
ACT-R Tutorial 10-Dec-19 Unit Eight

Unit 8: Advanced Production Techniques

In  this  unit  we  will  describe  two  additional  mechanisms  which  can  be  used  in  the 
procedural system of ACT-R. They are called procedural partial matching and dynamic 
pattern matching.  These capabilities allow for a lot more flexibility in the procedural 
system, and they can make it easier to create models which are able to work in situations 
where all of the details of the task are not know in advance and thus cannot be explicitly 
encoded within the model.  

8.1 Procedural partial matching

Procedural partial matching is very similar to the partial matching of declarative memory 
as was described in unit 5 of the tutorial.  When procedural partial matching is enabled by 
setting the :ppm parameter to a number, a production may be selected to fire even when 
its conditions do not perfectly match the current buffer contents.  This mechanism applies 
to all productions being tested and it modifies the conflict resolution process used when 
multiple  productions match under this  looser definition of matching.   Other than that 
however it does not change any of the other operations of the procedural system and all 
other procedural functionality is as described in the previous units.

8.1.1 Condition testing with procedural partial matching

When procedural partial matching is enabled the slot tests for the buffer chunks’ values 
are slightly relaxed, but most of the conditions in a production are still tested explicitly. 
The following conditions must still be true for the production to match: if the production 
tests a buffer then that buffer must contain a chunk, all queries must be true as specified, 
all inequality tests on slots (negations, less-than, and greater-than comparisons) must be 
true, and all special conditions specified with eval or bind operators must be true.  The 
only tests which do not have to be true are equality tests for the slots of the chunk in a  
buffer i.e. tests that specify a specific value for a slot or tests with variables which are 
comparing  two  or  more  slot  values.   If  all  of  the  equality  tests  are  true,  then  the 
production matches just as it would without procedural partial matching enabled.  If some 
of the tests are not true the production may still be considered a match under procedural 
partial matching.

If a value specified for a slot in the production does not match the current value of that 
slot  for the chunk in the buffer,  then in  order for it  to  be considered a  match under 
procedural partial matching the mismatching values must be similar.  Similarity here is 
defined in the same way that it is for declarative memory.  Thus they must be chunks for 
which a similarity value has been specified through the set-similarities command or the 
modeler must provide a similarity hook function which specifies a similarity between the 
items whether or not they are chunks as was done for numbers in the unit 5 onehit game. 
The  only  difference  between  the  procedural  partial  matching  and  declarative  partial 
matching is that for procedural partial matching items are only considered to be similar if 

1



ACT-R Tutorial 10-Dec-19 Unit Eight

they  have  a  similarity  value  which  is  greater  than  the  current  maximum  similarity 
difference (as set with the :md parameter).  That additional constraint on the similarities 
is  done  for  practical  reasons  because  by default,  all  chunks  have  a  similarity  of  the 
maximum  difference  to  all  other  chunks.   Without  that  constraint,  any  chunk  could 
potentially be a partial match to any other in the production matching.  By disallowing 
procedural partial matching from using the default similarity difference value it allows 
the modeler to control which items are allowed to be partial matched in productions.  If 
one wants all  chunks to potentially match to any other then a simple similarity hook 
function can be defined that  returns a value greater  than :md for all  chunk to chunk 
similarities.

8.1.2 Conflict resolution with procedural partial matching

If only one production matches then it is selected and fired.  When there is more than one 
production which matches (including partially matched productions) the production with 
the highest utility is the one selected and fired as described before.  The difference when 
procedural partial matching is enabled is that productions which are not a perfect match 
receive a reduction to their  utility.   The equation for the utility of production  i when 
procedural partial matching is enabled is:

( ) ( ) ),(* jj
j

ii vdsimilarityppmtUtUtility ∑++= ε

Ui(t): Production i’s current true utility value.

ε: The noise which may be added to the utility.

j: The set of slots for which production i had a partially matched value.

ppm: The value of the :ppm parameter.

dj : The desired value for slot j in production i.

vj:  The actual value in slot j of the chunk in the buffer.

A production which has one or more partially matched slot tests has its utility decreased 
by the similarity of each mismatch multiplied by the :ppm setting.  That adjusted utility 
value is only used for the purposes of conflict resolution.  It does not affect the Ui(t) value 
used  in  the  utility  learning  equation  or  the  utility  values  used  during  production 
compilation learning.

8.1.3 Simple procedural partial matching model

2



ACT-R Tutorial 10-Dec-19 Unit Eight

The simple-ppm-model included with the tutorial unit shows a very simple example of 
procedural partial matching.  It does not have a corresponding experiment and everything 
there except  the :ppm and :cst  parameters  has been described in previous units,  so it 
should be easy to understand.  The goal buffer starts with a chunk which looks like this:

TEST0-0
   VALUE  SMALL

and there are three productions which simply test the value slot of the chunk in the goal 
buffer and then output the value from that slot:

(p small             (p medium            (p large
   =goal>               =goal>               =goal>
     isa test             isa test             isa test
     value small          value medium         value large
     value =val           value =val           value =val
   ==>                  ==>                  ==>
    !output! =val       !output! =val        !output! =val
    -goal>)             -goal>)              -goal>)

The starting model has procedural partial matching turned off.  If you load that model and 
run it you will see a trace like this:
      0.000   PROCEDURAL             CONFLICT-RESOLUTION
(P SMALL
   =GOAL>
       VALUE SMALL
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production SMALL:
 :UTILITY  0.000
 :U  0.000
     0.000   PROCEDURAL             PRODUCTION-SELECTED SMALL
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL
     0.050   PROCEDURAL             PRODUCTION-FIRED SMALL
SMALL
     0.050   PROCEDURAL             CLEAR-BUFFER GOAL
     0.050   PROCEDURAL             CONFLICT-RESOLUTION
     0.050   ------                 Stopped because no events left to process

As expected the production small is selected and fired.  Before describing the results with 
procedural partial matching enabled the additional output in the trace will be described.

3



ACT-R Tutorial 10-Dec-19 Unit Eight

8.1.3.1 The conflict set trace parameter

The :cst parameter which is set to t in the model is the conflict set trace parameter.  It is a 
model debugging aid similar to the activation trace parameter used with the declarative 
memory module.  If it is set to t then during every conflict resolution event it will display 
the  instantiation  of  each  production  which  matches  along  with  its  current  utility 
parameters.  That set of matching productions is referred to as the conflict set.  In this  
case that is only the production small, and because utility learning is not turned on and 
there is no utility noise value set in the model that production has a utility and U(t) of 0:

(P SMALL
   =GOAL>
       VALUE SMALL
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production SMALL:
 :UTILITY  0.000
 :U  0.000

8.1.3.2 Turning on ppm

If  you  change  the  model  to  enable  procedural  partial  matching  by  setting  the  :ppm 
parameter to 1 (you can make that change in the file and reload it or reset the model and 
then make the change interactively) then run it you will see a trace like this:

     0.000   PROCEDURAL             CONFLICT-RESOLUTION
(P SMALL
   =GOAL>
       VALUE SMALL
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production SMALL:
 :UTILITY  0.000
 :U  0.000
(P MEDIUM
   =GOAL>
       VALUE [MEDIUM, SMALL, -0.5]
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production MEDIUM:
 :UTILITY -0.500
 :U  0.000
     0.000   PROCEDURAL             PRODUCTION-SELECTED SMALL
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL
     0.050   PROCEDURAL             PRODUCTION-FIRED SMALL
SMALL

4



ACT-R Tutorial 10-Dec-19 Unit Eight

     0.050   PROCEDURAL             CLEAR-BUFFER GOAL
     0.050   PROCEDURAL             CONFLICT-RESOLUTION
     0.050   ------                 Stopped because no events left to process

Again we see the production small  being selected and fired, but now we see that the 
production  medium was  also a  member  of  the  conflict  set.   For  a  partially  matched 
production the instantiation of the production will show additional information about the 
partial match.  Here is the instantiation for the production medium from the trace:

(P MEDIUM
   =GOAL>
       VALUE [MEDIUM, SMALL, -0.5]
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)

In the comparison for the value slot, instead of just seeing medium as was specified in the 
production, we see a set of items in brackets (the red text above).  That indicates that the 
test was not a perfect one.  The first item in the brackets was the value specified in the 
production.  The second item is the buffer chunk’s value for that slot, and the third item is 
the similarity between those items.  

