very much like
a memory retrieval failure in the retrieval buffer).

This automatic re-encoding process of the vision module can require that you be careful when
writing models that process changing displays for two reasons. The first is that you cannot be
guaranteed that the chunk in the visual buffer will not change in response to a change in the
visual display. The other is because while the re-encoding is occurring, the vision module is busy
and cannot handle a new attention shift. This is one reason it is important to query the visual

16

ACT-R Tutorial 10-Dec-19 Unit Two

state before all visual requests to avoid jamming the vision module – there may be activity other
than that which is requested explicitly by the productions.

2.5.9 Stop Visually Attending

If you do not want the model to re-encode the information at the location it is currently attending
you need to have it stop attending to the visual scene. That is done by issuing a clear command to
the vision module as an action:

+visual>
 cmd clear

This will cause the model to stop attending to any visual items until a new request to move-
attention is made and thus it will not re-encode items if the visual scene changes.

If one wants the safety of a chunk-type declaration with that, then as indicated above the vision-
command chunk-type could be used:

+visual>
 isa vision-command
 cmd clear

2.6 Learning New Chunks

This process of seeking the location of an object in one production, switching attention to the
object in a second production, and harvesting the object in a third production is a common process
in ACT-R models for handling perceptual information. Something to keep in mind about that
processing is that this is one way in which ACT-R can acquire new declarative chunks. As was
noted in the previous unit, the declarative memory module stores the chunks which are cleared
from buffers, and that includes the perceptual buffers. Thus, as those perceptual chunks are
cleared from their buffers, they will be recorded in the model’s declarative memory.

2.7 The Motor Module

When we speak of motor actions in ACT-R we are only concerned with hand movements. It is
possible to extend the motor module to other modes of action, but the provided motor module is
built around controlling a pair of hands. In this unit we will only be concerned with finger presses
at a keyboard, but the hands can also be used to move a mouse or other input device.

The buffer for interacting with the motor module is called the manual buffer. Unlike other
buffers however, the manual buffer will not have any chunks placed into it by its module. It is
used only to issue commands and to query the state of the motor module. The manual buffer is

17

ACT-R Tutorial 10-Dec-19 Unit Two

used to request actions be performed by the hands. As with the vision module, you should always
check to make sure that the motor module is free before making any requests to avoid jamming it.
The manual buffer query to test the state of the module works the same as the one described for
the vision module:

?manual>
 state free

That query will be true when the module is available.

The motor module actually has a more complex set of internal states than just free or busy
because there are multiple stages in performing the motor actions. By testing those internal states
it is possible to make a new request to the motor module before the previous one has fully
completed if it does not conflict with the ongoing action. However we will not be discussing the
details of those internal states in the tutorial, and testing the overall state of the module will be
sufficient for performing all of the tasks used in the tutorial.

The respond production from the demo2 model shows the manual buffer in use:

(P respond
 =goal>
 ISA read-letters
 state respond
 =imaginal>
 isa array
 letter =letter
 ?manual>
 state free
==>
 =goal>
 state done
 +manual>
 cmd press-key
 key =letter
)

This production fires when a letter has been encoded in the imaginal buffer, the goal state slot has
the value respond, and the manual buffer indicates that the motor module is free. A request is
made to press the key corresponding to the letter from the letter slot of the chunk in the imaginal
buffer and the state slot of the chunk in the goal buffer is changed to done.

Because there are many different actions which the motor module is able to perform, when
making a request to the manual buffer a slot named cmd is used to indicate which action to
perform. The press-key action used here assumes that the model’s hands are located over the

18

ACT-R Tutorial 10-Dec-19 Unit Two

home row on the keyboard (which they are by default when using the provided experiment
interface). From that position a press-key request will move the appropriate finger to touch type
the character specified in the key slot of the request and then return that finger to the home row
position.

