
ACT-R Tutorial 10-Dec-19 Unit Seven

Unit 7: Production Rule Learning

In this unit we will discuss how new production rules are learned. As we will see, a
model can acquire new production rules by collapsing two production rules that apply in
succession into a single rule. Through this process the model will transform knowledge
that is stored declaratively into a procedural form. We call this process of forming new
production rules production compilation and refer to the specific act of combining two
productions as a composition.

7.1 The Basic Idea

A good pair of productions for illustrating production compilation is the two that fire in
succession to retrieve a paired associate in the paired model from Unit 4:

(p read-probe
 =goal>
 isa goal
 state attending-probe
 =visual>
 isa visual-object
 value =val
 ?imaginal>
 state free
 ==>
 +imaginal>
 isa pair
 probe =val
 +retrieval>
 isa pair
 probe =val
 =goal>
 state testing)

(p recall
 =goal>
 isa goal
 state testing
 =retrieval>
 isa pair
 answer =ans
 ?manual>
 state free
 ?visual>
 state free
 ==>
 +manual>
 cmd press-key
 key =ans
 =goal>
 state read-study-item
 +visual>
 cmd clear)

If these two productions fired and retrieved the chunk for the pair of zinc & 9, production
compilation would compose these two rules into the following single production:

(P PRODUCTION0
 "READ-PROBE & RECALL - CHUNK0-0"
 =GOAL>

1

ACT-R Tutorial 10-Dec-19 Unit Seven

 STATE ATTENDING-PROBE
 =VISUAL>
 VALUE "zinc"
 ?IMAGINAL>
 STATE FREE
 ?MANUAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 ==>
 =GOAL>
 STATE READ-STUDY-ITEM
 +VISUAL>
 CMD CLEAR
 +MANUAL>
 CMD PRESS-KEY
 KEY "9"
 +IMAGINAL>
 PROBE "zinc"
)

This production combines the work of the two productions and has built into it the paired
associate components. In the next two subsections we will describe the general principles
used for composing two production rules together and the factors that control how these
productions compete in the conflict resolution process.

7.2 Forming a New Production

The basic idea behind forming a new production is to combine the tests in the two
conditions into a single set of tests that will recognize when the pair of productions will
apply and combine the two sets of actions into a single set of actions that has the same
overall effect. Since the conditions consist of a set of buffer tests and the actions consist
of a set of buffer transformations (either direct modifications or new requests) this can be
done largely on a buffer-by-buffer basis. The complications occur when there is a buffer
transformation in the action of the first production and either a test of that buffer in the
condition of the second production or another transformation of the same buffer in the
action of the second production. The productions above illustrate both complications
with respect to the goal buffer. Because the change to the state slot of the goal buffer
chunk in the first production is tested as a condition in the second production that test can
be omitted from the tests of the composed production. Then, because that state slot is
changed again by the second production, and the composed production only needs to
reproduce the final state of the original two productions, that first goal change can also be
omitted from the actions of the compiled production. The result of the overlap in the goal

2

ACT-R Tutorial 10-Dec-19 Unit Seven

buffer is just a simplification of the production rule but in other cases other responses are
necessary.

Because different modules use their buffers in different ways the production compilation
process needs to be sensitive to those differences. For instance, in the above production
we see that the retrieval buffer request was omitted from the newly formed production,
but the imaginal buffer request was not. The production compilation mechanism is built
around sets of rules that we call styles and each buffer is handled using the rules for the
style which best categorizes its use. For each style the rules specify when two
productions that use that same buffer can be combined through compilation and how to
compose the uses of that buffer. By default there are five styles to which the buffers of
ACT-R are assigned and we will describe the mechanisms used for those styles in the
following sections. It is possible to add new styles and also to adjust the assignment of
buffers to styles, but that is beyond the scope of the tutorial.

7.2.1 Motor Style Buffers

Let us first consider the compilation policy for the motor style buffers. The buffers that
fit this style are the manual and vocal buffers. The main distinction of these buffers is
that they never hold a chunk. They are used for requesting actions of a module which can
only process one request at a time and they are only tested through queries. If the first
production makes a request of one of these buffers then it is not possible to compose it
with a second production if that production also makes a request of that buffer or queries
the buffer for anything other than state busy. If both productions make a request, then
there is a danger of jamming if both requests were to occur at the same time, and any
queries that are not checking to see if the module is busy in the second production are
probably there to prevent jamming in the future, and thus also block the composition.