Another  important  thing  to  notice  is  that  the  binding  for  the  variable  =val  in  that 
production is small (the blue text above).  That is because that is the actual content of that 
slot in the chunk in the buffer -- the variable bindings come from the slots of the buffer’s 
chunk and not values specified in the production. 

After the instantiation of medium we see its current utility values:

Parameters for production MEDIUM:
 :UTILITY -0.500
 :U  0.000

The U(t) value for medium is 0 just as it is for small.  The utility used for deciding which 
production to fire however is not 0 because it was not a perfect match.  The similarity 
between small and medium is set to -0.5 in the model and the :ppm value was set to 1.  
So, the utility of medium is: 0 + 1 * (-0.5) = -0.5.

8.1.3.3 The large production

Why isn’t the production large also considered in the conflict set as a partial match?  The 
reason is because there is no similarity set between the chunks small and large in the 
model.  Thus, those chunks have the maximum similarity difference value and a test for 
the chunk large will not be considered a partial match to the chunk small in a production.

5



ACT-R Tutorial 10-Dec-19 Unit Eight

8.1.3.4 Adding noise

If  the  :egs  parameter  is  set  to  a  value  greater  than  0  then  occasionally  the  medium 
production will be selected over the small production because of the noise added to the 
utilities.  With the :egs value set to 1 we should see medium chosen almost 40% of the 
time and here is a run with medium being selected:

 
    0.000   PROCEDURAL             CONFLICT-RESOLUTION
(P SMALL
   =GOAL>
       VALUE SMALL
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production SMALL:
 :UTILITY -0.012
 :U  0.000
(P MEDIUM
   =GOAL>
       VALUE [MEDIUM, SMALL, -0.5]
       VALUE SMALL
 ==>
   !OUTPUT! SMALL
   -GOAL>
)
Parameters for production MEDIUM:
 :UTILITY  1.418
 :U  0.000
     0.000   PROCEDURAL             PRODUCTION-SELECTED MEDIUM
     0.000   PROCEDURAL             BUFFER-READ-ACTION GOAL
     0.050   PROCEDURAL             PRODUCTION-FIRED MEDIUM
SMALL
     0.050   PROCEDURAL             CLEAR-BUFFER GOAL
     0.050   PROCEDURAL             CONFLICT-RESOLUTION
     0.050   ------                 Stopped because no events left to process

8.1.4 Building Sticks Task alternate model

To see procedural partial  matching used in an actual task this unit  contains a slightly 
different  model  of  the  Building  Sticks  Task  from unit  6  of  the  tutorial.   The  main 
difference between this model and the one presented in unit 6 is that instead of having 
separate  productions  to  force  and decide  for  both  the  over  and under  strategies,  this 
model only has a decide production for each strategy.  

There are several minor differences between this model and the previous version with 
respect to how the encoding is performed to enable the simpler test, but we will only be 
looking in detail at the two major differences between them.  Those differences are in 

6



ACT-R Tutorial 10-Dec-19 Unit Eight

how the strategy is initially chosen and how the model computes the difference between 
the current stick’s length and the goal stick’s length.

The  model  is  in  the  bst-ppm-model.lisp  file  with  the  unit  8  materials,  and  the 
corresponding experiment code is found in the bst-ppm.lisp and bst_ppm.py files (which 
will load the model automatically).  The model can be run through the experiment using 
the bst-ppm-experiment function in Lisp and the experiment function from the bst_ppm 
module in Python.

8.1.4.1 Strategy choice

In  this  model  these  are  the  productions  which  decide  between  the  overshoot  and 
undershoot strategies:

(p decide-over
    =goal>
      isa   try-strategy
      state choose-strategy
     - strategy   over
    =imaginal>
      isa         encoding
      goal-length =d
      b-len       =d
   ==>
    =imaginal>
    =goal>
      state   prepare-mouse
      strategy over
    +visual-location>
      isa   visual-location
      kind     oval
      value    "b")

(p decide-under
    =goal>
      isa   try-strategy
      state choose-strategy
    -  strategy   under
    =imaginal>
      isa         encoding
      goal-length =d
      c-len       =d
   ==>
    =imaginal>
    =goal>
      state   prepare-mouse
      strategy under
    +visual-location>
      isa   visual-location
      kind     oval
      value    "c")

They are essentially a combination of the force and decide productions from the previous 
model for each strategy.  Because they test the current strategy value they still operate as 
a forcing production when the model fails with its first choice and has to choose the other 
strategy, but when there is no current strategy either one can match and the utilities will 
determine which one is selected.

Procedural partial matching is enabled in this model and a similarity between numbers is 
provided using the sim-hook as it was for the 1hit blackjack model using these parameter 
settings:

  (sgp :ppm 40 :sim-hook "bst-number-sims")

The :ppm value of 40 was estimated to produce a good fit to the data.  The similarities 
between  numbers  (the  line  lengths  in  pixels)  are  computed  by  the  bst-number-sims 

7



ACT-R Tutorial 10-Dec-19 Unit Eight

command which is  provided in  the experiment  file  and are set  using a  simple  linear 
function to scale the possible differences into the default similarity range of 0 to -1:

300

)(
),(

baabs
baSimilarity

−−=

Unlike the previous model of this task, this one does not need to compute the difference 
between the goal stick’s length and the b and c sticks’ lengths explicitly to determine 
whether overshoot or undershoot should be used.  Now that happens as a result of the 
partial  matching in the  imaginal buffer test of those productions.  Whichever stick is 
closer to the goal stick’s length will bias the utility toward that choice.

The initial utilities of the decide-over and decide-under productions are set at 10 in the 
model.  Given that, we can look at how utility is determined when those productions are 
competing on the first problem which has stick lengths of a=15, b=250, c=55, and a goal 
of 125.  The chunk in the imaginal buffer at that time will look like this:

CHUNK0-0
   A-LOC  LINE-LOCATION0-0
   B-LOC  LINE-LOCATION1-0
   C-LOC  LINE-LOCATION2-0
   GOAL-LOC  LINE-LOCATION3-0
   GOAL-LENGTH  125
   B-LEN  250
   C-LEN  55

The length of the goal, b, and c sticks are the important tests for the decide productions in 
the imaginal buffer tests:

(p decide-over
...
    =imaginal>
      isa         encoding
      goal-length =d
      b-len       =d
   ==> ...)

(p decide-under
...
    =imaginal>
      isa         encoding
      goal-length =d

8



ACT-R Tutorial 10-Dec-19 Unit Eight

      c-len       =d
==> ...)

Each production is checking to see if the desired stick and the goal stick are the same 
length, and the procedural partial matching will adjust the utilities of those productions 
based on the similarity between the compared sticks.  Here are the instantiations of those 
productions  in  the  conflict  set  trace  showing  the  similarities  as  computed  from the 
similarity function:

(P DECIDE-OVER
   =GOAL>
       STATE CHOOSE-STRATEGY
    -  STRATEGY OVER
   =IMAGINAL>
       GOAL-LENGTH 125
       B-LEN [125, 250, -0.41666666]
 ==>
   =IMAGINAL>
   =GOAL>
       STATE PREPARE-MOUSE
       STRATEGY OVER
   +VISUAL-LOCATION>
       KIND OVAL
       VALUE "b"
)

(P DECIDE-UNDER
   =GOAL>
       STATE CHOOSE-STRATEGY
    -  STRATEGY UNDER
   =IMAGINAL>
       GOAL-LENGTH 125
       C-LEN [125, 55, -0.23333333]
 ==>
   =IMAGINAL>
   =GOAL>
       STATE PREPARE-MOUSE
       STRATEGY UNDER
   +VISUAL-LOCATION>
       KIND OVAL
       VALUE "c"
)

The  effective  utility  of  decide-over  is  -6.666666  (10  +  40  *  -0.41666666)  and  the 
effective utility of decide-under is 0.666667 (10 + 40 * -0.23333333).  Knowing that the 
noise for utilities is set at 3 in the model we can compute the probabilities of choosing 
over and under on the initial trial using the equation presented in unit 6:

∑
=

j

sU

sU

j

i

e

e
iobability

2/

2/

)(Pr

15.

)(Pr 24.4/666.24.4/666.6

24.4/666.6

≈
+

= −

−

ee

e
overobability

85.

)(Pr 24.4/666.24.4/666.6

24.4/666.0

≈
+

= − ee

e
underobability

Thus, the model will pick undershoot about 85% of the time for the first problem.

