
Unit 4 Code Description

There are only a couple of new commands used in the models for this unit and one of
them, set-all-base-levels, was discussed in the unit text. So there is not really much of
anything new to discuss about the functions used to run the models, but there is a different
approach to running the models used for the zbrodoff experiment compared to the paired
associate task and all of the previous units’ tasks. We will start by describing the
differences between those approaches, and then look at the code which implements them
with the focus more on the overall structure of the experiment implementations and model
interaction than the details of every function call.

So far you have seen what can be described as an iterative or “trial at a time” approach to
writing the experiments for models. The experiments run by executing some setup code
for a trial, running the model to completion on that trial, recording a result and then
repeating that process for the next trial until all the trials are done. That style is a
commonly used approach, but it has some drawbacks which you may have encountered.
For instance, when running an experiment it is not possible to terminate the experiment
using either the Stop button on the ACT-R Control Panel or the one in the Stepper tool.
Instead, you have to break out of the execution of the experiment function from the
system that is running it (often Control-C will work to interrupt things, but that can vary
for different interfaces). That is because the Stop buttons only stop the current “run” of
ACT-R, but they cannot affect the code which is making those calls to run things. For
models with few trials or that get reset on each trial that may not be too big of a problem,
but for large experiments or models that need to learn from trial to trial that can make
things difficult to work with, particularly if there is a problem with the model on a later
trial that forces one to abandon a very long run by terminating the experiment code which
likely doesn’t have any way to continue where the model left off.

An alternative way to write the experiments is with a more “event-driven” approach. The
system which runs the ACT-R models is a general discrete-event simulation system which
can be used to run other things as well, like an experiment for a model (or a person if
precision timing information isn’t required). Calling one of the ACT-R running commands
causes all of the events which have been created to be executed in either a simulated time
or real time sequence. Up to now those events have been mostly generated by the model,
e.g. production firing, memory retrieval, and key presses, or by ACT-R commands like
goal-focus. However, as was seen in the sperling task, arbitrary events can also be
scheduled to execute at particular simulated times. One can also use the interface events
generated by the model (like output-key) to do things other than just record the response.
By scheduling events to occur at appropriate times and putting some of the control into
the functions that handle the model’s actions the experiment can run “with” the model
instead of “around” it. Such an experiment only needs to call the run function one time to
complete the whole experiment instead of once (or more) per trial.

Having the model running in an event-driven experiment with a single call to run typically
allows for more interactive control of the task as a whole. The Stepper tool in the
Environment will also pause on user scheduled events and the Environment’s Stop buttons
will stop the whole experiment if it is being driven by the events that are run. That allows

one to see exactly what is happening at specific points in the experiment without having to
abort the experiment function. Additionally, to continue after stopping all one needs to do
is then call run again to have the model and the experiment continue from where they left
off since the events are still scheduled to occur at the appropriate times. It can also make
writing the model itself easier because one doesn’t have to make sure that the model
“knows” when to stop for the task code to update and can just focus on having it respond
to the events that occur as they occur instead of as a sequence of separate interactions.

The two models for this unit use those two different approaches. The paired associate
task is written using the iterative approach, and the zbrodoff task is written as an event-
driven experiment.

Paired associate task

Lisp

We start by loading the corresponding model for the task.

(load-act-r-model "ACT-R:tutorial;unit4;paired-model.lisp")

Then we define some global variables to hold the key pressed, the time of the response,
the possible stimuli to use for the experiment, and the data from the original experiment
for comparison.
(defvar *response* nil)
(defvar *response-time* nil)

(defvar *pairs* '(("bank" "0") ("card" "1") ("dart" "2") ("face" "3") ("game" "4")
 ("hand" "5") ("jack" "6") ("king" "7") ("lamb" "8") ("mask" "9")
 ("neck" "0") ("pipe" "1") ("quip" "2") ("rope" "3") ("sock" "4")
 ("tent" "5") ("vent" "6") ("wall" "7") ("xray" "8") ("zinc" "9")))

(defvar *paired-latencies* '(0.0 2.158 1.967 1.762 1.680 1.552 1.467 1.402))
(defvar *paired-probability* '(0.000 .526 .667 .798 .887 .924 .958 .954))

The paired-task function takes two required parameters which are the number of pairs to
present in a trial and the number of trials to run. It also takes an optional parameter which
can be specified as true to run a person through the task instead of the model.

(defun paired-task (size trials &optional human)

It monitors output-key with the respond-to-key-press function to record the responses.

 (add-act-r-command "paired-response" 'respond-to-key-press
 "Paired associate task key press response monitor")
 (monitor-act-r-command "output-key" "paired-response")

It calls do-experiment to run the actual experiment, removes the monitoring functions
when it’s done, and returns the result of the do-experiment call.

 (prog1

 (do-experiment size trials human)

 (remove-act-r-command-monitor "output-key" "paired-response")
 (remove-act-r-command "paired-response")))

The respond-to-key-press function is set to monitor the output-key command and
therefore will be called whenever a key is pressed in the experiment window. It will be
passed the name of the model which made the key press (or nil if the key was pressed by a
person interacting with the window) and the string which names the key. Here we are
recording the key which is pressed and the time at which that happens as determined by
the get-time function, and we can pass the model parameter to get-time to get the
appropriate time since a model name is a true value which results in the ACT-R time being
returned whereas if it is a person making the response the model value will be nil which
means get-time will use the real clock instead of the ACT-R clock.

