
ACT-R Tutorial 10-Dec-19 Unit Five

Unit 5: Activation and Context

The goal of this unit is to introduce the components of the activation equation that reflect the
context of a declarative memory retrieval.

5.1 Spreading Activation

The first context component we will consider is called spreading activation. The chunks in the
buffers provide a context in which to perform a retrieval. Those chunks can spread activation to
the chunks in declarative memory based on the contents of their slots. Those slot contents spread
an amount of activation based on their relation to the other chunks, which we call their strength
of association. This essentially results in increasing the activation of those chunks which are
related to the current context.

The equation for the activation A
i
 of a chunk i including spreading activation is defined as:

ε++= ∑∑
k j

jikjii SWBA

Measures of Prior Learning, B
i
: The base-level activation reflects the recency and frequency

of practice of the chunk as described in the previous unit.

Across all buffers: The elements k being summed over are the buffers which have been set to
provide spreading activation.

Sources of Activation: The elements j being summed over are the chunks which are in the slots
of the chunk in buffer k.

Weighting: Wkj is the amount of activation from source j in buffer k.

Strengths of Association: S
ji

is the strength of association from source j to chunk i.

ε : The noise value as described in the last unit.

The weights of the activation spread, Wkj, default to an even distribution from each slot within a
buffer. The total amount of source activation for a buffer will be called Wk and is settable for
each buffer. The Wkj values are then set to Wk /nk where nk is the number of slots which contain
chunks in the chunk in buffer k.

The strength of association, Sji, between two chunks j and i is 0 if chunk j is not the value of a
slot of chunk i and j and i are not the same chunk. Otherwise, it is set using this equation:

)ln(jji fanSS −=

1

ACT-R Tutorial 10-Dec-19 Unit Five

S: The maximum associative strength (set with the :mas parameter)

fanj: is the number of chunks in declarative memory in which j is the value of a slot plus one for
chunk j being associated with itself. [That assumes the simple case where chunk j does not
appear in more than one slot of any given chunk i which will be the case for the models in this
unit. See the reference manual or the modeling text for this unit for the more general
description.]

That is the general form of the spreading activation equation. However, by default, only the
imaginal buffer serves as a source of activation. The Wimaginal value defaults to 1 (set with the
:imaginal-activation parameter) and for all other buffers, Wbuffer, defaults to 0, but can be set to
non-zero values with that buffer’s spreading activation parameter. For the goal buffer that
parameter is :ga and for all others it is :<buffer>-activation (where <buffer> is replaced with the
actual name of the buffer for example :visual-activation for the visual buffer). Therefore, in the
default case, the activation equation can be simplified to:

ε++= ∑
j

jijii SWBA

With W reflecting the value of the :imaginal-activation parameter and Wj being W/n where n is
the number of chunks in slots of the current imaginal buffer chunk.

Here is a diagram to help you visualize how the spreading activation works. Consider an
imaginal chunk which has two chunks in its slots when a retrieval is requested and that there are
three chunks in declarative memory which match the retrieval request for which the activations
need to be determined.

2

ACT-R Tutorial 10-Dec-19 Unit Five

Each of the potential chunks also has a base-level activation which we will denote as B i, and thus
the total activation of the three chunks are:

A1 = B1 +W1S11 +W2S21

A2 = B2 +W1S12 +W2S22

A3 = B3 +W1S13 +W2S23

and with the default value of 1.0 for :imaginal-activation W1 = W2 = 1/2.

There are two notes about using spreading activation. First, by default, spreading activation is
disabled because :mas defaults to the value nil. In order to enable the spreading activation
calculation :mas must be set to a positive value. The other thing to note is that there is no
recommended value for the :mas parameter, but one almost always wants to set :mas high
enough that all of the Sji values are positive.

5.2 The Fan Effect

Anderson (1974) performed an experiment in which participants studied 26 facts such as the

3

ACT-R Tutorial 10-Dec-19 Unit Five

following sentences:

 1. A hippie is in the park.
 2. A hippie is in the church.
 3. A hippie is in the bank.
 4. A captain is in the park.
 5. A captain is in the cave.
 6. A debutante is in the bank.
 7. A fireman is in the park.
 8. A giant is in the beach.
 9. A giant is in the dungeon.
 10. A giant is in the castle.
 11. A earl is in the castle.
 12. A earl is in the forest.
 13. A lawyer is in the store.
 ...