9



ACT-R Tutorial 10-Dec-19 Unit Eight

As in the unit  6 model  of  the task,   this  model   is  also learning utilities  based on the 
rewards   it   gets.     So,   the  base  utility   values  of   the   strategies  will   be   adjusted   as   it  
progresses.   Here are the results from running the unit 6 model of the task showing the 
average learned utility values for the four productions it needs to make the decision:

CORRELATION:  0.803
MEAN DEVIATION: 17.129

Trial 1    2    3    4    5    6    7    8    9   10   11   12   13   14   15 
     23.0 60.0 59.0 70.0 91.0 42.0 80.0 86.0 59.0 34.0 33.0 22.0 54.0 72.0 56.0

DECIDE-OVER : 13.1506
DECIDE-UNDER: 11.1510
FORCE-OVER  : 12.1525
FORCE-UNDER : 6.5943

Here are the results of running this model of the task:
CORRELATION:  0.851
MEAN DEVIATION: 14.839

Trial 1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   
     16.0 69.0 49.0 74.0 89.0 31.0 67.0 93.0 66.0 33.0 31.0 23.0 57.0 64.0 43.0

DECIDE-OVER : 11.7534
DECIDE-UNDER: 6.9756

We see a similar shift in the utilities with over gaining utility and under losing utility and 
overall this model produces a slightly better fit to the data.

8.1.4.2 Attributing actions to the imaginal module

Before moving on to the other new procedural mechanism for this unit there is one other 
new capability to look at in this Building Sticks model.  In the previous model of the task 
the productions computed the difference between the current stick length and the goal 
stick length to decide whether to select stick a or stick c for each of the actions after the 
strategy choice had been made using a !bind! action in the production to do the math and 
then place that value into a slot of the imaginal buffer:

(p calculate-difference
   =goal>
      isa      try-strategy
      state    calculate-difference
   =imaginal>
      isa      encoding
      length   =current-len
   =visual>
      isa      line
      width    =goal-len
  ==>

10



ACT-R Tutorial 10-Dec-19 Unit Eight

   !bind! =val (abs (- =current-len =goal-len))
   =imaginal>
      length   =val
   =goal>
      state    consider-next)

In many models abstractions like that are easy to justify and do not cause any issues for 
data comparison.  However, if one is interested in more low-level details, often when 
comparing  model  data  to  human  data  collected  from  fMRI  or  EEG  studies,  then 
accounting for the timing of such actions and attributing them to an appropriate module 
can be important.  In the case of the imaginal module, there is a built in mechanism that 
allows the modeler to assign user defined functionality to the imaginal module and this 
version of the Building Sticks task does so instead of using a !bind! action for computing 
the difference.  The details of how that is done are in the code text for this unit.

8.2 Dynamic Pattern Matching

Dynamic pattern matching is a powerful mechanism which allows the model to test and 
extend its representations based on the current context without the specific information 
having to be explicitly encoded into the model.   It is particularly important  for tasks 
where instruction or example  following are involved,  but can also be useful in other 
situations where flexibility or context dependence are necessary.

8.2.1 Basic Operation

The distinguishing feature between dynamic pattern matching and the pattern matching 
which has been used so far in the tutorial is that with dynamic pattern matching one can 
use variables to specify the slots in the conditions and actions of the productions.  In fact, 
dynamic  pattern  matching  is  really  part  of  the  normal  pattern  matching  process  for 
productions and does not require  any changes to enable it.   To demonstrate  dynamic 
pattern matching we will be using a very simple model found in the “simple-dynamic-
model.lisp” file.  It has three productions which demonstrate the typical dynamic uses, 
and it is a very simplified version of something that is often done in a model that is  
following a set of declarative instructions and updating a chunk in the  imaginal buffer 
based on information it retrieves from declarative memory.  Because all the components 
of this model are known in advance it is not actually necessary to use dynamic pattern 
matching, but that should make it easier to understand since it can be compared to the 
static productions which would perform the same operations.

8.2.2 Arbitrary slots in conditions

11



ACT-R Tutorial 10-Dec-19 Unit Eight

The first thing that dynamic pattern matching allows is the ability to test arbitrary slots in 
the conditions of a production.  The conditions of the productions start and retrieve-first-
step from the example model show this:

(p start
     =goal>
       isa      fact
       context  =context
       =context =x
     ?imaginal>
       state    free
       buffer   empty
    ==>
     ...)
  

  (p retrieve-first-step
     =goal>
       isa     fact
       context =slot
       data    =x
     =imaginal>
       isa     result
       data1   =x
     =retrieval>
       isa     step
       =slot   =target
       step    first
    ==>
    ...)

The  slot  tests  in  red  above are  instances  of  dynamic  pattern  matching.   By using  a 
variable to name a slot in a condition, that test now depends on the contents of a buffer at 
the time of the test instead of specifying the slot name in advance.  That means that the 
same production could test different slots based on the current context.

First we will look at the production start.  The only thing different in that production 
relative to those seen previously is the last test in the goal buffer’s condition:

     =goal>
       isa      fact
       context  =context
       =context =x

12



ACT-R Tutorial 10-Dec-19 Unit Eight

That means that the slot being tested will be the one which corresponds to the binding of 
the  variable  =context.  The variable  =x will  be  bound to the  value of  that  slot.   The 
=context variable is bound to the value of the context slot of the chunk in the goal buffer 
in the same way that you have seen in other productions.  

Before running the model we will look at the contents of the goal buffer and see how this 
will apply for pattern matching.  [If you want, you could run the model using the Stepper 
tool in tutor mode as was used in unit 1 and try to instantiate the production yourself 
before continuing.]

Here is the initial chunk placed in the goal buffer in the model:

FACT0-0
   CONTEXT  DATA
   DATA  10

The goal buffer pattern in the start production binds the =context variable to the value in 
the  context  slot,  which  is  data.   Then  the  slot  which  corresponds  to  the  binding  of 
=context, which is data, is used to bind the variable =x.  Thus, =x gets bound to 10 since 
that is the value of the data slot of the chunk in the goal buffer.  If the binding of =context 
did not correspond to a slot of the chunk in the buffer then the production would not 
match.  The rest of the start production operates just like all the other productions that 
have been seen previously in the tutorial and thus should not need further explanation.

When we run the model with the :cst parameter on to show the instantiation of matching 
productions this is what the start production’s instantiation looks like:

(P START
   =GOAL>
       CONTEXT DATA
       DATA 10
   ?IMAGINAL>
       STATE FREE
       BUFFER EMPTY
 ==>
   =GOAL>
       CONTEXT DESTINATION
   +IMAGINAL>
       DATA1 10
   +RETRIEVAL>
       STEP FIRST
)

That  instantiation looks just  like productions that  you have seen previously since the 
variables have been replaced with their values, but the important thing to remember is 
that the instantiation of a dynamic production may have instantiated variables in both the 
slot value and slot name positions.

The retrieve-first-step production also has a dynamic test in its condition:

  (p retrieve-first-step
     =goal>
       isa     fact

13



ACT-R Tutorial 10-Dec-19 Unit Eight

       context =slot
       data    =x
     =imaginal>
       isa     result
       data1   =x
     =retrieval>
       isa     step
       =slot   =target
       step    first
      ==>
     ...)

In this case, that test involves multiple buffers.  The value for the =slot variable is bound 
from one buffer and used to test a slot in a different buffer.  Again, you may want to step 
through that in tutor mode and instantiate it  yourself  to get a better feel for how this 
works before looking at the instantiation below.

After the start production fires, the goal buffer’s chunk looks like this:

FACT0-0
   CONTEXT  DESTINATION
   DATA  10

Thus, in the goal buffer matching of retrieve-first-step the =slot variable will be bound to 
the value destination and the =x variable will be bound to 10.

The chunk created by the start production in the imaginal buffer looks like this:

CHUNK0-0
   DATA1  10

That matches the pattern for the imaginal buffer in retrieve-first-step since =x is bound to 
10.