7.2.2 Perceptual Style Buffers

Now let us consider the compilation policy for the perceptual buffers. These are the
buffers in the perceptual style: visual-location, visual, aural-location, and aural. These
buffers will hold chunks generated by their modules. The important characteristic about
them is that those chunks are based on information in the external world, and thus are not
guaranteed to result in the same request generating the same result at another time. First,
like the motor style buffers, it is not possible to compose two productions which both
make requests of the same perceptual style buffer or if the first production makes a
request and the second production makes a query for other than state busy of that buffer
because of the possibility of jamming. In addition, if the first production makes a request
of one of these buffers then it is not possible to compose it with the second production if
that production tests the contents of the buffer. This is because of the unpredictable
nature of such requests – one does not want to create productions that encapsulate
information that is based on external information which may not be valid ever again (at
least not for most modeling purposes). The idea is that we only want to create new
productions that are “safe”, and by safe we mean that the new production can only match

3

ACT-R Tutorial 10-Dec-19 Unit Seven

if the productions that it was generated from would match and that its actions are the
same as those of its parent productions. Basically, for the default mechanism, we do not
want composed productions to be generated that introduce new errors into the model.

Thus, points where a request is made of a perceptual or motor style buffer are points
where there are natural breaks in the compilation process. The standard production
compilation mechanisms will not compose a production that makes such a request with a
following production that operates on the same buffer.

7.2.3 Retrieval Style Buffer

Next let us consider the compilation policy for the retrieval buffer (the only buffer of the
retrieval style). Because declarative memory is an internal mechanism (i.e., not subject
to the whims of the outside world) it is more predictable and thus offers an opportunity
for economy. The interesting opportunity for economy occurs when the first production
requests a retrieval and the second tests the result of that retrieval. In this case, one can
delete the request and test and instead specialize the composed production. Any variables
specified in the retrieval request and bound in the harvesting of the chunk can be replaced
with the specific values based on the chunk that was actually retrieved. This was what
happened in the example production above where the retrieved paired-associate for zinc
& 9 was built into the new production0. There is one case, however, which blocks the
composition of a production which makes a retrieval request with a subsequent
production. That is when the second production has a query for a retrieval failure. This
cannot be composed because declarative memory grows monotonically and it is not safe
to predict that in the future there will be a retrieval failure. This suggests that it is
preferable, if possible, to write production rules that do not depend on retrieval failures.

7.2.4 Goal and Imaginal Style Buffers

The goal and imaginal buffers are also internal buffers allowing economies to be
achieved. The mechanisms used for these two buffers are very similar, and thus will be
described together. The difference between them arises from the fact that the imaginal
buffer requests take time to complete, and that difference will be described below. First,
we will analyze the process for which they are the same and that is broken down into
cases based on whether the first production involves a request to the buffer or not.

7.2.4.a First production does not make a request

Let C1 and C2 be the conditions for the buffer in the first and second production and A1
and A2 be the corresponding productions’ buffer modification actions for that buffer.
Then, the buffer test for the composed production is C1+(C2-A1) where (C2-A1)
specifies those things tested in C2 that were not created in A1. The modification for the
combined production is A2+(A1~A2) where (A1~A2) indicates the modifications that
were in A1 that are not undone by A2. If the second production makes a request, then that
request can just be included in the composed production.

4

ACT-R Tutorial 10-Dec-19 Unit Seven

7.2.4.b First production makes a request

This case breaks down into two subcases depending on whether the second production
also makes a request.

The second production does not also make a request. In this case the second
production’s buffer test can be deleted since its satisfaction is guaranteed by the first
production. Let C1 be the buffer condition of the first production, A1 be the buffer
modification action of the first production, N1 be the new request in the first production,
and A2 be the buffer modification of the second production. Then the buffer test of the
composed production is just C1, the goal modification is just A1, and the new request is
A2+(N1~A2).

The second production also makes a request. In this case the two productions cannot
be composed because this would require either skipping over the intermediate request,
which would result in a chunk not being created in the new production which was
generated by the initial two productions, or making two requests to the buffer in one
production which could lead to jamming the module.