(defun respond-to-key-press (model key)

 (setf *response-time* (get-time model))
 (setf *response* key))

The do-experiment function takes three parameters which are the number of pairs to
present in a trial, the number of trials to run, and whether it is a person or model doing the
task. It runs the experiment for the size and number of trials requested and returns a list
of lists. There is one sublist for each of the trials and they are in the order of presentation.
Each of the sublists contains the percentage of answers correct and the average response
time for the correct answers in the corresponding trial.

(defun do-experiment (size trials human)

First reset the ACT-R system and model to initial state.
 (reset)

Create variables to hold the list of results, an indication of whether the model is doing
the task, and the current task window which is opened immediately with a visible
window for a person and virtual for the model.

 (let* ((result nil)
 (model (not human))
 (window (open-exp-window "Paired-Associate Experiment" :visible human)))

If the model is doing the task tell it to interact with that window.

 (when model
 (install-device window))

Loop over the number of trials indicated.

 (dotimes (i trials)

Create variables to hold the count and times for correct responses during this trial.
 (let ((score 0.0)
 (time 0.0))

Loop over the required number of pairs chosen randomly from *pairs*.

 (dolist (x (permute-list (subseq *pairs* (- 20 size))))

Clear the window and display the prompt.

 (clear-exp-window window)
 (add-text-to-exp-window window (first x) :x 150 :y 150)

Clear the *response* variable and record the current time.

 (setf *response* nil)
 (let ((start (get-time model)))

If it’s the model run it for exactly 5 seconds, or if it’s a person loop until
5000 milliseconds have passed making sure to call process-events in the
loop.

 (if model
 (run-full-time 5)
 (while (< (- (get-time nil) start) 5000)
 (process-events)))

If the response is correct update the score and time values.

 (when (equal *response* (second x))
 (incf score 1.0)
 (incf time (- *response-time* start)))

Clear the window, display the associated number, and record the current
time.

 (clear-exp-window window)
 (add-text-to-exp-window window (second x) :x 150 :y 150)
 (setf start (get-time model))

If it’s the model run it for exactly 5 seconds, or if it’s a person loop until
5000 milliseconds have passed making sure to call process-events in the
loop.

 (if model
 (run-full-time 5)
 (while (< (- (get-time nil) start) 5000)

 (process-events)))))

Save the proportion correct and the average time for a correct response.

 (push (list (/ score size) (if (> score 0) (/ time score 1000.0) 0)) result)))

Return the list of trial results in order (reversed since the values were pushed onto the
front as the trials progressed).

 (reverse result)))

The paired-experiment function takes one parameter which is the number of times to
repeat the full experiment (20 pairs and 8 trials). The experiment is run that many times
and the results are averaged and compared to the experimental results.
(defun paired-experiment (n)
 (let ((data nil))
 (dotimes (i n)
 (if (null data)
 (setf data (paired-task 20 8))
 (setf data (mapcar (lambda (x y)
 (list (+ (first x) (first y))
 (+ (second x) (second y))))
 data (paired-task 20 8)))))
 (output-data data n)))

The output-data function takes two parameters. The first is a list of cumulative data from
running multiple iterations of the experiment and the second parameter indicates how
many repetitions were added into that cumulative data. It averages that data and then
calls print-results to display the comparison and table for both the latency and accuracy
data.
(defun output-data (data n)
 (print-results (mapcar (lambda (x) (/ (second x) n)) data) *paired-latencies* "Latency")
 (print-results (mapcar (lambda (x) (/ (first x) n)) data) *paired-probability*
"Accuracy"))

The print-results function takes three parameters. The first is the list of data from running
the experiment. The second is the experimental results for that data, and the third is the
label to print when displaying that data. The new data is compared to the experimental
results and printed along with a table of the new data.

(defun print-results (predicted data label)
 (format t "~%~%~A:~%" label)
 (correlation predicted data)
 (mean-deviation predicted data)
 (format t "Trial 1 2 3 4 5 6 7 8~%")
 (format t " ~{~8,3f~}~%" predicted))

Python

The first thing the code does is import the actr module to provide the ACT-R interface.

import actr

Then it loads the corresponding model for the task.

actr.load_act_r_model("ACT-R:tutorial;unit4;paired-model.lisp")

Define some global variables to hold the key pressed, the time of the response, the
possible stimuli to use for the experiment, and the data from the original experiment for
comparison.
response = False
response_time = False

pairs = list(zip(['bank','card','dart','face','game','hand','jack','king','lamb','mask',
 'neck','pipe','quip','rope','sock','tent','vent','wall','xray','zinc'],
 ['0','1','2','3','4','5','6','7','8','9',
 '0','1','2','3','4','5','6','7','8','9']))

latencies = [0.0, 2.158, 1.967, 1.762, 1.680, 1.552, 1.467, 1.402]
probabilities = [0.0, .526, .667, .798, .887, .924, .958, .954]