The chunk which is in the retrieval buffer at that time looks like this:

A-0
   STEP  FIRST
   DESTINATION  DATA2

The =slot variable is bound to destination from the  goal buffer, and thus the variable 
=target will be bound to the value of the destination slot from the chunk in the retrieval 
buffer, which is data2.  If there was not a slot named destination in the chunk in the 
retrieval buffer then this pattern would not have matched and the production would not 
be selected.  Here is the instantiation of that production from the trace:

14



ACT-R Tutorial 10-Dec-19 Unit Eight

(P RETRIEVE-FIRST-STEP
   =GOAL>
       CONTEXT DESTINATION
       DATA 10
   =IMAGINAL>
       DATA1 10
   =RETRIEVAL>
       DESTINATION DATA2
       STEP FIRST
 ==>
   =GOAL>
       DATA 11
   =IMAGINAL>
       DATA2 10
   +RETRIEVAL>
       STEP SECOND
)

Though not shown in these examples, the dynamic conditions may also be used with any 
of the modifiers for a slot test as well as multiple times within or across buffer conditions. 
Thus, this set of conditions would be valid in a production:
(P EXAMPLE
 =GOAL>
  CONTEXT =CONTEXT
 =IMAGINAL>
  > =MIN-S 0
  =MIN-S =MIN
  > =MAX-S =MIN
  =CONTEXT CURRENT
 =RETRIEVAL>
  - =CONTEXT COMPLETE
  MAX-SLOT =MAX-S
  MIN-SLOT =MIN-S
...)

However, there are some constraints imposed on the use of dynamic conditions and those 
will be discussed in a later section.

8.2.3 Arbitrary slots in actions

The actions of the retrieve-first-step production show how dynamic pattern matching can 
be used to specify an action based on the current context.   In its  modification of the 
imaginal buffer we see this:

  (p retrieve-first-step
    ...
    ==>
     =goal>
       data    11
     =imaginal>
       =target =x
     +retrieval>
       isa     step
       step    second)

15



ACT-R Tutorial 10-Dec-19 Unit Eight

As with the condition, that means that the slot of the chunk in the imaginal buffer that 
will be modified will be the one bound to the variable =target.  From the previous section 
we saw that that was the value data2, and that the =x variable was bound to 10.  Thus this 
action will modify the chunk in the imaginal buffer so that its data2 slot has the value 10.

Here is what the chunk in the imaginal buffer looks like after retrieve-first-step fires.

CHUNK0-0
   DATA1  10
   DATA2  10

A variable may be used to specify a slot in any modification, modification request, or 
request action of a production.  However, because such values are only determined when 
the production actually matches, it is possible that the production may attempt to make a 
modification  or  request  with  a  slot  that  was not  previously defined for  the  indicated 
chunk-type (or any chunk-type if the production does not declare a chunk-type in the 
action).  For the buffer modification actions there is a special mechanism which handles 
that which is described in the next section.  For requests, if a previously unspecified slot 
is used that will usually lead to a warning and the failure to execute the request, but could 
also result  in errors occurring during the run depending on the details  of the module 
which handles the request.   Thus,  if  slots  of requests  are specified dynamically,  care 
should be taken to ensure the productions perform other tests, either in that production, or 
elsewhere in the sequence of productions, to protect against invalid requests.

8.2.4 Extending chunks with new slots

The  final  production  in  the  test  model,  retrieve-second-step,  shows  the  final  new 
capability which dynamic pattern matching allows.  Here is the production:

(p retrieve-second-step
     =goal>
       isa     fact
       context =slot
       data    =x
     =imaginal>
     =retrieval>
       isa     step
       =slot   =target
       step    second
    ==>
     =imaginal>
       =target =x)

The condition of this production is very similar to the retrieve-first-step production, and 
the action of this production is a modification to the chunk in the imaginal buffer which 
looks exactly the same as the one from the retrieve-first-step production.

16



ACT-R Tutorial 10-Dec-19 Unit Eight

The significant difference between retrieve-first-step and retrieve-second-step is not in 
the  specifications  of  the  productions,  but  the  contents  of  the  buffers  when  they  are 
selected.   Retrieve-first-step was described in the previous section, and essentially the 
same matching process holds true for retrieve-second-step.  However, the bindings for the 
variables are now different.  Here are the chunks from the goal and retrieval buffers after 
retrieve-first-step fires which match the retrieve-second-step production:

GOAL: FACT0-0 
FACT0-0
   CONTEXT  DESTINATION
   DATA  11
RETRIEVAL: B-0 [B]
B-0
   STEP  SECOND
   DESTINATION  DATA3

The variable  bindings  from the conditions  of  the retrieve-second-step production  are: 
=slot is bound to destination, =x is bound to 11, and =target is bound to data3.  Given 
those bindings, the instantiation of the action of this production will look like this:

   =imaginal>
      data3 11

While that doesn’t look all that different from the modification performed by the previous 
production the interesting thing to note is that none of the chunk-types specified for this 
model have a slot named data3:

  (chunk-type fact context data)
  (chunk-type step step destination)
  (chunk-type result data1 data2)

As we have seen previously in the tutorial, modifications to a buffer add slots when the 
chunk does not have the slot indicated.  When a dynamically determined modification 
action specifies a slot which does not exist in any of the chunk-types for the model that 
will be indicated in the trace by an extend-buffer-chunk action before the mod-buffer-
chunk action:

 0.350   PROCEDURAL   PRODUCTION-FIRED RETRIEVE-SECOND-STEP 
 0.350   PROCEDURAL   EXTEND-BUFFER-CHUNK IMAGINAL
 0.350   PROCEDURAL   MOD-BUFFER-CHUNK IMAGINAL

Here is the result for the chunk in the imaginal buffer after that occurs:

17



ACT-R Tutorial 10-Dec-19 Unit Eight

CHUNK0-0
   DATA1  10
   DATA2  10
   DATA3  11

This mechanism allows the model to build its chunk representations as needed instead of 
requiring all possible slots be specified up front. 

It is also possible to extend the available slots without dynamic pattern matching in a 
modification action, but such a change will happen as part of the model definition instead 
of at run time and will also generate a warning.  For example, if we were to add this 
production to this model:

(p change-new-slot
   =goal>
  ==>
   =goal>
    new-slot 10)

That will result in this warning when the model is loaded: 

#|Warning: Production CHANGE-NEW-SLOT uses previously undefined slots (NEW-SLOT). |#

Which indicates that a slot which was not specified in the chunk-type definitions is used. 
That will add a slot named new-slot to the chunk in the goal buffer if it does not already 
have one when the production fires, but it does not report the extend-buffer-chunk action 
since the extension of the chunk-types occurred at model loading time.  Such a practice is 
not recommended and all slots specified explicitly in productions should be declared in 
the chunk-type definitions. 

8.2.5 Constraints on dynamic pattern matching

Dynamic pattern matching adds a lot of flexibility to the specification of productions, and 
this flexibility allows for a lot more powerful productions to be created.  However, since 
ACT-R is intended to be a model of human cognition, there are two constraints imposed 
upon how dynamic pattern matching works to maintain the plausibility of the system.

8.2.5.1 No Search

The first constraint on dynamic pattern matching is that it does not require searching to 
find a match.  All productions which use dynamic pattern matching must be specified so 
that  all  variables  are  bound directly  based  on the  contents  of  slots.   The  procedural 
module will not allow the creation of a production which has a pattern like this: 

(p not-allowed
  =goal>

18



ACT-R Tutorial 10-Dec-19 Unit Eight

    isa example
    =some-slot desired-value
 ==>
)

which would require finding a slot based on its value.  If search like that were allowed 
then the matching of a single production would be able to solve NP-hard problems which 
is not a plausible mechanism.

8.2.5.2 One level of indirection

The other  constraint  on dynamic  pattern matching is  that  it  only allows one level  of 
indirection.  All of the variables which are used as slot indicators must be bound to the 
values of slots which are specified as constants.  Thus, one cannot use a dynamically 
matched slot’s value as a slot indicator like this:

(p also-not-allowed
  =goal>
    isa example
    first-slot =s1
    =s1        =next-slot
    =next-slot value
 ==>
 )

Allowing an unbounded level of indirection is not plausible, thus some constraint needed 
to be determined for the indirection.  A single level was chosen as the constraint because 
that was all that was necessary to provide the abstractions needed and such a mechanism 
appears to be realizable within the basal ganglia of the human brain as shown by Stocco, 
Lebiere, and Anderson. 

8.2.6 Example Models

There are two example models which use dynamic pattern matching included with this 
unit  and both  are  variations  of  previous  models  seen in  the tutorial.   The first  is  an 
expanded version of the semantic model from unit 1 and the other is a refinement of the 
paired associate  experiment  model  which performed the task based on instructions as 
presented in unit 7. Both models operate similarly to how they did before, and therefore 
will  not  be  described  in  full  detail  here.   Only  the  significant  differences  related  to 
dynamic pattern matching will be discussed.