7.2.4.c Difference between goal and imaginal

The difference between the two comes down to the use of queries. Because the imaginal
module’s requests take time one typically needs to make queries to test whether it is free
or busy whereas the goal module’s requests complete immediately and thus the state is
never busy. So, for goal style buffers production compilation is blocked by any queries
in either production because that represents an unusual situation and is thus deemed
unsafe. For imaginal style buffers productions which have queries are allowed when the
queries and actions between the productions are “consistent”. All of the rules for
composition consistency with the imaginal style buffers are a little too complex to
describe here, but generally speaking if the first production has a request then the second
must either test the buffer for state busy and not also make a request (like motor style
buffers) or explicitly test that the buffer is free and make only modifications to the buffer.

For more details, there is a spreadsheet in the docs directory called compilation.xls which
contains a matrix for each buffer style indicating what combinations of usages of a buffer
between the two productions can be composed.

7.3 Utility of newly created productions

So far we have discussed how new production rules are created but not how they are
used. When a new production is composed it enters the procedural module and is treated
just like the productions which are specified in the model definition. They are matched
against the current state along with all the rest of the productions and among all the

5

ACT-R Tutorial 10-Dec-19 Unit Seven

productions which match the current state the one with the highest utility is selected and
fired. When a new production, which we will call New, is composed from old
productions, which we will call Old1 and Old2 and which fired in that order, it is the
case that whenever New could apply Old1 could also apply. (Note however because New
might be specialized it does not follow that whenever Old1 could apply New could also
apply.) The choice between New, Old1, and any other productions which might also
apply will be determined by their utilities as was discussed in the previous unit.

A newly learned production New will initially receive a utility of zero by default (that
can be changed with the :nu parameter). Assuming Old1 has a positive utility value, this
means that New will almost always lose in conflict resolution with Old1. However, each
time New is recreated from Old1 and Old2, its utility is updated with a reward equal to
the current utility of Old1, using the same learning equation as discussed in the previous
unit:

() () () ()[]11 −−+−= nUnRnUnU iiii α Difference Learning Equation

As a consequence, even though New may not fire initially, its utility will gradually
approach the utility of Old1. Once the utility of New and Old1 are close enough, New
will occasionally be selected because of the noise in utilities. Once New is selected itself
it will receive a reward like any other production which fires, and its utility can surpass
Old1’s utility if it is better (it is usually a little better because it typically leads to rewards
faster since it saves a production rule firing and often a retrieval from declarative
memory).

7.4 Learning from Instruction

Generally, production compilation allows a problem to be solved with fewer productions
over time and therefore performed faster. In addition to this speed-up, production
compilation results in the drop-out of declarative retrieval as part of the task performance.
As we saw in the example in the first section, production rules are produced that just "do
it" and do not bother retrieving the intervening information. The classic case of where
this applies in experimental psychology is in the learning of experimental instructions.
These instructions are told to the participant and initially the participant needs to interpret
these declarative instructions. However, with practice the participant will come to embed
these instructions into productions that directly perform the task. These productions will
be like the productions we normally write to model participant performance in the task.
Essentially these are productions that participants learn in the warm-up phase of the
experiment. The paired-learning model for this assignment contains an example of a
system that interprets instructions about how to perform a paired associate task and learns
the productions that do the task directly.

6

ACT-R Tutorial 10-Dec-19 Unit Seven

In the model we use the following chunks to represent the understanding of the
instructions for the paired associate task (in some of our work we have built productions
that read the instructions from the screen and build these chunks but we are skipping that
step here to focus on the mechanisms of this unit):

1. (op1 isa operator pre start action read arg1 create post stimulus-read)

2. (op2 isa operator pre stimulus-read action associate arg1 filled arg2 fill post recalled)

3. (op3 isa operator pre recalled action test-arg2 arg1 respond arg2 wait)

4. (op4 isa operator pre respond action type arg2 response post wait)

5. (op5 isa operator pre wait action read arg2 fill post new-trial)

6. (op6 isa operator pre new-trial action complete-task post start)

These are represented as operators that indicate what to do in various states during the
course of a paired-associate trial. They consist of a statement of what that state is in the
pre slot and what state will occur after the action in the post slot. In addition, there is an
action slot to specify the action to perform and two slots, arg1 and arg2, for holding
possible arguments needed during the task execution. So to loosely translate the six
operators above:

1. At the start read the word and create an encoding of it as the stimulus

2. After reading the stimulus try to retrieve an associate to the stimulus

3. Test whether an item has been recalled and if it has not then just wait

4. If an item has been recalled type it and then wait

5. Store the response you read with the stimulus

6. This trial is complete so start the next one

The model uses a chunk in the goal buffer to maintain a current state and sub step within
that state and a chunk in the imaginal buffer to hold the items relevant to the current
state. For this task, the arguments are the stimulus and probe for a trial.