The task function takes two required parameters which are the number of pairs to present
in a trial and the number of trials to run. It also takes an optional parameter which can be
specified as true to run a person through the task instead of the model.

def task (size,trials,human=False):

It monitors output-key with the respond_to_key_press function to record the
responses.

 actr.add_command("paired-response",respond_to_key_press,
 "Paired associate task key press response monitor")
 actr.monitor_command("output-key","paired-response")

It calls do_experiment to run the actual experiment, removes the monitoring functions
when it’s done, and returns the result of the do_experiment call.

 result = do_experiment(size,trials,human)

 actr.remove_command_monitor("output-key","paired-response")
 actr.remove_command("paired-response")

 return result

The respond_to_key_press function is set to monitor the output-key command and
therefore will be called whenever a key is pressed in the experiment window. It will be
passed the name of the model which made the key press (or None if the key was pressed
by a person interacting with the window) and the string which names the key. Here we
are recording the key which is pressed and the time at which that happens as determined
by the get_time function, and we can pass the model parameter to get_time to get the
appropriate time since a model name is a true value which results in the ACT-R time being
returned whereas if it is a person making the response the model value will be None which
means get_time will use the real clock instead of the ACT-R clock.

def respond_to_key_press (model,key):
 global response,response_time

 response_time = actr.get_time(model)

 response = key

The do_experiment function takes three parameters which are the number of pairs to
present in a trial, the number of trials to run, and whether it is a person or model doing the
task. It runs the experiment for the size and number of trials requested and returns a list
of tuples. There is one tuple for each of the trials and they are in the order of
presentation. Each of the tuples contains the percentage of answers correct and the
average response time for the correct answers in the corresponding trial.

def do_experiment(size, trials, human):

First reset the ACT-R system and model to initial state.
 actr.reset()

Create variables to hold the list of results, an indication of whether the model is doing
the task, and the current task window which is opened immediately with a visible
window for a person and virtual for the model.

 result = []
 model = not(human)
 window = actr.open_exp_window("Paired-Associate Experiment", visible=human)

If the model is doing the task tell it to interact with that window.

 if model:
 actr.install_device(window)

Loop over the number of trials indicated.

 for i in range(trials):

Create variables to hold the count and times for correct responses.
 score = 0
 time = 0

Loop over the required number of randomly chosen pairs.

 for prompt,associate in actr.permute_list(pairs[20 - size:]):

Clear the window and display the prompt.

 actr.clear_exp_window(window)
 actr.add_text_to_exp_window (window, prompt, x=150 , y=150)

Clear the response variable and record the current time.
 global response
 response = ''
 start = actr.get_time(model)

If it’s the model run it for exactly 5 seconds, or if it’s a person loop until
5000 milliseconds have passed making sure to call process_events.

 if model:
 actr.run_full_time(5)
 else:
 while (actr.get_time(False) - start) < 5000:
 actr.process_events()

If the response is correct update the score and time values.

 if response == associate:
 score += 1
 time += response_time - start

Clear the window, display the associated number, and record the current
time.

 actr.clear_exp_window(window)
 actr.add_text_to_exp_window (window, associate, x=150 , y=150)
 start = actr.get_time(model)

If it’s the model run it for exactly 5 seconds, or if it’s a person loop until
5000 milliseconds have passed making sure to call process_events.

 if model:
 actr.run_full_time(5)
 else:
 while (actr.get_time(False) - start) < 5000:
 actr.process_events()

Save the proportion correct and the average time for a correct response.

 if score > 0:
 average_time = time / score / 1000.0
 else:
 average_time = 0

 result.append((score/size,average_time))

Return the list of trial results.

 return result

The experiment function takes one parameter which is the number of times to repeat the
full experiment (20 pairs and 8 trials). The experiment is run that many times and the
results are collected and passed to output_data for comparison to the experimental results.
def experiment(n):

 for i in range(n):

 if i == 0:
 data = task(20,8)
 else:
 data = list(map(lambda x,y: (x[0] + y[0],x[1] + y[1]),data,task(20,8)))

 output_data(data,n)

The output_data function takes two parameters. The first is a list of cumulative data from
running multiple iterations of the experiment and the second parameter indicates how
many repetitions were added into that cumulative data. It averages that data and then
calls print_results to display the comparison and table for both the latency and accuracy
data.
def output_data(data,n):

 print_results(list(map(lambda x: x[1]/n,data)),latencies,"Latency")
 print_results(list(map(lambda x: x[0]/n,data)),probabilities,"Accuracy")

The print_results function takes three parameters. The first is the list of data from running
the experiment. The second is the experimental results for that data, and the third is the
label to print when displaying that data. The new data is compared to the experimental
results and printed along with a table of the new data.

def print_results(predicted,data,label):

 print()
 print(label)
 actr.correlation(predicted,data)
 actr.mean_deviation(predicted,data)
 print("Trial 1 2 3 4 5 6 7 8")
 print(" ",end='')
 for i in predicted:
 print('%8.3f' % i,end='')
 print()

New Commands

The only new command used is run-full-time/run_full_time.