8.2.6.1 Semantic Model

In  unit  1  the  model  used  a  rather  cumbersome  representation  of  the  knowledge  in 
declarative memory specifying slots named attribute and value instead of just using slots 
and values:

19



ACT-R Tutorial 10-Dec-19 Unit Eight

(p1 ISA property object shark attribute dangerous value true)
(p2 ISA property object shark attribute locomotion value swimming)
(p3 ISA property object shark attribute category value fish)

The  reason  for  that  representation  at  the  time  was  because  without  dynamic  pattern 
matching the model would have required specifying separate productions for each of the 
attributes which one wanted to lookup.  The version in the semantic-dynamic-model.lisp 
file of this unit uses a more natural representation of the chunks like this which can be 
searched using dynamic pattern matching:

(p1 ISA property object shark dangerous true)
(p2 ISA property object shark locomotion swimming)
(p3 ISA property object shark category fish)

To go along with that  the model  specifies  the property chunk-type  as  having all  the 
possible attributes used:

(chunk-type property object category dangerous locomotion edible
            breathe moves skin color sings flies height wings)

That  is  not  necessary,  because  just  as  with  productions,  specifying  new  slots  when 
creating  chunks  in  the  model  definition  will  automatically  extend  them  and  print  a 
warning.  For example if we add this property to the model’s add-dm call:

(p25 isa property object shark teeth sharp)

We get this warning when the model is loaded and when it is reset:

#|Warning:  Invalid  slot  TEETH  specified  when  creating  chunk  P25  with  type 
PROPERTY.  Extending chunks with slot named TEETH. |#

However, as was recommended with productions, all slot names used as constants in the 
model should be declared in advance.  Of course, if this model also included a means to 
acquire new facts in some way instead of having them all specified in the definition it 
could create those new slots through dynamic modifications in the productions.

Instead of only being able to chain through category tests this model is now able to search 
for any attribute and value and will search back through the categories as necessary to try 
and find it.  Here are some goal chunks which the model starts out with as options to test:

(g1 ISA test-attribute object canary attribute category value bird)
(g2 ISA test-attribute object canary attribute wings value true)
(g3 ISA test-attribute object canary attribute dangerous value true)

20



ACT-R Tutorial 10-Dec-19 Unit Eight

The goal chunks now contain slots for the attribute and value to indicate what is being 
searched for and here are the productions which use that  information dynamically  to 
request  a  retrieval  of  the  desired  fact  and  to  verify  when  it  has  been  successfully 
retrieved:

(p retrieve-attribute
   =goal>
     ISA         test-attribute
     object      =obj
     attribute   =attr
     value       =val
     state       nil
  ==>
   =goal>
     state       attr-check
   +retrieval>  
     ISA         property
     object      =obj
     - =attr     nil)

(P direct-verify
   =goal>
     ISA         test-attribute
     original    nil
     object      =obj
     attribute   =attr
     value       =val
     state       attr-check
   =retrieval>
     ISA         property
     object      =obj
     =attr       =val
  ==>
   =goal>
     answer      yes
     state       done)

The retrieve-attribute production requests the retrieval of a chunk which has a value in 
the slot with the named attribute, and then the direct-verify production matches if that 
retrieved chunk has the requested value in that slot.  You may wonder why we don’t just 
request the retrieval of the specific slot value desired in retrieve-attribute, and the reason 
is that the model may contain a contradictory fact which would fail to be retrieved if that 
were the case and it would then search through the other categories to try and find the 
matching chunk.  For example, if asked whether ostriches fly with a goal like this:

21



ACT-R Tutorial 10-Dec-19 Unit Eight

(g1 ISA test-attribute object ostrich attribute flies value true)

and given the fact in declarative memory which indicates they do not fly:

(p15 ISA property object ostrich flies false)

A model which requested that specific slot value combination of “flies true” would fail to 
retrieve that chunk about ostriches.  This is very similar to the fan model from unit 5 
which only requested a fact based on one of the items it contained,  and as a general 
strategy it is almost always better for the model to retrieve something and then test that 
result than to rely on retrieval failure.

The  other  productions  in  this  model  which  handle  failure  to  retrieve,  retrieving  a 
contradictory  fact,  and  chaining  up  through  the  categories  to  continue  searching  are 
similar to those from the unit 1 model, but now use dynamic pattern matching since the 
attribute is provided in the goal.  You should be able to understand how those work now 
and we will not cover all of them in detail.

One final thing to note about this model is that when it finds a matching fact in a parent 
category it adds that specific fact to the model so that future searches will not require 
going through all  of the categories  again.  Here are the traces  of two successive runs 
asking for the same fact specified in the g2 goal provided:

     0.000   GOAL                   SET-BUFFER-CHUNK GOAL G2 NIL
     0.000   PROCEDURAL             CONFLICT-RESOLUTION
     0.050   PROCEDURAL             PRODUCTION-FIRED RETRIEVE-ATTRIBUTE
     0.050   PROCEDURAL             CLEAR-BUFFER RETRIEVAL
     0.050   DECLARATIVE            start-retrieval
     0.050   PROCEDURAL             CONFLICT-RESOLUTION
     0.100   DECLARATIVE            RETRIEVAL-FAILURE
     0.100   PROCEDURAL             CONFLICT-RESOLUTION
     0.150   PROCEDURAL             PRODUCTION-FIRED MISSING-ATTR
     0.150   PROCEDURAL             CLEAR-BUFFER RETRIEVAL
     0.150   DECLARATIVE            start-retrieval
     0.150   PROCEDURAL             CONFLICT-RESOLUTION
     0.200   DECLARATIVE            RETRIEVED-CHUNK P14
     0.200   DECLARATIVE            SET-BUFFER-CHUNK RETRIEVAL P14
     0.200   PROCEDURAL             CONFLICT-RESOLUTION
     0.250   PROCEDURAL             PRODUCTION-FIRED CHAIN-FIRST-CATEGORY
     0.250   PROCEDURAL             CLEAR-BUFFER RETRIEVAL
     0.250   PROCEDURAL             CONFLICT-RESOLUTION
     0.300   PROCEDURAL             PRODUCTION-FIRED RETRIEVE-ATTRIBUTE
     0.300   PROCEDURAL             CLEAR-BUFFER RETRIEVAL
     0.300   DECLARATIVE            start-retrieval
     0.300   PROCEDURAL             CONFLICT-RESOLUTION
     0.350   DECLARATIVE            RETRIEVED-CHUNK P18
     0.350   DECLARATIVE            SET-BUFFER-CHUNK RETRIEVAL P18
     0.350   PROCEDURAL             CONFLICT-RESOLUTION
     0.400   PROCEDURAL             PRODUCTION-FIRED INDIRECT-VERIFY
     0.400   PROCEDURAL             CLEAR-BUFFER RETRIEVAL
     0.400   PROCEDURAL             CONFLICT-RESOLUTION
     0.450   PROCEDURAL             PRODUCTION-FIRED RECORD-RESULT
     0.450   PROCEDURAL             CLEAR-BUFFER IMAGINAL
     0.450   PROCEDURAL             CONFLICT-RESOLUTION

22



ACT-R Tutorial 10-Dec-19 Unit Eight

     0.650   IMAGINAL               SET-BUFFER-CHUNK IMAGINAL CHUNK0
     0.650   PROCEDURAL             CONFLICT-RESOLUTION
     0.700   PROCEDURAL             PRODUCTION-FIRED CREATE
     0.700   PROCEDURAL             CLEAR-BUFFER IMAGINAL
     0.700   PROCEDURAL             CONFLICT-RESOLUTION
     0.750   PROCEDURAL             PRODUCTION-FIRED RESPOND
CANARY WINGS TRUE ANSWER IS YES
     0.750   PROCEDURAL             CLEAR-BUFFER GOAL
     0.750   PROCEDURAL             CONFLICT-RESOLUTION
     0.750   ------                 Stopped because no events left to process
...
     0.750   GOAL                   SET-BUFFER-CHUNK GOAL G2 NIL
     0.750   PROCEDURAL             CONFLICT-RESOLUTION
     0.800   PROCEDURAL             PRODUCTION-FIRED RETRIEVE-ATTRIBUTE
     0.800   PROCEDURAL             CLEAR-BUFFER RETRIEVAL
     0.800   DECLARATIVE            start-retrieval
     0.800   PROCEDURAL             CONFLICT-RESOLUTION
     0.850   DECLARATIVE            RETRIEVED-CHUNK CHUNK0-0
     0.850   DECLARATIVE            SET-BUFFER-CHUNK RETRIEVAL CHUNK0-0
     0.850   PROCEDURAL             CONFLICT-RESOLUTION
     0.900   PROCEDURAL             PRODUCTION-FIRED DIRECT-VERIFY
     0.900   PROCEDURAL             CLEAR-BUFFER RETRIEVAL
     0.900   PROCEDURAL             CONFLICT-RESOLUTION
     0.950   PROCEDURAL             PRODUCTION-FIRED RESPOND
CANARY WINGS TRUE ANSWER IS YES
     0.950   PROCEDURAL             CLEAR-BUFFER GOAL
     0.950   PROCEDURAL             CONFLICT-RESOLUTION
     0.950   ------                 Stopped because no events left to process 