After studying these facts, they had to judge whether they saw facts such as the following:

A hippie is in the park.
A hippie is in the cave.
A lawyer is in the store.
A lawyer is in the park.
A debutante is in the bank.
A debutante is in the cave.
A captain is in the bank.

which contained both studied sentences (targets) and new sentences (foils).

The people and locations for the study sentences could occur in any of one, two, or three of the
study sentences. That is called their fan. The following tables show the recognition latencies
from the experiment in seconds for targets and foils as a function of person fan and location fan:

 Targets Foils

Location Person Fan Person Fan
 Fan 1 2 3 Mean 1 2 3 Mean
 1 1.111 1.174 1.222 1.169 1.197 1.221 1.264 1.227
 2 1.167 1.198 1.222 1.196 1.250 1.356 1.291 1.299
 3 1.153 1.233 1.357 1.248 1.262 1.471 1.465 1.399
 Mean 1.144 1.202 1.357 1.20 1.236 1.349 1.340 1.308

The main effects in the data are that as the fan increases the time to respond increases and that
the foil sentences take longer to respond to than the targets. We will now show how these effects

4

ACT-R Tutorial 10-Dec-19 Unit Five

can be modeled using spreading activation.

5.3 Fan Effect Model

There are two models for the fan effect included with this unit. Here we will work with the one
found in the fan-model.lisp file in the unit 5 materials and the corresponding fan.lisp and fan.py
experiment code files for presenting the testing phase of the experiment (the study portion of the
task is not included for simplicity and the model already has chunks in declarative memory that
encode all of the studied sentences). This version of the task uses the vision and motor modules
to read the items and respond as we have seen in most of the tasks in the tutorial. The other
version of the model and task work differently but produce the same results, and how it does that
will be discussed in the code document for this unit.

This model can perform one trial of the testing phase when run. Here is a trace of the model
performing one trial for the target sentence “The lawyer is in the store”:
0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0 NIL
0.000 VISION visicon-update
0.000 PROCEDURAL CONFLICT-RESOLUTION
0.050 PROCEDURAL PRODUCTION-FIRED FIND-PERSON
0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL
0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.050 VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-VISUAL-LOCATION
0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.100 PROCEDURAL CLEAR-BUFFER VISUAL
0.100 PROCEDURAL CONFLICT-RESOLUTION
0.185 VISION Encoding-complete VISUAL-LOCATION0-1 NIL
0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0
0.185 PROCEDURAL CONFLICT-RESOLUTION
0.235 PROCEDURAL PRODUCTION-FIRED RETRIEVE-MEANING
0.235 PROCEDURAL CLEAR-BUFFER VISUAL
0.235 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.235 DECLARATIVE start-retrieval
0.235 DECLARATIVE RETRIEVED-CHUNK LAWYER
0.235 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL LAWYER
0.235 PROCEDURAL CONFLICT-RESOLUTION
0.250 IMAGINAL SET-BUFFER-CHUNK IMAGINAL CHUNK0
0.250 PROCEDURAL CONFLICT-RESOLUTION
0.300 PROCEDURAL PRODUCTION-FIRED ENCODE-PERSON
0.300 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.300 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.300 VISION Find-location
0.300 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION1
0.300 PROCEDURAL CONFLICT-RESOLUTION
0.350 PROCEDURAL PRODUCTION-FIRED ATTEND-VISUAL-LOCATION
0.350 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.350 PROCEDURAL CLEAR-BUFFER VISUAL
0.350 PROCEDURAL CONFLICT-RESOLUTION
0.435 VISION Encoding-complete VISUAL-LOCATION1-0 NIL
0.435 VISION SET-BUFFER-CHUNK VISUAL TEXT1
0.435 PROCEDURAL CONFLICT-RESOLUTION
0.485 PROCEDURAL PRODUCTION-FIRED RETRIEVE-MEANING