Run-full-time/run_full_time – this function takes one required parameter which is the

time to run a model in seconds and an optional parameter to indicate whether to run the
model in step with real time. The model will run until the requested amount of time passes
whether or not there is something for the model to do i.e. it guarantees that the model will
be advanced by the requested amount of time. If the optional parameter is provided and is
a true value, then the model is advanced in step with real time instead of being allowed to
run as fast as possible in its own simulated time, and if a number is provided instead of
True then that sets the scale to use for advancing model time relative to real time.

Zbrodoff task

The zbrodoff task is written using the event-driven approach and to run the model
through the task the code will only need to call run once regardless of how many trials are
to be run. This task also differs from all of the previous ones because the data to be
collected has to be organized by block and the addend condition. There are many ways
one could approach that, and for this task we are going to keep the collection simple and
just record all of the trial data as it happens and then process that collection of data at the
end to sort it into the appropriate cases. Alternatively, we could record it into an array or
other data structure as it happens, but this choice was made to keep the components that
are relevant to the event-driven approach easier to follow since that is the important
aspect of this task for modeling purposes.

Lisp

It starts by loading the initial model for the task which counts through the alphabet to
solve all of the problems.
(load-act-r-model "ACT-R:tutorial;unit4;zbrodoff-model.lisp")

Then it defines some global variables to hold the trials to be presented, the results that
have been collected, and the data from the original experiment.
(defvar *trials*)
(defvar *results*)

(defvar *zbrodoff-control-data* '(1.84 2.46 2.82 1.21 1.45 1.42 1.14 1.21 1.17))

Because the functions to run this task use an optional parameter to indicate whether or not
to show the task window, to keep things easier to use, this experiment uses a global
variable to indicate whether it is a person or model doing the task. If it is set to nil then it
runs a person and if it is set to t it runs the model.

(defparameter *run-model* t)

Instead of using lists to represent the information in a trial and to describe a response we
create a custom structure to hold that data in a more descriptive format. A trial consists
of a block number, the number addend which indicates the condition, the text to display on
the screen, the correct answer, whether the window should be visible, whether the answer
was correct, the time the trial started, and the response time for the trial.

(defstruct trial block addend text answer visible correct start time)

The construct-trial function takes a block number, a list of the items which describe the
problem to present, and an optional parameter to indicate whether or not the window
should be visible. It creates and returns a trial structure containing the appropriate
information.
(defun construct-trial (block problem &optional visible)
 (destructuring-bind (addend1 addend2 sum answer) problem
 (make-trial :block block
 :addend addend2
 :text (format nil "~a + ~a = ~a" addend1 addend2 sum)
 :answer answer
 :visible visible)))

The present-trial function takes one parameter which is a trial structure and an optional
parameter which indicates whether or not to open a new window for this trial (since this
task is running continuously it will run faster if it uses the same window repeatedly, but
because the same code is used to run it for a variety of different situations it needs to
know when to start over with a new display).

(defun present-trial (trial &optional (new-window t))

If a new window is indicated then it opens one setting the visible status of the window
based on the setting in the trial structure provided, and if it is running the model it
installs that window device. If a new window is not indicated then it clears the current
experiment window.

 (if new-window
 (let ((w (open-exp-window "Alpha-arithmetic Experiment" :visible (trial-visible
trial))))
 (when *run-model*
 (install-device w)))
 (clear-exp-window))

It then adds the text for this trial to the window and records the current time in the trial
structure.

 (add-text-to-exp-window nil (trial-text trial) :x 100 :y 150)

 (setf (trial-start trial) (get-time *run-model*)))

The respond-to-key-press function will be set up to monitor the output-key actions, and
thus will be called with two parameters when a key is pressed: the name of the model who
pressed the key (or nil if it is a person) and the string naming the key that was pressed.
Unlike the previous tasks, since this one is event-driven we will do more than just record
the key and time in this function.

(defun respond-to-key-press (model key)
 (declare (ignore model))

Remove the current trial from those being presented.

 (let ((trial (pop *trials*)))

Set the response time and correctness of the response in that trial structure.

 (setf (trial-time trial) (/ (- (get-time *run-model*) (trial-start trial)) 1000.0))
 (setf (trial-correct trial) (string-equal (trial-answer trial) key))

Store that trial on the list of results.

 (push trial *results*))

If there are anymore trials to present then present the first one on the list and indicate
that a new window is not needed. This is what makes this code event-driven – the
event of pressing a key directly causes the presentation of the next trial.

 (when *trials*
 (present-trial (first *trials*) nil)))

The collect-responses function takes one parameter which is the number of trials that are
to be run.

(defun collect-responses (count)

The global list of results is cleared.
 (setf *results* nil)

The respond-to-key-press function is setup to monitor the output-key command.
 (add-act-r-command "zbrodoff-response" 'respond-to-key-press
 "Zbrodoff task key press response monitor")
 (monitor-act-r-command "output-key" "zbrodoff-response")

The first trial is presented in a new window.
 (present-trial (first *trials*))

If the model is performing the task then it is run for up to 10 seconds times the number
of trials that need to be collected (it is assumed that the model will respond in 10
seconds or less per trial on average).

 (if *run-model*
 (run (* 10 count))

If a person is performing the task then wait for the appropriate number of responses
to be recorded calling process-events in the loop.

 (while (< (length *results*) count)
 (process-events)))

Remove the output-key monitoring.