8.2.6.2 Paired-learning Model

A new version of the paired associate  model is included with this unit  in the paired-
dynamic-model.lisp file.  This model is similar to the one from the previous unit in that it 
starts with instructions for doing the task, but the representation of the chunks which it 
uses differ from those used in the last unit.  For the operator chunks, instead of having 
two generic slots named arg1 and arg2 which get used differently for different subtasks it 
now uses appropriately named slots for each operation:

(op1 isa operator pre start         action read     label word     post stimulus-read)
(op2 isa operator pre stimulus-read action retrieve required word  label number post recalled)
(op3 isa operator pre recalled      slot   number   success respond  failure wait)
(op4 isa operator pre respond       action type     required number  post wait)
(op5 isa operator pre wait          action read     label number   post new-trial)
(op6 isa operator pre new-trial     action complete-task           post start)

It also does not specify a chunk-type for the result.   Instead, it  just creates an empty 
chunk that gets the appropriate slots added to it such that the resulting chunks for the 
trials will look like this:

CHUNK0-0
   WORD  "tent"
   NUMBER  "5"

23



ACT-R Tutorial 10-Dec-19 Unit Eight

Those slot names are encoded in the instructions in the label slot of operators op1 and 
op5 above.  The label slot of the action specifies the name of the slot into which the item 
should be stored in the  imaginal buffer and is setup by the read production storing the 
label into the context slot of the chunk in the goal buffer: 

(p read
   =goal>
     isa        task
     step       retrieving-operator
   =retrieval>
     isa        operator
     action     read
     label      =destination
     post       =state
   =visual-location>
   ?visual>
     state      free
   ?imaginal>
     buffer     full
  ==>
   +visual>
     isa        move-attention
     screen-pos =visual-location
   =goal>
     context    =destination
     step       process
     state      =state)

and then the encode production modifies the chunk in the  imaginal buffer using that 
value to indicate the slot:

(p encode
   =goal>
     isa         task
     step        process
     context     =which-slot
   =visual>
     isa         text
     value       =val
   =imaginal>
   ?imaginal>
     state       free
  ==>
   *imaginal>
     =which-slot =val
   =goal>
     step        ready)

24



ACT-R Tutorial 10-Dec-19 Unit Eight

That makes this set of instruction following productions more general than the previous 
ones because the representation does not have to be encoded in the model’s chunk-types 
and could have any number of slots in the representation based on the instructions.  The 
model also does not need to have a separate production to set each possible slot that is 
used in the representation.  Of course, since the instructions are specifically encoded in 
this particular model’s definition that generality is not necessary since the representation 
is known in advance.  However, these same productions could be used for other tasks 
without changing them, or they could be used with an even more general version of the 
model which had other productions for reading the instructions themselves.

Similarly, we see that by using dynamically matched productions this new version of the 
model can also perform the retrieval based on a slot specified in the instructions:

(p retireve-associate
   =goal>
     isa      task
     step     retrieving-operator
   =imaginal>
     =target  =stimulus
   =retrieval>
     isa      operator
     action   retrieve
     required =target
     label    =other
     post     =state
  ==>
   +retrieval>
     =target  =stimulus
   =goal>
     step     retrieving-result
     context  =other
     state    =state)

and also respond using an arbitrary slot specified in the instructions:

(p type
   =goal>
     isa      task
     step     retrieving-operator
   =imaginal>
     =slot    =val
   =retrieval>
     isa      operator
     action   type

25



ACT-R Tutorial 10-Dec-19 Unit Eight

     required =slot
     post     =state
   ?manual>
     state    free
  ==>
   +manual>
     cmd      press-key
     key      =val
   =goal>
     state    =state
     step     ready)

8.2.6.3 Dynamic matching and production compilation

As in the previous version of this task, this model uses production compilation to learn 
specific  productions  for  doing  the  task  as  it  is  repeatedly  following  the  instructions. 
There  is  no  difference  in  how  the  production  compilation  mechanism  works  with 
dynamically matched productions.  It still  combines successive productions which are 
fired into a single production when possible using the rules described in unit 7.  However, 
it is worth looking at a couple of examples to see how that applies when dynamically 
matched productions are involved.  When one or both of the productions being composed 
contain dynamically matched components, the resulting production may retain some of 
those dynamic components or they may be replaced with statically matched values.  They 
will be replaced by static values in the same way that other variables are replaced – when 
a retrieval request and harvesting are removed between the productions.  

We can see examples of this very early in the model’s trace since it has the :pct parameter 
set to t.  [To run this model you will need to load/import the paired.lisp or paired.py file 
before loading this model file, and then use the functions described in unit 4 to run the 
experiment or a subset of it.]   When the encode and retrieve-operator productions are 
combined the result still has the dynamic component from the encode production:

  Production ENCODE and RETRIEVE-OPERATOR are being composed.
  New production:

(P PRODUCTION1
  "ENCODE & RETRIEVE-OPERATOR"
   =GOAL>
       CONTEXT =WHICH-SLOT
       STEP PROCESS
       STATE =STATE
   =IMAGINAL>
   =VISUAL>
       TEXT T
       VALUE =VAL
   ?IMAGINAL>
       STATE FREE
 ==>
   =GOAL>
       CONTEXT NIL
       STEP RETRIEVING-OPERATOR
   +RETRIEVAL>

26



ACT-R Tutorial 10-Dec-19 Unit Eight

       PRE =STATE
   *IMAGINAL>
       =WHICH-SLOT =VAL
)

However, when the retrieve-operator and retrieve-associate productions are combined the 
instantiation of the variables used from the retrieved chunk results in a production with 
no dynamic components:

  Production RETRIEVE-OPERATOR and RETIREVE-ASSOCIATE are being composed.
  New production:

(P PRODUCTION2
  "RETRIEVE-OPERATOR & RETIREVE-ASSOCIATE - OP2"
   =GOAL>
       STATE STIMULUS-READ
       STEP READY
   =IMAGINAL>
       WORD =STIMULUS
 ==>
   =GOAL>
       CONTEXT NUMBER
       STATE RECALLED
       STEP RETRIEVING-RESULT
   +RETRIEVAL>
       WORD =STIMULUS
) 

8.2.6.4 Data fit

Despite the model being more general,  it  still  performs the task the same way as the 
previous version of the model does, and with production compilation enabled provides a 
similar fit to the data using the same parameter settings as the model from the previous 
unit:

Latency:
CORRELATION:  0.989
MEAN DEVIATION:  0.105
Trial    1       2       3       4       5       6       7       8
        0.000   2.059   1.929   1.806   1.730   1.663   1.628   1.589

Accuracy:
CORRELATION:  0.996
MEAN DEVIATION:  0.034
Trial    1       2       3       4       5       6       7       8
        0.000   0.432   0.657   0.788   0.873   0.927   0.943   0.957

8.3 Assignment

27



ACT-R Tutorial 10-Dec-19 Unit Eight

The  assignment  for  this  unit  will  be  to  use  both  of  the  new  production  techniques 
described above to create a model which can perform a simple categorization task.  The 
experiment this model will be performing is a simplification of an experiment which was 
performed by Robert M. Nosofsky (which was itself based on an experiment performed 
by Stephen K. Reed) that required participants to classify schematic face drawings into 
one of two learned categories.  

In  the  experiment,  the  participants  first  trained  on  learning  10  faces  each  of  which 
belonged to one of two categories.  The faces themselves were varied along four features: 
eye height, eye separation, nose length, and mouth height.  Then there was a testing phase 
in which they were presented with both old and new faces and asked to specify to which 
category the face belonged.  The data collected was the probability of classifying the face 
as a member of each category in the testing phase.  For this assignment we will not be 
modeling the whole task, nor will we be trying to fit all of the data from the experiment 
because a thorough model of this task would require a lot more work than is reasonable 
for an assignment.  