The model must retrieve operators from declarative memory which apply to the current
state to determine what to do, and in this simple model we really just need one production
which requests the retrieval of an operator relevant to the current state:

(p retrieve-operator
 =goal>
 isa task

7

ACT-R Tutorial 10-Dec-19 Unit Seven

 state =state
 step ready
 ==>
 +retrieval>
 isa operator
 pre =state
 =goal>
 step retrieving-operator)

The particular actions specified in the operators (read, associate, test-arg2, type, and
complete-task) are all general actions not specific to a paired associate task. We assume
that the participant knows how to do these things going into the experiment. This
amounts to assuming that there are productions for processing these actions. For
instance, the following two productions are responsible for reading an item and creating a
chunk in the imaginal buffer which encodes the item into the arg1 slot of that chunk:

(p read-arg1
 =goal>
 isa task
 step retrieving-operator
 =retrieval>
 isa operator
 action read
 arg1 create
 post =state
 =visual-location>
 ?visual>
 state free
 ?imaginal>
 state free
 ==>
 +imaginal>
 isa args
 arg1 fill
 +visual>
 cmd move-attention
 screen-pos =visual-location
 =goal>
 step attending
 state =state)

(p encode-arg1
 =goal>
 isa task
 step attending

8

ACT-R Tutorial 10-Dec-19 Unit Seven

 =visual>
 isa text
 value =val
 =imaginal>
 isa args
 arg1 fill
 ?imaginal>
 state free
 ==>
 *imaginal>
 arg1 =val
 =goal>
 step ready)

The first production responds to the retrieval of the operator and requests a visual
attention shift to an item. It also changes the state slot in the goal buffer to the operator’s
post state. The second production modifies the representation in the imaginal buffer with
the value from the chunk in the visual buffer and sets the goal buffer’s step slot to
indicate that it is ready to retrieve the operator relevant to the next state.

The paired-learning model performs the same task as the paired model you used for
Unit 4. However, rather than having specific productions for doing the task it interprets
these operators that represent the instructions for doing this task. For reference, here is
the data that is being modeled again:

Trial Accuracy Latency

1 .000 0.000

2 .526 2.156

3 .667 1.967

4 .798 1.762

5 .887 1.680

6 .924 1.552

7 .958 1.467

8 .954 1.402

To run the model you should first load/import the paired experiment code and then load
the paired-learning.lisp model from this unit since the paired experiment code loads the
unit 4 model by default. The model can be run either with production compilation on or

9

ACT-R Tutorial 10-Dec-19 Unit Seven

off. To turn production compilation off, set the :epl parameter to nil in the sgp setting at
the top of the model. The following shows the data from running the model through the
experiment without production compilation:

Latency:
CORRELATION: 0.974
MEAN DEVIATION: 0.194
Trial 1 2 3 4 5 6 7 8
 0.000 2.049 1.980 1.885 1.854 1.799 1.755 1.719

Accuracy:
CORRELATION: 0.994
MEAN DEVIATION: 0.041
Trial 1 2 3 4 5 6 7 8
 0.000 0.418 0.650 0.785 0.882 0.918 0.935 0.975

When it is run with production compilation enabled using a value of t for :epl (which is
how it is set in the given model file) the results look like this:

Latency:
CORRELATION: 0.992
MEAN DEVIATION: 0.083
Trial 1 2 3 4 5 6 7 8
 0.000 2.046 1.958 1.792 1.676 1.628 1.598 1.538

Accuracy:
CORRELATION: 0.995
MEAN DEVIATION: 0.036
Trial 1 2 3 4 5 6 7 8
 0.000 0.428 0.660 0.790 0.885 0.920 0.948 0.972

As can be seen, whether production compilation is off or on has relatively little effect on
the accuracy of recall but turning it on greatly increases the speed-up over trials in the
recall time. This is because we are eliminating productions and retrievals as new rules
are composed.