 (remove-act-r-command-monitor "output-key" "zbrodoff-response")
 (remove-act-r-command "zbrodoff-response"))

The zbrodoff-problem function takes four required parameters and one optional
parameter. The four required parameters are the strings that represent the equation to
present, for example “A” “2” and “C”, and the string indicating the correct response –
either “k” for correct or “d” for incorrect. The optional parameter controls whether the
trial is shown in a visible window or not and defaults to the negation of whether or not the
model is doing the task i.e. by default if the model is doing the task visible is nil in which
case the window will be virtual and if a person is doing the task the window will be
shown. Providing a value of t for the (optional) fifth parameter will cause the window to
be displayed while the model is doing the task.

(defun zbrodoff-problem (addend1 addend2 sum answer &optional (visible (not *run-model*)))

This is only one trial, so set the list of trials to a list of only that one trial.

 (setf *trials* (list (construct-trial 1 (list addend1 addend2 sum answer) visible)))

Call collect-responses to perform the task and then analyze the results.

 (collect-responses 1)
 (analyze-results))

The zbrodoff-set function takes one optional parameter which controls whether the
window is shown or not, the same as the zbrodoff-problem function. It runs once through
a random permutation of the set of equations where a set is two instances of each of the
equations with the addends 2, 3, and 4 in each of the true and false conditions, which is a
total of 24 problems.
(defun zbrodoff-set (&optional (visible (not *run-model*)))
 (setf *trials* (create-set 1 visible))
 (collect-responses 24)
 (analyze-results))

The zbrodoff-block function takes one optional parameter like the problem and set
functions. It runs one block of the experiment, which is eight repetitions of the set of
equations, or a total of 192 problems.

(defun zbrodoff-block (&optional (visible (not *run-model*)))
 (setf *trials* nil)
 (dotimes (i 8)
 (setf *trials* (append *trials* (create-set 1 visible))))
 (collect-responses 192)
 (analyze-results))

The zbrodoff-experiment function runs the whole experiment once, which is three full
blocks, or a total of 576 trials. It takes two optional parameters. The first is to control

whether the window is shown or not as with the previous functions. The other controls
whether the analysis is printed. The default is to have the analysis printed. Note that this
function also calls reset to return the model to its initial condition. It is the only function
in the experiment to do so. The other functions allow the model to maintain the
information it has gained (which is the new chunks and the history of their use).

(defun zbrodoff-experiment (&optional (visible (not *run-model*)) (show t))
 (reset)
 (setf *trials* nil)
 (dotimes (j 3)
 (dotimes (i 8)
 (setf *trials* (append *trials* (create-set (+ j 1) visible)))))
 (collect-responses 576)
 (analyze-results show))

The zbrodoff-compare function takes one parameter, which is the number of times to run
the whole experiment. It runs that many times through the experiment collecting the data
which is then averaged and compared to the original experiment’s results.

(defun zbrodoff-compare (n)
 (let ((results nil))

Run the experiment n times with a virtual window and without displaying the
individual analysis of each run, and collect the results in a list.

 (dotimes (i n)
 (push (zbrodoff-experiment nil nil) results))

Compute the averages of the response times and the number of correct answers.

 (let ((rts (mapcar (lambda (x) (/ x (length results)))
 (apply 'mapcar '+ (mapcar 'first results))))
 (counts (mapcar (lambda (x) (truncate x (length results)))
 (apply 'mapcar '+ (mapcar 'second results)))))

Display the data fit between the current run and the experimental data and print the
table of the results.

 (correlation rts *zbrodoff-control-data*)
 (mean-deviation rts *zbrodoff-control-data*)

 (print-analysis rts counts '(1 2 3) '("2" "3" "4") '(64 64 64)))))

The analyze-results function takes one optional parameter which controls whether or not
the print the table of results. It computes the average response time and number of
correct responses in the *results* global variable as a function of the number of blocks
presented and the numerical addend and returns a list of those two results.
(defun analyze-results (&optional (show t))
 (let* ((blocks (sort (remove-duplicates (mapcar 'trial-block *results*)) '<))
 (addends (sort (remove-duplicates (mapcar 'trial-addend *results*)
 :test 'string-equal)
 'string<))

 (counts nil)
 (rts nil)
 (total-counts (mapcar (lambda (x)
 (/ (count x *results*
 :key 'trial-addend
 :test 'string=)
 (length blocks)))
 addends)))

 (dolist (x blocks)
 (dolist (y addends)
 (let ((data (mapcar 'trial-time
 (remove-if-not (lambda (z)
 (and (response-correct z)
 (string= y (response-addend z))
 (= x (response-block z))))
 results))))
 (push (length data) counts)
 (push (/ (apply '+ data) (max 1 (length data))) rts))))

 (when show
 (print-analysis (reverse rts) (reverse counts) blocks addends total-counts))

 (list (reverse rts) (reverse counts))))

The print-analysis function takes five parameters that describe a set of data for the task.
The data is a list of response times and a list of corresponding correct answers. Then
there are two lists that indicate the blocks and addend conditions represented in the data
and finally a list of the total number of correct trials in each addend condition. Those data
are then displayed in a table.