Here is the general description of the task which the model for this assignment will have 
to perform.  It will be presented with the attributes of a stimulus one at a time, indicating 
the name of a feature and its value (it will not be visually interpreting a face image).  It  
must collect those attributes into a single chunk which represents the current stimulus. 
Using that chunk, it can then retrieve a best matching example from declarative memory. 
Based on that retrieved chunk, it will make a category choice for the current stimulus. 
The model will not be performing the initial training phase, thus it will not require using 
any of the ACT-R learning mechanisms.  Each trial will be completed separately with the 
model being reset before each one.  This is similar to how the fan experiment model from 
unit 5 worked, with the training information pre-encoded in declarative memory and the 
model only needing to perform one trial of the task.  The details of how those steps are to 
be performed are described below.

The primary part of the exercise is the first step – creating the stimulus representation 
from the individual attributes.  The important aspect of the assignment will be on how to 
perform this task in a general way because that sort of encoding is something which can 
be applicable to many different tasks.  Overall, this should be a very small model, only 
requiring around 5 productions to do the task, but will require using both of the new 
mechanisms described in this unit.

8.3.1 The Stimulus Attributes 

The attributes of the stimulus to categorize will be presented to the model one at a time 
through the goal buffer.  The experiment code will set the goal buffer to a chunk which 
uses the slots specified for the chunk-type named goal:

(chunk-type goal state name value)

28



ACT-R Tutorial 10-Dec-19 Unit Eight

The state  slot  will  be set  to  the value add-attribute,  the name slot  of  the chunk will 
contain a symbol specifying the name of the attribute being presented.  The value slot 
will hold a value for that attribute in the current stimulus which will be a number.  Thus, 
a goal chunk at the start of a trial may look like this:

CHUNK1-0
   NAME  EH
   VALUE  0.704
   STATE  ADD-ATTRIBUTE

What the model must do is convert that numeric value into a symbolic description which 
will be stored in a slot of the  imaginal buffer. The reason for doing so is because the 
example  chunks  which  the  model  has  stored  in  declarative  memory  that  it  will  be 
retrieving look like this:

EXAMPLE1
   CATEGORY  1
   EH  MEDIUM
   ES  SMALL
   NL  LARGE
   MH  MEDIUM

Those  chunks  provide  a  more  general  representation  of  the  stimuli  instead  of  just 
recording explicit measurements or distance values.  By converting the attributes as they 
are encoded the model will be able to create a similarly structured chunk in the imaginal 
buffer.  In a more complete model of the task a similar process would take place during 
the training phase of the experiment to strengthen and learn the examples, and we want to 
maintain that same representational aspect even if it is not currently being modeled.

For this task all of the attributes can be classified as either small, medium, or large, and to 
make things easier, the numeric values of the attributes used have all been scaled to the 
same range based on data  also collected by Nosofsky for this task.   To perform that 
conversion from numeric value to descriptive name, procedural partial matching should 
be used by the model.  The starting model has a similarity function provided that assigns 
a similarity score between the attribute values and the labels small, medium, and large. 
Thus, one can have competing productions which test the value for each of those labels 
and the production which specifies the most similar label will be the one selected.  

The specific range of values used should not be explicitly encoded into the model, and in 
fact this unit will not describe how the similarity values are computed between the labels 
and the numbers.  Thus,  your  model  should not  explicitly  test  the  values  against  any 
particular  numbers,  but  should  be able  to  work with  any value  given relying  on the 
similarity  function  to  provide  the  comparison  to  the  appropriate  labels.   Thus,  a 
production like this is not a good thing to use in this model:

(p very-bad-way-to-test-for-medium

29



ACT-R Tutorial 10-Dec-19 Unit Eight

   =goal>
     isa attribute
    > value -.5
    < value .5
  ...
)

After determining what the appropriate label for the attribute is, the model must record 
that value in the chunk in the imaginal buffer.  When the first attribute is presented, the 
imaginal buffer will be set to a chunk which only has the value unknown in the category 
slot:

CHUNK0-0
   CATEGORY  UNKNOWN

It does not have any slots for holding the specific attributes of the task.  This is where 
dynamic pattern matching will need to be used.  The model will need to add a slot to the 
chunk based on the name of the attribute provided.  Thus, the complete encoding of the 
attribute shown above would result in the imaginal buffer looking like this when done if 
that value were mapped to a large result:

CHUNK0-0
   CATEGORY  UNKNOWN
   EH  LARGE 

Again, it is important that the model be general in how it performs that modification to 
the  imaginal buffer’s chunk.  The model should be able to encode any attribute name 
which is provided, and should not have any specific attribute names mentioned in the 
productions.  Thus this action in a production is not the way that it should be handled:

(p bad-imaginal-attribute-encoding
…
==>
  =imaginal>
     eh  =value
…)

As with the values, the unit will not be specifying the names that the attributes will have.  
The  experiment  code  will  guarantee  that  the  example  chunks  created  in  declarative 
memory have the same attributes as those that are presented to the model, and the model 
should be able to work with any attribute names it is given.

After updating the imaginal buffer, the model should stop and wait for the next attribute 
to be provided.  An easy way to do that would be to make sure that all of the productions 

30



ACT-R Tutorial 10-Dec-19 Unit Eight

which are processing the attribute test the goal buffer chunk in their conditions (which is 
likely to occur since it contains the information needed) and then clear the chunk from 
the goal buffer after the attribute has been processed.  Thus, the model should be able to 
process  any number  of  attributes  for  a  stimulus.   The  result  will  be  a  chunk in  the 
imaginal buffer which has a slot for each of the attributes that was provided and the 
value in each of those slots is a label (small, medium, or large) as determined through 
procedural partial matching based on the numeric value from the attribute.

8.3.2 Model Response

After all of the attributes have been provided to the model a different goal chunk will be 
set to indicate that it is time for the model to retrieve an example and classify the stimulus 
that is currently encoded in the imaginal buffer.  That goal chunk will have the state slot 
set to the value categorize:

CHUNK5-0
   STATE  CATEGORIZE

To make a response, the model needs to do two things.  First, it must retrieve a chunk 
from declarative memory which is  similar  to the chunk in the  imaginal buffer.   The 
model will have 10 examples already encoded in declarative memory which have their 
features set based on the examples from the original experiment.  Half of the examples 
are in category 1 and the other half are in category 2, and here are two examples using the 
default attribute names:

EXAMPLE5
   CATEGORY  2
   EH  LARGE
   ES  SMALL
   NL  SMALL
   MH  SMALL

EXAMPLE4
   CATEGORY  1
   EH  SMALL
   ES  MEDIUM
   NL  LARGE
   MH  LARGE

Because  the  names  of  the  slots  to  specify  in  the  retrieval  request  are  not  known in 
advance the easiest way to perform the retrieval request is using an indirect request with 
the chunk from the imaginal buffer, as was shown in the siegler model from unit 5 of the 
tutorial.  That will look like this as an action in the production:

(p indirect-retrieval-request

31



ACT-R Tutorial 10-Dec-19 Unit Eight

 …
 ==>
  +retrieval> =imaginal
 …)

and is equivalent to specifying all of the slots and values from the chunk that is in the 
imaginal buffer explicitly in the request.

Declarative partial matching is also enabled for this model, and that will allow for the 
retrieval of a chunk which has values close to the requested values in the event that there 
is not a perfectly matching example.  The other declarative parameters for the model are 
set such that if the chunk in the imaginal buffer is created correctly there should always 
be a chunk retrieved in a reasonable amount of time.

After the model retrieves a chunk, the final step it needs to do is to set the category slot of 
the chunk in the imaginal buffer to be the same as the category value of the chunk that 
was retrieved.  After that happens the model should again stop because it is then done 
with the trial.