5

ACT-R Tutorial 10-Dec-19 Unit Five

0.485 PROCEDURAL CLEAR-BUFFER VISUAL
0.485 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.485 DECLARATIVE start-retrieval
0.485 DECLARATIVE RETRIEVED-CHUNK STORE
0.485 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL STORE
0.485 PROCEDURAL CONFLICT-RESOLUTION
0.535 PROCEDURAL PRODUCTION-FIRED ENCODE-LOCATION
0.535 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.535 PROCEDURAL CONFLICT-RESOLUTION
0.585 PROCEDURAL PRODUCTION-FIRED RETRIEVE-FROM-LOCATION
0.585 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.585 DECLARATIVE start-retrieval
0.585 PROCEDURAL CONFLICT-RESOLUTION
0.839 DECLARATIVE RETRIEVED-CHUNK P13
0.839 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P13
0.839 PROCEDURAL CONFLICT-RESOLUTION
0.889 PROCEDURAL PRODUCTION-FIRED YES
0.889 PROCEDURAL CLEAR-BUFFER IMAGINAL
0.889 PROCEDURAL CLEAR-BUFFER RETRIEVAL
0.889 PROCEDURAL CLEAR-BUFFER MANUAL
0.889 MOTOR PRESS-KEY KEY k
0.889 PROCEDURAL CONFLICT-RESOLUTION
1.039 PROCEDURAL CONFLICT-RESOLUTION
1.089 PROCEDURAL CONFLICT-RESOLUTION
1.099 PROCEDURAL CONFLICT-RESOLUTION
1.189 PROCEDURAL CONFLICT-RESOLUTION
1.189 ------ Stopped because no events left to process

To run the model through one trial of the test phase you can use the function fan-sentence in the
Lisp version or the function sentence in the fan module of the Python version. It takes four
parameters. The first is a string of the person for the probe sentence. The second is a string of
the location for the probe sentence. The third is whether the correct answer is true or false (t/nil
in Lisp and True/False in Python), and the last is either person or location (as a symbol in Lisp
and a string in Python) to choose which of the retrieval productions is used (more on that later).
Here are examples which would produce the trace shown above:

? (fan-sentence "lawyer" "store" t 'person)

>>> fan.sentence('lawyer','store',True,'person')

The model can be run over each of the conditions to produce a data fit using the fan-experiment
function in Lisp or the experiment function from the fan module in Python. Those functions
take no parameters and will report the fit to the data along with the tables of response times and
an indication of whether the answer provided was correct. [Note, you will probably want to set
the :v parameter in the model to nil and reload it before running the whole experiment to disable
the trace so that it runs must faster]:

CORRELATION: 0.864
MEAN DEVIATION: 0.053

6

ACT-R Tutorial 10-Dec-19 Unit Five

TARGETS:
 Person fan
 Location 1 2 3
 fan
 1 1.099 (T) 1.157 (T) 1.205 (T)
 2 1.157 (T) 1.227 (T) 1.286 (T)
 3 1.205 (T) 1.286 (T) 1.354 (T)

FOILS:
 1 1.245 (T) 1.290 (T) 1.328 (T)
 2 1.290 (T) 1.335 (T) 1.373 (T)
 3 1.328 (T) 1.373 (T) 1.411 (T)

Two ACT-R parameters were estimated to produce that fit to the data. They are the latency
factor (:lf), which is the F in the retrieval latency equation from the last unit, set to .63 and the
maximum associative strength (:mas), which is the S parameter in the Sji equation above, set to
1.6. The spreading activation value for the imaginal buffer is set to the default value of 1.0. We
will now look at how this model performs the task and how spreading activation leads to the
effects in the data.

5.3.1 Model Representations

The study sentences are encoded in chunks placed into the model’s declarative memory like this:

 (add-dm
 (p1 ISA comprehend-sentence relation in arg1 hippie arg2 park)
 (p2 ISA comprehend-sentence relation in arg1 hippie arg2 church)
 (p3 ISA comprehend-sentence relation in arg1 hippie arg2 bank)
 (p4 ISA comprehend-sentence relation in arg1 captain arg2 park)
 (p5 ISA comprehend-sentence relation in arg1 captain arg2 cave)
 (p6 ISA comprehend-sentence relation in arg1 debutante arg2 bank)
 (p7 ISA comprehend-sentence relation in arg1 fireman arg2 park)
 (p8 ISA comprehend-sentence relation in arg1 giant arg2 beach)
 (p9 ISA comprehend-sentence relation in arg1 giant arg2 castle)
 (p10 ISA comprehend-sentence relation in arg1 giant arg2 dungeon)
 (p11 ISA comprehend-sentence relation in arg1 earl arg2 castle)
 (p12 ISA comprehend-sentence relation in arg1 earl arg2 forest)
 (p13 ISA comprehend-sentence relation in arg1 lawyer arg2 store) ...)