(defun print-analysis (rts counts blocks addends totals)
 (format t "~% ")
 (dotimes (addend (length addends))
 (format t " ~6@a (~2d)" (nth addend addends) (nth addend totals)))
 (dotimes (block (length blocks))
 (format t "~%Block ~2d" (nth block blocks))
 (dotimes (addend (length addends))
 (format t " ~6,3f (~2d)" (nth (+ addend (* block (length addends))) rts)
 (nth (+ addend (* block (length addends))) counts))))
 (terpri))

The *data-set* variable is created to hold lists that represent all the problems to present in
one set of the task.
(defvar *data-set* '(("a" "2" "c" "k")("d" "2" "f" "k")
 ("b" "3" "e" "k")("e" "3" "h" "k")
 ("c" "4" "g" "k")("f" "4" "j" "k")
 ("a" "2" "d" "d")("d" "2" "g" "d")
 ("b" "3" "f" "d")("e" "3" "i" "d")
 ("c" "4" "h" "d")("f" "4" "k" "d")
 ("a" "2" "c" "k")("d" "2" "f" "k")
 ("b" "3" "e" "k")("e" "3" "h" "k")
 ("c" "4" "g" "k")("f" "4" "j" "k")
 ("a" "2" "d" "d")("d" "2" "g" "d")
 ("b" "3" "f" "d")("e" "3" "i" "d")
 ("c" "4" "h" "d")("f" "4" "k" "d")))

The create-set function takes two parameters. The first indicates a number to specify
which block of the experiment is being performed and the second indicates whether or not
the trials should be shown in a visible window. It returns a randomly ordered list of 24
trial structures that make up one set of the control condition of the experiment.
(defun create-set (block visible)
 (mapcar (lambda (x)
 (construct-trial block x visible))
 (permute-list *data-set*)))

Python

The first thing the code does is import the actr module to provide the ACT-R interface.
import actr

It loads the initial model for the task which counts through the alphabet to solve all of the
problems.
actr.load_act_r_model("ACT-R:tutorial;unit4;zbrodoff-model.lisp")

Then it defines some global variables to hold the trials to be presented, the results that
have been collected, and the data from the original experiment.
trials = []
results = []

control_data = [1.84, 2.46, 2.82, 1.21, 1.45, 1.42, 1.14, 1.21, 1.17]

Because the functions to run this task use an optional parameter to indicate whether or not
to show the task window, to keep things easier to use, this experiment uses a global
variable to indicate whether it is a person or model doing the task. If it is set to False then
it runs a person and if it is set to True it runs the model.

run_model = True

Instead of using lists to represent the information in a trial and to describe a response we
create a custom class to hold that data. A trial consists of a block number, the number
addend which indicates the condition, the text to display on the screen, the correct answer,
whether the window should be visible, whether the answer was correct, the time the trial
started, and the response time for the trial.

class trial():
 def __init__(self,block,addend1,addend2,sum,answer,visible=None):
 self.block = block
 self.addend2 = addend2
 self.text = addend1 + " + " + addend2 + " = " + sum
 self.answer = answer.lower()
 if visible == None:
 self.visible = not(run_model)
 else:
 self.visible = visible
 self.correct = False

The present_trial function takes one parameter which is a trial object and an optional
parameter which indicates whether or not to open a new window for this trial (since this
task is running continuously it will run faster if it uses the same window repeatedly, but
because the same code is used to run it for a variety of different situations it needs to
know when to start over with a new display).

def present_trial(trial, new_window = True):

If a new window is indicated then it opens one setting the visible status of the
window based on the setting in the trial structure provided, and if it is running the
model it installs that window device. If a new window is not indicated then it clears
the current experiment window.

 if new_window:
 w = actr.open_exp_window("Alpha-arithmetic Experiment", visible=trial.visible)
 if run_model:
 actr.install_device(w)
 else:
 actr.clear_exp_window()

It then adds the text for this trial to the window and records the current time in the
trial structure.

 actr.add_text_to_exp_window(None,trial.text, x=100, y=150)

 trial.start = actr.get_time(run_model)

The respond_to_key_press function will be set up to monitor the output-key actions, and
thus will be called with two parameters when a key is pressed: the name of the model who
pressed the key (or None if it is a person) and the string naming the key that was pressed.
Unlike the previous tasks, since this one is event-driven we will do more than just record
the key and time in this function.

def respond_to_key_press (model,key):
 global trials,results

Set the response time and correctness of the response in the first trial.
 trials[0].time = (actr.get_time(run_model) - trials[0].start) / 1000.0

 if key.lower() == trials[0].answer :
 trials[0].correct = True

Store that trial on the list of results.
 results.append(trials[0])

Remove the current trial from those being presented.
 trials = trials[1:]

If there are anymore trials to present then present the first one on the list and indicate
that a new window is not needed. This is what makes this code event-driven – the
event of pressing a key directly causes the presentation of the next trial.

 if len(trials) > 0 :
 present_trial(trials[0],False)

The collect_responses function takes one parameter which is the number of trials that are
to be run.

def collect_responses(count):

The global list of results is cleared.
 global results

 results = []

The respond_to_key_press function is setup to monitor the output-key command.
 actr.add_command("zbrodoff-response", respond_to_key_press,
 "Zbrodoff task key press response monitor")
 actr.monitor_command("output-key","zbrodoff-response")