8.3.3 Running the experiment

There are three commands provided for running the task.  The first one performs one step 
of the attribute presentation.  The categorize-attribute function in Lisp and the attribute 
function in the categorize module of Python each take two parameters.  The first is the 
name for an attribute (which should be a symbol in Lisp and a string in Python) and the 
second is the numeric value for that attribute (which should be between -1 and 1).  It will  
generate an attribute goal chunk for the model with the name and value slots set using the 
values provided and a state slot value of add-attribute then run the model to perform the 
encoding.  Here are examples of calling that:

? (categorize-attribute size -.9)

>>> categorize.attribute('size',-.9)

Which would create this chunk in the goal buffer:

CHUNK1-0
   NAME  SIZE
   STATE  ADD-ATTRIBUTE
   VALUE  -0.9

and should lead to the model creating a chunk like this in the imaginal buffer when it is 
done:

32



ACT-R Tutorial 10-Dec-19 Unit Eight

CHUNK0-0
   SIZE  SMALL
   CATEGORY  UNKNOWN

That’s because a value of -.9 is most similar to the small label (although sometimes noise 
in the utility calculations should cause one of the other labels to also be applied).  You 
should work with this command only until your model is able to do that part of the task 
reliably.   Note that this command does not reset the model, so if you call it again the 
chunk in the  imaginal buffer should contain both of the slots specified.  Therefore, if 
after the previous call you then did this:

? (categorize-attribute s2 1.0)

>>> categorize.attribute('s2',1.0)

The chunk in the imaginal buffer should look similar to this:

CHUNK0-0
   SIZE  SMALL
   CATEGORY  UNKNOWN
   S2  LARGE

Both slots should have a descriptive value, and the second one will most likely be large 
since 1.0 is most similar to large.  In the full task the model will be required to do that  
process four times, but the model should be capable of handling any number of attributes 
presented to it, each time adding the new slot to the chunk in the imaginal buffer with its 
corresponding description.

Once the model is able to properly encode attributes you can test its ability to retrieve 
examples  based  on  a  stimulus  with  multiple  attributes  using  the  categorize-stimulus 
function  in  Lisp  or  the  stimulus  function  from the  categorize  module  in  Python.   It 
requires four parameters which should each be a number in the range of -1 to 1.  It will  
reset the model, generate the four attribute goal chunks for the model (using a default set 
of names for the attributes) like the attribute action above, and then it will generate a 
categorize goal and run the model to make the response.  The goal chunk will look like 
this when the model needs to categorize the item encoded in the imaginal buffer:

CHUNK5-0
   STATE  CATEGORIZE

33



ACT-R Tutorial 10-Dec-19 Unit Eight

To categorize the item it must set the category slot of the chunk in the imaginal buffer to 
the category value of the item which it retrieves from declarative memory that is most 
similar to the chunk in the imaginal buffer.  The default chunks created for the features 
in declarative memory have category values of 1 and 2, but the model should not make 
any assumptions  about  those  values  and just  use  the  value  from the  chunk which  it 
retrieves.  The return value from the stimulus function will be the category which the 
model set.  If this stimulus description were used:

? (categorize-stimulus 1 -1 -1 -1)

>>> categorize.stimulus(1,-1,-1,-1)

The model should end up with a chunk like this in the  imaginal buffer and return the 
value 2 since that is the description of an item from category 2 in the model’s declarative 
memory (again because of noise it may not always produce that same description and 
categorization):

CHUNK0-0
   CATEGORY  2
   EH  LARGE
   ES  SMALL
   NL  SMALL
   MH  SMALL

Once your model can reliably encode and categorize individual stimuli you can move on 
to try it on the whole experiment using the categorize-experiment function in Lisp or the 
experiment function from the categorize module in Python.  It requires one parameter 
which is the number of times to repeat the experiment.  It will run the model over the 14 
stimuli from the experiment as many times as specified and print out the proportion of 
times that each item was classified as being in category 1 along with the experimental  
data, number of responses the model made, and the model’s fit to the experimental data. 
A call like this:

? (categorize-experiment 10)

>>> categorize.experiment(10)

Should result in output similar to this showing that the model responded 10 times on each 
trial (the number in parentheses):

CORRELATION:  0.880
MEAN DEVIATION:  0.209
P(C=1)
      ( 10) ( 10) ( 10) ( 10) ( 10) ( 10) ( 10) ( 10) ( 10) ( 10) ( 10) ( 10) ( 10) ( 10) 

34



ACT-R Tutorial 10-Dec-19 Unit Eight

data  0.975 0.850 0.987 1.000 0.963 0.075 0.138 0.087 0.050 0.025 0.937 0.544 0.988 0.087
model 0.700 0.800 0.800 0.900 0.700 0.100 0.200 0.400 0.100 0.100 1.000 0.900 0.900 0.500

8.3.4 Fitting the data

If your model works as described above, then it should produce a fit to the data similar to 
this using the default parameters in the model:

CORRELATION:  0.948
MEAN DEVIATION:  0.174

If the correlation and deviation are significantly worse than that, then you will want to go 
back and make sure your model is doing all of the steps described above correctly.

Because fitting the data is not the focus of this exercise it should not be necessary to 
adjust the parameters to improve that fit, but if you would like to explore the parameters  
for improving the fit then the ones that are recommended to be changed would be these 
four from the model:

(sgp :mp 1 :ppm 1 :egs .25 :ans .25)

Those are the partial  matching scale parameters for declarative and procedural partial 
matching  and  the  noise  values  for  those  mechanisms.   Through  adjusting  those 
parameters the reference model was able to achieve this fit which improves the deviation 
slightly compared to using the starting values:

CORRELATION:  0.948
MEAN DEVIATION:  0.142
P(C=1)
      (500) (500) (500) (500) (500) (500) (500) (500) (500) (500) (500) (500) (500) (500) 
data  0.975 0.850 0.987 1.000 0.963 0.075 0.138 0.087 0.050 0.025 0.937 0.544 0.988 0.087
model 0.992 0.780 0.978 0.988 0.918 0.118 0.052 0.130 0.050 0.030 0.966 0.798 0.986 0.534

8.3.5 Generality

If your model fits the data adequately then the final thing to test is to make sure that it is  
doing the task in a general way.  The function for running the experiment takes optional 
parameters which can be used to modify the attribute names and the range of values it 
uses.  Providing a second parameter which is a number will  shift the attribute values 
provided  to  the  model  by  that  amount  and  also  shift  the  similarities  to  the  labels 
accordingly.  Thus, the model should be unaffected by that change and produce the same 
fit to the data regardless of the number provided for the shift: 

? (categorize-experiment 100 4.5)

>>> categorize.experiment(100,4.5)

35



ACT-R Tutorial 10-Dec-19 Unit Eight

In addition to providing an offset value for the experiment, one can also specify the four 
names to  use for the attributes.   Those provided names will  be used to  generate  the 
examples in declarative memory and to provide the attributes to the model.  The names 
can be anything that is valid for a slot name in ACT-R except for the name category since 
that slot is already used to specify the categorization of the items.  Here are examples that 
specify names of a, b, c, and d along with an offset of -3:

? (categorize-experiment 100 -3 a b c d)

>>> categorize.experiment(100,-3,'a','b','c','d')

Changing the attribute names and the offset should not affect the model’s ability to do the 
task if it has been written to perform the task generally.

References

Nosofsky, R. M. (1991). Tests of an exemplar model for relating perceptual classification 
and recognition memory.  Journal of Experimental Psychology: Human Perception and  
Performance. 17, 3-27.

Reed, S. K. (1972). Pattern recognition and categorization. Cognitive Psychology. 3, 382-
407.

Stocco, A., Lebiere, C., & Anderson, J. R. (2010). Conditional routing of information to 
the cortex: A model of the basal ganglia’s role in cognitive coordination. Psychological 
Review, 117(2), 540-574. 

36


	Unit 8: Advanced Production Techniques
	8.1 Procedural partial matching
	8.1.1 Condition testing with procedural partial matching
	8.1.2 Conflict resolution with procedural partial matching
	8.1.3 Simple procedural partial matching model
	8.1.3.1 The conflict set trace parameter
	8.1.3.2 Turning on ppm
	8.1.3.3 The large production
	8.1.3.4 Adding noise

	8.1.4 Building Sticks Task alternate model
	8.1.4.1 Strategy choice
	8.1.4.2 Attributing actions to the imaginal module


	8.2 Dynamic Pattern Matching
	8.2.1 Basic Operation
	8.2.2 Arbitrary slots in conditions
	8.2.3 Arbitrary slots in actions
	8.2.4 Extending chunks with new slots
	8.2.5 Constraints on dynamic pattern matching
	8.2.5.1 No Search
	8.2.5.2 One level of indirection

	8.2.6 Example Models
	8.2.6.1 Semantic Model
	8.2.6.2 Paired-learning Model
	8.2.6.3 Dynamic matching and production compilation
	8.2.6.4 Data fit


	8.3 Assignment
	8.3.1 The Stimulus Attributes
	8.3.2 Model Response
	8.3.3 Running the experiment
	8.3.4 Fitting the data
	8.3.5 Generality

	References