They represent the items from the study portion of the experiment in the form of an association
among the concepts e.g. p13 is encoding the sentence “The lawyer is in the store”.

There are also meaning chunks which connect the text read from the display to the concepts. For
instance, relevant to chunk p13 above we have:

 (lawyer ISA meaning word "lawyer")
 (store ISA meaning word "store")

The base-level activations of these meaning chunks have been set to 10 to reflect the fact that
they are well practiced and should not fail to be retrieved, but the activations of the comprehend-
sentence chunks are left at the default of 0 to reflect that they are relatively newer having only

7

ACT-R Tutorial 10-Dec-19 Unit Five

been learned during this experiment.

5.3.2 Perceptual Encoding

In this section we will briefly describe the productions that perform the perceptual parts of the
task. This is similar to the steps that have been done in previous models and thus it should be
familiar. One small difference is that this model does not use explicit state markers in the goal
(in fact it does not place a chunk into the goal buffer at all) and instead relies on the states of the
buffers and modules involved to constrain the ordering of the production firing.

Only the person and location are displayed for the model to perform the task. If the model were
to read all of the words in the sentence it would be difficult to be able to respond fast enough to
match the experimental data, and in fact studies of the fan effect done using an eye tracker verify
that participants generally only fixate those two words from the sentences during the testing
trials. Thus to keep the model simple only the critical words are shown on the display. To read
and encode the words the model goes through a four step process.

The first production to fire issues a request to the visual-location buffer to find the person word
and it also requests that the imaginal module create a new chunk to hold the sentence being read
from the screen:

 (P find-person
 ?visual-location>
 buffer unrequested
 ?imaginal>
 state free
 ==>
 +imaginal>

 +visual-location>
 ISA visual-location
 screen-x lowest)

The first query on the LHS of that production has not been used previously in the tutorial. The
check that the visual-location buffer holds a chunk which was not requested is a way to test that
a new display has been presented. The buffer stuffing mechanism will automatically place a
chunk into the buffer if it is empty when the screen changes and because that chunk was not the
result of a request it is tagged as unrequested. Thus, this production will match whenever the
screen has recently changed if the visual-location buffer was empty at the time of the change
and the imaginal module is not busy.

The next production to fire harvests the requested visual-location and requests a shift of
attention to it:

 (P attend-visual-location

8

ACT-R Tutorial 10-Dec-19 Unit Five

 =visual-location>

 ?visual-location>
 buffer requested
 ?visual>
 state free
 ==>
 +visual>
 cmd move-attention
 screen-pos =visual-location)

Then the chunk in the visual buffer is harvested and a retrieval request is made to request the
chunk that represents the meaning of that word:

 (P retrieve-meaning
 =visual>
 ISA visual-object
 value =word
 ==>
 +retrieval>
 ISA meaning
 word =word)

Finally, the retrieved chunk is harvested and the meaning chunk is placed into a slot of the chunk
in the imaginal buffer:

 (P encode-person
 =retrieval>

 =imaginal>
 ISA comprehend-sentence
 arg1 nil
 ==>
 =imaginal>
 arg1 =retrieval
 +visual-location>
 ISA visual-location
 screen-x highest)

This production also issues the visual-location request to find the location word and the same
sequence of productions fire to attend and encode the location ending with the encode-location
production firing instead of encode-person.

9

ACT-R Tutorial 10-Dec-19 Unit Five

5.3.3 Determining the Response

After the encoding has happened the imaginal chunk will look like this for the sentence “The
lawyer is in the store.”:

IMAGINAL: CHUNK0-0
CHUNK0-0
 ARG1 LAWYER
 ARG2 STORE

At that point one of these two productions will be selected and fired to retrieve a study sentence:

 (P retrieve-from-person
 =imaginal>
 ISA comprehend-sentence
 arg1 =person
 arg2 =location
 ?retrieval>
 state free
 buffer empty
 ==>
 =imaginal>
 +retrieval>
 ISA comprehend-sentence
 arg1 =person)

 (P retrieve-from-location
 =imaginal>
 ISA comprehend-sentence
 arg1 =person
 arg2 =location
 ?retrieval>
 state free
 buffer empty
 ==>
 =imaginal>
 +retrieval>
 ISA comprehend-sentence
 arg2 =location)

A thorough model of the task would have those two productions competing and one would
randomly be selected. However, to simplify things for demonstration the experiment code which

10

ACT-R Tutorial 10-Dec-19 Unit Five

runs this task forces one or the other to be selected for each trial. The data is then averaged over
two runs of each trial with one trial using retrieve-from-person and the other using retrieve-from-
location.