If you set the :pct (production compilation trace) parameter to t (and you will also need
to set :v to t) you will see the system print out the new productions as they are composed
or the reason why two productions could not be composed. For instance, the following is
a fragment of the trace when we run one paired-associate for 1 trial with production
compilation turned on.

 0.400 PROCEDURAL PRODUCTION-FIRED RETRIEVE-OPERATOR
Production Compilation process started for RETRIEVE-OPERATOR
 Production ENCODE-ARG1 and RETRIEVE-OPERATOR are being composed.
 New production:

(P PRODUCTION1
 "ENCODE-ARG1 & RETRIEVE-OPERATOR"
 =GOAL>
 STEP ATTENDING
 STATE =STATE

10

ACT-R Tutorial 10-Dec-19 Unit Seven

 =IMAGINAL>
 ARG1 FILL
 =VISUAL>
 TEXT T
 VALUE =VAL
 ?IMAGINAL>
 STATE FREE
 ==>
 =GOAL>
 STEP RETRIEVING-OPERATOR
 +RETRIEVAL>
 PRE =STATE
 *IMAGINAL>
 ARG1 =VAL
)
Parameters for production PRODUCTION1:
 :utility NIL
 :u 0.000
 :at 0.050
 :reward NIL
 :fixed-utility NIL

The production that is learned, production1, is a composition of these two productions:

(p encode-arg1
 =goal>
 isa task
 step attending
 =visual>
 isa text
 value =val
 =imaginal>
 isa args
 arg1 fill
 ?imaginal>
 state free
 ==>
 *imaginal>
 arg1 =val
 =goal>
 step ready)

(p retrieve-operator
 =goal>
 isa task
 state =state
 step ready
 ==>
 +retrieval>
 isa operator
 pre =state

11

ACT-R Tutorial 10-Dec-19 Unit Seven

 =goal>
 step retrieving-operator)

The first production, encode-arg1, encodes the stimulus, and sets the goal to retrieve the
next operator. This is followed by retrieve-operator, which makes the retrieval request.
The composed production is particularly straight forward. Its condition is just the
condition of the first production plus the check for the state slot in the goal of the second
production, and its action combines the actions of the two.

It is worth understanding how the parameters of this new production are calculated. The
value of the utility learning rate, α, in the model is 0.2 (set with the :alpha parameter)
which is also the default value for :alpha. When the production is first created, its utility
is set to zero (the default for new productions). The utilities of the initial rules in the
system are all set to 5 (using the :iu parameter which sets the starting utility for all of the
initial productions), so a value of zero means that it will almost certainly lose the
competition with the parent production the next time it might be applicable. However,
each time it is recreated, it receives a reward which is the same as the utility of the first
parent production. Suppose that when the parents fire in sequence again and this same
production is recreated, the first parent still has a utility of 5. The utility of the new rule is
then updated:

1
)05(2.0

)]1()([)1()(

=
−+=

−−+−= niUniRniUniU α

A utility of 1 is still not sufficient to be selected in competition with a production of
utility 5 given the noise setting of .4 in this model. Thus it will need to be recreated a
number of times before it will have a significant chance of being chosen in conflict
resolution. The speed of this learning is determined by the setting of α. If it is set to 1,
productions will typically get very good values immediately and likely be tried on the
first opportunity. If you do that and run several trials of a single item you will discover in
just a few trials it is selecting and firing newly learned productions which are then also
going through production compilation:

 25.486 PROCEDURAL PRODUCTION-FIRED PRODUCTION8
Production Compilation process started for PRODUCTION8
 Production RETRIEVE-OPERATOR and PRODUCTION8 are being composed.
 New production:

(P PRODUCTION29
 "RETRIEVE-OPERATOR & PRODUCTION8 - OP6"
 =GOAL>
 STATE NEW-TRIAL
 STEP READY
 ==>

12

ACT-R Tutorial 10-Dec-19 Unit Seven

 =GOAL>
 STEP RETRIEVING-OPERATOR
 +RETRIEVAL>
 PRE START
 +GOAL>
 STATE START
 STEP RETRIEVING-OPERATOR
)

After just a couple more trials we will start to find productions that are the composition of
multiple previously composed productions and it will soon end up with a production like
this:

(P PRODUCTION81
 "PRODUCTION58 & PRODUCTION49 - OP3"
 =GOAL>
 STATE STIMULUS-READ
 STEP ATTENDING
 =IMAGINAL>
 ARG1 FILL
 =VISUAL>
 TEXT T
 VALUE "zinc"
 ?IMAGINAL>
 STATE FREE
 ?MANUAL>
 STATE FREE
 ==>
 =GOAL>
 STATE WAIT
 STEP RETRIEVING-OPERATOR
 +RETRIEVAL>
 PRE WAIT
 +MANUAL>
 CMD PRESS-KEY
 KEY "9"
 *IMAGINAL>
 ARG1 "zinc"
 ARG2 "9"
)

Which responds to seeing “zinc” on the screen by placing both “zinc” and “9” in the
imaginal buffer chunk’s slots and pressing the “9” key.

13

ACT-R Tutorial 10-Dec-19 Unit Seven

7.5 Assignment

Your assignment is to make a model that learns the past tense of verbs in English. The
learning process of the English past tense is characterized by the so-called U-shaped
learning with irregular verbs. That is, at a certain age children inflect irregular verbs like
“to break” correctly, so they say “broke” if they want to use the past tense. But at a later
age, they overgeneralize, and start saying “breaked”, and then at an even later stage they
again inflect irregular verbs correctly. Some people, such as Pinker and Marcus, interpret
this as evidence that a rule is learned to create a regular past tense (add “ed” to the stem).
According to Pinker and Marcus, after this rule has been learned, it is overgeneralized so
that it will also produce regularized versions of irregular verbs.

The start of a model to learn the past tense of verbs is included with the unit in the past-
tense-model.lisp file. The assignment is to make the model learn a production which
represents the regular rule for making the past tense and also specific productions for
producing the past tense of each verb. So eventually it should learn productions which
act essentially like this:

IF the goal is to make the past tense of a verb

THEN copy that verb and add –ed

IF the goal is to make the past tense of the verb have

THEN the past tense is had

The code that is provided in the past-tense.lisp and past_tense.py files for performing this
task does two things. It adds correct past tenses to declarative memory, reflecting the fact
that a child hears and then encodes correct past tenses from others. It also creates goals
which indicate to the model that it should generate the past tense of a verb found in the
imaginal buffer and then runs the model to do so. The model will be given two correct
past tenses for every one that it must generate.

The past tense of verbs are encoded in chunks using the slots of this chunk-type:

(chunk-type past-tense verb stem suffix)

Where the verb slot holds the base form of the verb and the combination of the stem and
suffix slots forms the past tense, with the value blank in the suffix slot meaning that there
is no suffix to add (which is used instead of not specifying the slot so that one can
distinguish a complete past tense from one that is malformed). Here are examples of
correctly formed past tenses for the irregular verb have and the regular verb use:

14

ACT-R Tutorial 10-Dec-19 Unit Seven

PAST-TENSE1
verb have
stem had
suffix blank

PAST-TENSE234
verb use
stem use
suffix ed

To indicate to the model that it should create a past tense the chunk in the goal buffer will
have a state slot with a value of start and the chunk in the imaginal buffer will contain a
chunk which has a verb slot with the base form of a verb. Here is what those buffers’
contents would look like at the start of a run to form the past tense of the verb work:
GOAL: STARTING-GOAL-0 [STARTING-GOAL]
STARTING-GOAL-0
 STATE START

IMAGINAL: CHUNK2-0 [CHUNK2]
CHUNK2-0
 VERB WORK

The model then has to fill in the stem and suffix slots of the chunk in the imaginal buffer
to indicate the past tense form of the verb and set the state slot of the chunk in the goal
buffer to done to indicate that it is finished. Once the state slot is set to done, one of the
three productions provided with the model should fire to simulate the final encoding and
“use” of the word, each of which has a different reward. There are three possible cases:

 An irregular inflection, this is when there is a value in the stem slot and the suffix
is marked explicitly as blank. This use has the highest reward, because irregular
verbs tend to be short.

 A regular inflection, in which the stem slot is the same as the verb slot and the
suffix slot has a value which is not blank. This has a slightly lower reward.

 Non-inflected when neither the stem nor suffix slots are set in the chunk. The
non-inflection case applies when the model cannot come up with a past tense at
all, either because it has no example to retrieve, no production to create it, or no
strategy to come up with anything based on a retrieved past tense. The non-
inflection situation receives the lowest reward because the past tense would have
to be indicated by some other method, for example by adding “yesterday” or some
other explicit reference to time.