Here are the events related to the manual buffer request from that production firing:

0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
...
0.485 PROCEDURAL MODULE-REQUEST MANUAL
...
0.485 PROCEDURAL CLEAR-BUFFER MANUAL
0.485 MOTOR PRESS-KEY KEY v
...
0.735 MOTOR PREPARATION-COMPLETE
...
0.785 MOTOR INITIATION-COMPLETE
...
0.885 KEYBOARD output-key DEMO2 v
...
1.035 MOTOR FINISH-MOVEMENT

When the production is fired at time 0.485 seconds a request is made to press the key, the buffer
is automatically cleared (even though the motor module does not put chunks into its buffer the
procedural module still performs the clear action), and the motor module indicates that it has
received a request to press the “v” key. However, it takes 250ms to prepare the features of the
movement (preparation-complete), 50ms to initiate the action (initiation-complete), another
100ms until the key is actual struck and detected by the keyboard (output-key), and finally it takes
another 150ms for the finger to return to the home row and be ready to move again (finish-
movement). Thus the time of the key press is 0.885 seconds, however the motor module is still
busy until time 1.035 seconds. The press-key request does not model the typing skills of an
expert typist, but it does represent one who is able to touch type individual letters competently
without looking at about 40 words per minute, which is usually a sufficient mechanism for
modeling average performance in simple keyboard response tasks.

2.7.1 Motor module chunk-types

Like the visual-location and visual buffer requests the production which makes the request to the
manual buffer did not specify a chunk-type. The manual buffer request is very similar to the
request to the visual buffer. It has a slot named cmd which contains the action to perform and
then additional slots as necessary to specify details for performing that action. The options for
declaring a chunk-type in the request are also very similar to those for the visual buffer.

One option is to use the chunk-type named motor-command which includes all of the slots for all
of the requests which can be made to the manual buffer:

 +manual>

19

ACT-R Tutorial 10-Dec-19 Unit Two

 isa motor-command
 cmd press-key
 key =letter

Another is to use a more specific chunk-type named press-key that only has the valid slots for the
press-key action (cmd and key):

 +manual>
 isa press-key
 cmd press-key
 key =letter

Again, that repetition is awkward and we will come back to that later in the tutorial.

2.8 Strict Harvesting

Another mechanism of ACT-R is displayed in the trace of this model. It is a process referred to
as “strict harvesting”. It states that if the chunk in a buffer is tested on the LHS of a production
(often referred to as harvesting the chunk) and that buffer is not modified on the RHS of the
production, then that buffer is automatically cleared. This mechanism is displayed in the events
of the attend-letter, encode-letter, and respond productions which harvest, but do not modify
the visual-location, visual, and imaginal buffers respectively:

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
...
0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
...
0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
...
0.235 PROCEDURAL CLEAR-BUFFER VISUAL
...
0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
...
0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL

By default, this happens for all buffers except the goal and temporal buffers, but it is controlled
by a parameter (:do-not-harvest) which can be used to configure which (if any) of the buffers are
excluded from strict harvesting.

If one wants to keep a chunk in a buffer after a production fires without modifying the chunk then
it is valid to specify an empty modification to do so. For example, if one wanted to keep the
chunk in the visual buffer after encode-letter fired we would only need to add an =visual> action
to the RHS:

20

ACT-R Tutorial 10-Dec-19 Unit Two

(P encode-letter-and-keep-chunk-in-visual-buffer
 =goal>
 ISA read-letters
 state attend
 =visual>
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 state respond
 +imaginal>
 isa array
 letter =letter
 =visual>
)

Strict harvesting also applies to the buffer failure query. A production which makes a query for
buffer failure will also trigger the strict harvesting mechanism for that buffer and clear it as an
action unless that buffer is modified in the production. Typically, there will not be a chunk in the
buffer when a buffer failure occurs which needs to be cleared, but clearing a buffer also clears the
failure notice from the buffer as well which is useful to avoid detecting the same failure
repeatedly.

2.9 More ACT-R Parameters

The model code description document for unit 1 introduced the sgp command for setting ACT-R
parameters. In the demo2 model the parameters are set like this:

(sgp :seed (123456 0))
(sgp :v t :show-focus t :trace-detail high)

All of these parameters are used to control how the software operates and do not affect the
model’s performance of the task. These settings are used to make working with this model easier,
and are things that you may want to use when working with other models.

The first sgp command is used to set the :seed parameter. This parameter controls the starting
point for the pseudo-random number generator used by ACT-R. Typically you do not need to use
this parameter; however by setting it to a fixed value the model will always produce the same
behavior (assuming that all the variation is attributable to randomness generated using the ACT-R
mechanisms). In this model, that is why the randomly chosen letter is always “V”. If you remove

21

ACT-R Tutorial 10-Dec-19 Unit Two

this parameter setting from the model, save it, and then reload, you will see different letters
chosen when the experiment is run. For the tutorial models, we will often set the :seed parameter
in the demonstration model of a unit so that the model always produces exactly the same trace as
presented in the unit text, but you should feel free to remove that to further investigate the models.