The first trial is presented in a new window.
 present_trial(trials[0])

If the model is performing the task then it is run for up to 10 seconds times the
number of trials that need to be collected (it is assumed that the model will respond in
10 seconds or less per trial on average).

 if run_model :
 actr.run(10 * count)

If a person is performing the task then wait for the appropriate number of responses
to be recorded calling process_events in the loop.

 else:
 while len(results) < count:
 actr.process_events()

Remove the output-key monitoring.
 actr.remove_command_monitor("output-key","zbrodoff-response")
 actr.remove_command("zbrodoff-response")

The problem function takes four required parameters and one optional parameter. The
four required parameters are the strings that represent the equation to present, for example
‘A’ ‘2’ and ‘C’, and the string indicating the correct response – either ‘k’ for correct or
‘d’ for incorrect. The optional parameter controls whether the trial is shown in a visible

window or not and with the default value of None if the model is doing the task the
window will be virtual and if a person is doing the task the window will be shown.
Providing a value of True for the (optional) fifth parameter will cause the window to be
displayed while the model is doing the task.

def problem(addend1,addend2,sum,answer,visible=None):

This is only one trial, so set the list of trials to a list of only that one trial.
 global trials
 trials = [trial(1,addend1,addend2,sum,answer,visible)]

Call collect_responses to perform the task and then analyze the results.

 collect_responses(1)
 return analyze_results()

The set function takes one optional parameter which controls whether the window is
shown or not, the same as the problem function. It runs once through a random
permutation of the set of equations where a set is two instances of each of the equations
with the addends 2, 3, and 4 in each of the true and false conditions, which is a total of 24
problems.
def set(visible=None):

 global trials
 trials = create_set(1,visible)

 collect_responses(24)
 return analyze_results()

The block function takes one optional parameter like the problem and set functions. It
runs one block of the experiment, which is eight repetitions of the set of equations, or a
total of 192 problems.
def block(visible=None):
 global trials
 trials = []

 for i in range(8):
 trials = trials + create_set(1,visible)

 collect_responses(192)
 return analyze_results()

The experiment function runs the whole experiment once, which is three full blocks, or a
total of 576 trials. It takes two optional parameters. The first is to control whether the
window is shown or not as with the previous functions. The other controls whether the
analysis is printed. The default is to have the analysis printed. Note that this function also
calls reset to return the model to its initial condition. It is the only function in the
experiment to do so. The other functions allow the model to maintain the information it
has gained (which is the new chunks and the history of their use).

def experiment(visible=None,show=True):

 actr.reset()

 global trials
 trials = []

 for j in range(3):
 for i in range(8):
 trials = trials + create_set(j+1,visible)

 collect_responses(576)
 return analyze_results(show)

The compare function takes one parameter, which is the number of times to run the whole
experiment. It runs that many times through the experiment collecting the data which is
averaged and compared to the original experiment’s results.

def compare(n):

Initialize some lists to hold the average data.
 rts = [0,0,0,0,0,0,0,0,0]
 counts = [0,0,0,0,0,0,0,0,0]

Run the experiment n times with a virtual window and without displaying the
individual analysis of each run, and collect the results in the data lists.

 for i in range(n):
 r,c = experiment(False,False)
 rts = list(map(lambda x,y: x + y,rts,r))
 counts = list(map(lambda x,y: x + y,counts,c))

Compute the averages of the response times and the counts.
 rts = list(map(lambda x: x/n,rts))
 counts = list(map(lambda x: x/n,counts))

Display the data fit between the current run and the experimental data and print the
table of the results.

 actr.correlation(rts,control_data)
 actr.mean_deviation(rts,control_data)

 print_analysis(rts,counts,[1,2,3],['2','3','4'], [192,192,192])

The analyze_results function takes one optional parameter which controls whether or not
to print the table of results. It computes the average response time and number of correct
responses in the results global variable as a function of the number of blocks presented and
the numerical addend and returns a list of those two results.
def analyze_results(show=True):

 blocks = []

 addends = []
 data = dict()
 totals = dict()

 for i in results:
 if i.addend2 in totals:
 totals[i.addend2] += 1
 else:
 totals[i.addend2] = 1

 if i.correct:
 if (i.block,i.addend2) in data:
 data[(i.block,i.addend2)].append(i.time)
 else:
 data[(i.block,i.addend2)]=[i.time]
 if i.block not in blocks:
 blocks.append(i.block)
 if i.addend2 not in addends:
 addends.append(i.addend2)

 blocks.sort()
 addends.sort()

 rts =[]
 counts =[]
 for b in blocks:
 for a in addends:
 rts.append(sum(data[(b,a)]) / len(data[(b,a)]))
 counts.append(len(data[(b,a)]))

 if show:
 print_analysis(rts,counts,blocks,addends,[totals[i] for i in addends])

 return (rts, counts)

The print_analysis function takes five parameters that describe a set of data for the task.
The data is a list of response times and a list of corresponding correct answers. Then
there are two lists that indicate the blocks and addend conditions represented in the data
and finally a list of the total number of correct trials in each addend condition over all
blocks. Those data are then displayed in a table.