An important thing to notice is that all three of those situations receive a reward. The
model receives no feedback as to whether the past tenses it produces are correct – any
validly formed result is considered a success and rewarded. The only feedback it

15

ACT-R Tutorial 10-Dec-19 Unit Seven

receives with respect to the correct form of past tenses is the correctly constructed verbs
that it hears between the attempts to generate its own.

You can run the model with the past-tense-trials function in Lisp or the trials function
in the past_tense module for Python. It takes as an argument the number of past tenses
you want the model to generate:

? (past-tense-trials 5000)

>>> past_tense.trials(5000)

As optional parameters you can specify whether or not you want the model to continue
from where it left off or to start again from the beginning, and also whether the ACT-R
trace should be shown while it runs. The defaults are to start from the beginning and not
show the trace. To change that for each of the options you need to specify a true value.
Therefore these calls would run 100 more trials continuing from where it left off and
displaying the trace:

? (past-tense-trials 100 t t)

>>> past_tense.trials(100,True,True)

As the model runs, the simulation will print out lines containing four numbers which
represent the results of the last 100 verbs generated by the model. The first number is the
proportion correct of irregular verbs. The second number is the proportion of irregular
verbs that are inflected regularly. An increase in this number suggests that a regular rule
is active i.e. irregular verbs are having “ed” added to them. The third number is the
proportion of irregular verbs that are not inflected at all. The fourth number is the
proportion of inflected irregular verbs that are inflected correctly (the non-inflected verbs
are not counted for this measure). It is in this last column that you should see a U-shape.

It usually requires more than 5000 trials to see the effect and often 15000~20000 trials
are necessary before the entire U-shape in the learning forms. After the model has been
run for at least 1000 trials, the past-tense-results function in Lisp or the results function
in the past_tense module for Python will print out the results aggregated over 1000 trials
at a time (the 100 trial summaries displayed while the model runs are usually too variable
to easily discern the U-shape but they do allow you to see that the model is still running
and roughly in what direction the results are going). By default the result of the correctly
inflected irregular verbs will also be graphed to make it easier to see the U-shape, but that
can be suppressed by providing a null value for the optional parameter (nil/None) to the
reporting function if you just want to see the numbers. What you are looking for from the
model is a graph that looks something like this:

16

ACT-R Tutorial 10-Dec-19 Unit Seven

It starts out with a high percentage correct (nearly 100%), dips down, and then shows an
increasing trend as it continues (this simplified version of the task will probably not get
all the way back to 100% correct). That is the U-shaped learning result. An important
thing to look at with the output in the graph is the vertical scale. The graph will adjust
the y-intercept to display all of the results and the model should always be getting most of
the trials where it does inflect the verb correct (if it’s ever dropping below .75 there’s
probably a problem with the model).

This model differs from other models in the tutorial in that it does not model a particular
experiment, but rather some long term development. This has a couple of consequences
for the model. One of those is that using the perceptual and motor modules does not
contribute much to the objective of the model. Thus things like actually hearing the past
tenses and the generation of the word as speech are not modeled for the purpose of this
exercise. They could be modeled, but it is not what the model and exercise are about and
would really only serve to make things more complicated with little to no benefit.
Another consequence of the nature of this task is a practical one with how long it takes to
run the model to see those long term results. Because of that, we are not averaging

17

ACT-R Tutorial 10-Dec-19 Unit Seven

multiple runs of the model together to report the results because the learning trajectory
can vary significantly between trials and it would take a very large number of runs to
reliably see the U-shape in the average results which would take a much longer time to
run. Also contributing to that variability is that we are only using a very small
vocabulary (though still maintaining the appropriate frequency of irregular and regular
verb usage) again to keep the time needed to run it reasonable for an exercise, which
leads to less data for averaging.

For reference, here are some more images of the results for the same model as shown
above:

In fact, even a “correct” model may sometimes fail to show the U-shape, for example
never dipping down because it learns the right inflections before it learns the regular rule
or never really coming back up after dipping down because the regular rule is reinforce
too much. However, on most runs (90% or more) a good model should show the U-shape
in some form.