The second sgp call sets three parameters. The :v (verbose) parameter controls whether the trace
of the model is output. If :v is t (which is the default value) then the trace is displayed and if :v is
set to nil the trace is not printed. It is also possible to direct the trace to an external file instead of
the interactive session, and you should consult the reference manual for information on how to do
that if you would like to do so. Without printing out the trace the model runs significantly faster,
and that will be important in later units when we are running the models through the experiments
multiple times to collect data. The :show-focus parameter controls whether or not the visual
attention ring is displayed in the experiment window when the model is performing the task. It is
a useful debugging tool, but for some displays you may not want it because it could obscure other
things you want to see. If it is set to the value t then the red ring will be displayed. If it is set to
nil then it will not be shown. It can also be set to the name of a color e.g. green, blue, yellow, etc.
to change how it is displayed which can be helpful when there are multiple models
simultaneously interacting with the same task to be able to distinguish where each model is
attending. The :trace-detail parameter, which was described in the unit 1 code description
document, is set to high so that all the actions of the modules show in the trace for this task.

2.10 Unit 2 Assignment

Your assignment is to extend the abilities of the demo2 model to perform a more complex
experiment. The new experiment presents three letters. Two of those letters will be the same.
The participant's task is to press the key that corresponds to the letter that is different from the
other two. The code to perform the experiment is found in the unit2 file in the Lisp and Python
directories. By default it will load the model found in the tutorial/unit2/unit2-assignment-
model.lisp file. That initial model file only contains two chunk-type definitions and creates a
chunk to indicate the initial goal which is placed into the goal buffer.

The experiment is run very much like the demonstration experiment described earlier, and we will
repeat the detailed instructions for how to load and run an experiment again here. In future units
however we will assume that you are familiar with the process and only indicate the functions
necessary to run the experiments.

2.10.1 Running the Lisp version

The first thing you will need to do to run the Lisp version of the experiment is load the
experiment code. That can be done using the “Load ACT-R code” button in the Environment.

22

ACT-R Tutorial 10-Dec-19 Unit Two

The file is called unit2.lisp and is found in the tutorial/lisp directory of the ACT-R software.
When you load that file it will also load the model from the unit2-assignment-model.lisp file in
the tutorial/unit2 directory, and if you look at the top of the Control Panel after loading the file
you will see that it says UNIT2 under “Current Model”. To run the experiment you will call the
unit2-experiment function, and it has one optional parameter which indicates whether a human
participant will be performing the task. As a first run you should perform the task yourself, and to
do that you will evaluate the unit2-experiment function at the prompt in the ACT-R window and
pass it a value of t (the Lisp symbol representing true):

? (unit2-experiment t)

When you enter that a window titled “Letter difference” will appear with three letters in it. When
you press a key while that experiment window is the active window the experiment will record
your key press and determine if it is the correct response. If the response is correct unit2-
experiment will return t:

? (unit2-experiment t)
T
?

and if it is incorrect it will return nil:

? (unit2-experiment t)
NIL
?

To run the model through the task you call the unit2-experiment function without providing a
parameter. With the initial model that will result in this which returns nil indicating an incorrect
response (because the model did not make a response):

? (unit2-experiment)
 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
 0.000 VISION visicon-update
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.500 PROCEDURAL CONFLICT-RESOLUTION
 0.500 ------ Stopped because no events left to process
NIL
?

2.10.2 Running the Python version

To run the Python version you should first run an interactive Python session on your machine
(you can use the same session used for the demonstration experiment if it is still open). Then you
can import the unit2 module which is in the tutorial/python directory of the ACT-R software. If
this is the same session you used before there will not be a notice that it has connected to ACT-R
because it is already connected:

23

ACT-R Tutorial 10-Dec-19 Unit Two

>>> import unit2
>>>

If this is a new session then it will print the confirmation that it has connected to ACT-R:

>>> import unit2
ACT-R connection has been started.