def print_analysis(rts,counts,blocks,addends,totals):

 print()
 print(" ", end="")
 for a,t in zip(addends,map(lambda x: x/len(blocks), totals)):
 print("%6s (%2d) " % (a, t),end="")
 print()
 for b in range(len(blocks)):
 print("Block %d" % blocks[b],end="")
 for a in range(len(addends)):
 print(" %6.3f (%2d)" %
 (rts[a+b*len(addends)],counts[a+b*len(addends)]),end="")
 print()

The data_set variable is created to hold lists that represent all the problems to present in
one set of the task.

data_set = [["a","2","c","k"],["d","2","f","k"],
 ["b","3","e","k"],["e","3","h","k"],
 ["c","4","g","k"],["f","4","j","k"],
 ["a","2","d","d"],["d","2","g","d"],
 ["b","3","f","d"],["e","3","i","d"],
 ["c","4","h","d"],["f","4","k","d"],
 ["a","2","c","k"],["d","2","f","k"],
 ["b","3","e","k"],["e","3","h","k"],
 ["c","4","g","k"],["f","4","j","k"],
 ["a","2","d","d"],["d","2","g","d"],
 ["b","3","f","d"],["e","3","i","d"],
 ["c","4","h","d"],["f","4","k","d"]]

The create_set function takes two parameters. The first indicates a number to specify
which block of the experiment is being performed and the second indicates whether or not
the trials should be shown in a visible window. It returns a randomly ordered list of 24
trial objects that make up one set of the control condition of the experiment.

def create_set(block,visible):

 return list(map(lambda x: trial(block,*x,visible=visible), actr.permute_list
(data_set)))

AGI command defaults

Two of the commands which we have seen in previous units are used slightly differently in
the zbrodoff experiment. Previously when clear-exp-window was used we passed it the
window to clear, but here we did not. If there is only one window opened by the AGI
then most of the commands will default to working with that window and it does not need
to be provided. Thus, this experiment assumes that there is only one open window and
doesn’t pass one to the clear-exp-window command. Similarly, when using add-text-to-
exp-window (and other similar functions for buttons and lines which will be used later in
the tutorial) the first parameter can be specified as nil (Lisp) or None (Python) to indicate
that the default window should be used instead of specifying one. If there are multiple
windows open when a call is made that indicates using the default window it will result in
a warning and nothing will happen.

Monitoring function notes

As discussed with the unit 2 code, functions that are called as monitors are evaluated in
separate threads and may require additional protection on changes to items which are also
accessed outside of that function. What wasn’t mentioned at that time is that when ACT-
R is running to generate those actions there is some protection because the actions
performed in the model are not evaluated in parallel – the events are evaluated one at a
time. Therefore, when the monitor for output-key is called because the model pressed a
key, you do not need to worry about threading issues between the monitoring function
and other functions which are called as events by ACT-R or the code which called run, but
it is still a potential problem when a person is performing the task since the person could

press the key in parallel with any of the code which is running the task while the monitor is
active.

However, there is another issue to consider, and that is whether any functions that are
used in the monitoring function have threading issues. In particular, when running a
model you need to be careful about the ACT-R commands that are used since even though
ACT-R will only evaluate one event at a time ACT-R itself is still “running”. Most of the
ACT-R commands presented in the tutorial are safe to use while ACT-R is running, in
particular all the AGI commands for creating and manipulating windows are safe, but
commands which run ACT-R cannot be used while it is already running and the commands
for resetting and reloading a model cannot be used while it is still running. If you are
using other ACT-R commands which are not described in the tutorial you will want to
verify with the reference manual that they are safe for use while ACT-R is running, and if
you’re using the Lisp version it is strongly recommended that you not call any
undocumented ACT-R functions since you won’t know if they are safe to use.

The :ncnar Parameter

As was mentioned in the main text there is a new parameter being set in the models for
this unit - :ncnar (normalize chunk names after run). This parameter toggles whether or
not the system cleans up the references to merged chunks’ names. If the parameter is set
to t, which is the default, then the system will ensure that every slot of a chunk in the
model which has a chunk as the value references the “true name” of the chunk in the slot
i.e. the name of the original chunk in DM with which any copies have been merged. That
operation can make debugging easier for the modeler because all the slot values will be
consistent with the chunks shown to be in DM. However, if a model generates a lot of
chunks and/or it makes many calls to one of the ACT-R commands to “run” the model it
can take time to maintain that consistency. Thus it can be beneficial to turn this parameter
off by setting it to nil when model debugging is complete and one just wants to collect the
results or when the real time needed to run a model is important. For the models in the
tutorial, leaving it enabled will typically not result in much of a run time increase (the
paired model is the worst performer in this respect running around 10% slower with it
enabled whereas the zbrodoff model shows effectively no difference since it does not
generate a lot of chunks in DM and only involves a single call to run the model), but for
tasks with more chunks in DM and/or more calls to run ACT-R one may find the savings
from turning it off to be more significant.

	Unit 4 Code Description
	Paired associate task
	Lisp
	Python

	New Commands
	Zbrodoff task
	Lisp
	Python

	AGI command defaults
	Monitoring function notes
	The :ncnar Parameter