Having that sort of variability between runs is not entirely bad, as children also differ
quite a bit with respect to U-shaped learning. However that does make comparing this
model to data difficult, and hard data on the phenomenon are also scarce, although the
phenomenon of the U-shape is reported often. For reference, data from a few children
that have been followed in a longitudinal study on the topic is included with the unit in a
spreadsheet (data.xls) that shows some results for comparison.

In terms of the assignment, the objective is to write a model that learns the appropriate
productions for producing past tenses. There is no parameter adjustment or data fitting
required. All one needs to do is write productions which can generate past tenses based
on retrieving previous past tenses, and which through production compilation will over
time result in new productions which directly apply the regular rule or produce the
specific past tense.

18

ACT-R Tutorial 10-Dec-19 Unit Seven

The key to a successful model is to implement two different retrieval strategies in the
model. The model can either try to remember the past tense for the specific verb or the
model can try to generate a past tense based on retrieving any past-tense. These should
be competing strategies, and only one applied on any given attempt. If the chosen
strategy fails to produce a result the model should “give up” and not inflect the verb. The
reason for doing that is that language generation is a rapid process and not something for
which a lot of time per word can be allocated.

Additionally, the productions you write should have no explicit reference to either of
the suffixes, ed or blank, because that is what the model is to eventually learn, i.e., you
do not write a production that says add ed, but through the production compilation
mechanism such a production is learned. Although the experiment code is only outfitted
with a limited set of words, the frequency with which the words are presented to the
model is in accordance with the frequency they appear in real life, and because of that, if
your model learns appropriate productions it should generate the U-shaped learning
automatically (although it won’t always look the same on every run as seen above).
Unlike the other models in the tutorial, for this task there is a fairly small set of “good”
solutions which will result in the generation of the U-shaped learning because it is
actually the model’s starting productions which get composed to result in the learning of
specific productions over time, and those starting productions need to allow the
production compositions to happen which restricts the types of things that they can do.

There are two important things to make sure to address when writing your model with
respect to performing the task. It must set the state slot of the chunk in the goal buffer to
done on each trial, and the chunk in the imaginal buffer must have one of the forms
described above: either a chunk with values in each of the verb, stem and suffix slots or a
chunk with only a value in the verb slot. Those conditions are necessary so that one of
the provided productions will fire and propagate a reward. If it does not do so, then there
will be no reward propagated to promote the utility learning for that trial and the reward
from a later trial will be propagated back to the productions which fired on the trial which
didn’t get a reward. That later reward will be very negative because there are 200
seconds between trials, and that will make it very difficult, if not impossible, to produce
the U-shaped learning. Essentially this represents the model saying something every time
it tries to produce a past-tense while speaking.

One final thing to note is that when the model doesn’t give up it should produce a
reasonable answer. One aspect of being reasonable is that the resulting chunk in the
imaginal buffer should have the same value in the verb slot that it started with.
Similarly, if there is a value in the stem slot, then it should be either that verb or the
correct irregular form of that verb. For example, if it starts with “have” in the verb slot
acceptable values would be “have” or “had” in the stem slot, but if it starts with a regular
verb, like “use” the only acceptable value for the stem would be “use” because it
shouldn’t be trying to create some irregular form for a regular verb. If the model does
produce an unreasonable result there will be a warning printed showing the starting verb
and the result which the model created like this:

#|Warning: Incorrectly formed verb. Presented CALL and produced VERB GET STEM
GOT SUFFIX BLANK. |#

19

ACT-R Tutorial 10-Dec-19 Unit Seven

That indicates the model was asked to produce the past tense for “call” and responded
with the correct past tense for the different verb “get”. There will also be a warning
printed if the model does not receive a reward on any trial. Your model should not
produce any warnings when it runs.

References

Marcus, G. F., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J., & Xu, F. (1992).
Overregularization in Language Acquisition. Monographs of the Society for Research in
Child Development,57(4).

20

	Unit 7: Production Rule Learning
	7.1 The Basic Idea
	7.2 Forming a New Production
	7.2.1 Motor Style Buffers
	7.2.2 Perceptual Style Buffers
	7.2.3 Retrieval Style Buffer
	7.2.4 Goal and Imaginal Style Buffers
	7.2.4.a First production does not make a request
	7.2.4.b First production makes a request
	7.2.4.c Difference between goal and imaginal

	7.3 Utility of newly created productions
	7.4 Learning from Instruction
	7.5 Assignment
	References