The unit2 module will also have ACT-R load the unit2-assignment-model.lisp file from the
tutorial/unit2 directory, and if you look at the top of the Control Panel after you import the unit2
module you will see that it now says UNIT2 under “Current Model”. To run the experiment you
will call the experiment function from the unit2 module, and it has one optional parameter which
indicates whether a human participant will be performing the task. As a first run you should
perform the task yourself, and to do that you will call the experiment function at the Python
prompt and pass it the value True:

>>> unit2.experiment(True)

When you enter that a window titled “Letter difference” will appear with three letters in it. When
you press a key while that experiment window is the active window the experiment will record
your key press and determine whether it was the correct response or not. If it was correct it will
return the value True:

>>> unit2.experiment(True)
True

If it was not correct it will return False:

>>> unit2.experiment(True)
False

To run the model through the task you call the experiment function without providing a
parameter. With the initial model that will result in this which returns False indicating an
incorrect response (which was because the model did not make a response):

>>> unit2.experiment()
 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
 0.000 VISION visicon-update
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.500 PROCEDURAL CONFLICT-RESOLUTION
 0.500 ------ Stopped because no events left to process
False

2.10.2 Modeling task

24

ACT-R Tutorial 10-Dec-19 Unit Two

Your task is to write a model that always responds correctly when performing the task. In doing
this you should use the demo2 model as a guide. It reflects the way to interact with the imaginal,
vision, and motor modules and the productions it contains are similar to the productions you will
need to write. You will also need to write additional productions to read the other letters and
decide which key to press.

You are provided with a chunk-type you may use for specifying the goal chunk, and the starting
model already creates one and places it into the goal buffer. This chunk-type is the same as the
one used in the demo2 model and only contains a slot named state:

(chunk-type read-letters state)

The initial goal provided looks just like the one used in demo2:

(goal isa read-letters state start)

There is an additional chunk-type specified which has slots for holding the three letters which can
be used for the chunk in the imaginal buffer:

(chunk-type array letter1 letter2 letter3)

You do not have to use these chunk-types to solve the problem. If you have a different
representation you would like to use feel free to do so. There is no one “right” model for the task.
(Nonetheless, we would like your solution to keep any control state information it uses in the goal
buffer and separate from the problem representation in the imaginal buffer.)

In later units we will consider fitting models to data from real experiments. Then, how well the
model fits the data can be used as a way to decide between different representations and models,
but that is not the only way to decide. Cognitive plausibility is another important factor when
modeling human performance – you want the model to do the task like a person does the task. A
model that fits the data perfectly using a method completely unlike a person is probably not a very
good model of the task.

References

Anderson, J. R., Matessa, M., & Lebiere, C. (1997). ACT-R: A theory of higher level cognition
and its relation to visual attention. Human Computer Interaction, 12(4), 439-462.

25

http://act-r.psy.cmu.edu/wordpress/?post_type=publications&p=14005
http://act-r.psy.cmu.edu/wordpress/?post_type=publications&p=14005

ACT-R Tutorial 10-Dec-19 Unit Two

Byrne, M. D., (2001). ACT-R/PM and menu selection: Applying a cognitive architecture to HCI.
International Journal of Human-Computer Studies, 55, 41-84.

Kieras, D. & Meyer, D.E. (1997). An overview of the EPIC architecture for cognition and
performance with application to human-computer interaction. Human-Computer Interaction, 12,
391-438.

26

http://www.umich.edu/~bcalab/documents/KierasMeyer1997.pdf
http://www.umich.edu/~bcalab/documents/KierasMeyer1997.pdf
http://chil.rice.edu/byrne/Pubs/byrne2001IJHCS.pdf

	Unit 2: Perception and Motor Actions in ACT-R
	2.1 ACT-R Interacting with the World
	2.1.1 Experiments

	2.2 The First Experiment
	2.2.1 Running the Lisp version
	2.2.2 Running the Python version
	2.2.3 Running the model in the experiment

	2.3 Control and Representation
	2.3.1 The State Slot

	2.4 The Imaginal Module
	2.5 The Vision Module
	2.5.1 Visual-Location buffer
	2.5.1.1 The attended request parameter

	2.5.2 The attend-letter production
	2.5.3 Checking a module’s state
	2.5.4 Chunk-type for the visual-location buffer
	2.5.5 Visual buffer
	2.5.6 Chunk-types for the visual buffer
	2.5.7 Other Vision module actions
	2.5.8 Visual Re-encoding
	2.5.9 Stop Visually Attending

	2.6 Learning New Chunks
	2.7 The Motor Module
	2.7.1 Motor module chunk-types

	2.8 Strict Harvesting
	2.9 More ACT-R Parameters
	2.10 Unit 2 Assignment
	2.10.1 Running the Lisp version
	2.10.2 Running the Python version
	2.10.2 Modeling task

	References