One important thing to notice is that those productions request the retrieval of a studied chunk
based only on one of the items from the probe sentence. By doing so it ensures that one of the
study sentences will be retrieved instead of a complete failure in the event of a foil. If retrieval
failure were used by the model to detect the foils then there would be no difference in response
times for the foil probes because the time to fail is based solely upon the retrieval threshold.
However, the data clearly shows that the fan of the items affects the time to respond to both
targets and foils.

After one of those productions fires a chunk representing a study trial will be retrieved and one
of the following productions will fire to produce a response:

 (P yes
 =imaginal>
 ISA comprehend-sentence
 arg1 =person
 arg2 =location
 =retrieval>
 ISA comprehend-sentence
 arg1 =person
 arg2 =location
 ?manual>
 state free
 ==>
 +manual>
 cmd press-key
 key "k")

 (P mismatch-person
 =imaginal>
 ISA comprehend-sentence
 arg1 =person
 arg2 =location
 =retrieval>
 ISA comprehend-sentence
 - arg1 =person
 ?manual>
 state free
 ==>
 +manual>

11

ACT-R Tutorial 10-Dec-19 Unit Five

 ISA press-key
 key "d")

 (P mismatch-location
 =imaginal>
 ISA comprehend-sentence
 arg1 =person
 arg2 =location
 =retrieval>
 ISA comprehend-sentence
 - arg2 =location
 ?manual>
 state free
 ==>
 +manual>
 cmd press-key
 key "d")

If the retrieved sentence matches the probe then the model responds with the true response, “k”,
and if either one of the components does not match then the model responds with “d”.

5.4 Analyzing the Retrieval of the Critical Study Chunk in the Fan model

The perceptual and encoding actions the model performs for this task have a cost of .585 seconds
and the time to respond after retrieving a comprehend-sentence chunk is .260 seconds. Those
times are constant across all trials. The difference in the conditions will result from the time it
takes to retrieve the studied sentence. Recall from the last unit that the time to retrieve a chunk i
is based on its activation and specified by the equation:

iA
i FeTime −=

Thus, it is differences in the activations of the chunks representing the studied items which will
result in the different times to respond to different trials.

The chunk in the imaginal buffer at the time of the retrieval (after either retrieve-from-person or
retrieve-from-location fires) will look like this:

IMAGINAL: CHUNK0-0
CHUNK0-0
 ARG1 person

12

ACT-R Tutorial 10-Dec-19 Unit Five

 ARG2 location

where person and location will be the chunks that represent the meanings for the particular probe
being presented.

The retrieval request will look like this for the person:

+retrieval>
 arg1 person

or this for the location:

+retrieval>
 arg2 location

depending on which of the productions was chosen to perform the retrieval.

The important thing to note is that because the sources of activation in the buffer are the same for
either retrieval request the spreading activation will not differ between the two cases. You might
wonder then why we would need to have both options. That will be described in the detailed
examples below.

5.4.1 A note on chunks in buffers and the :dcnn parameter

Something that has been mentioned before is that buffers hold copies of chunks. A side effect of
that is that when the name of that chunk is used (as is done with the retrievals in the encode-
person and encode-location productions) it does not match the name of the original chunk. Thus,
the chunk in the imaginal buffer will look like this after the encode-person production fires and
the modification to the imaginal buffer occurs:

CHUNK0-0
 ARG1 LAWYER-0

because the copy of the lawyer chunk, named laywer-0, which was in the retrieval buffer was
placed into the arg1 slot.

The lawyer-0 chunk is not modified by the model while it is in the retrieval buffer, and the
retrieval buffer is also cleared by that production. Thus, once that clearing occurs the laywer-0
chunk is merged into declarative memory and because it is a perfect match to the lawyer chunk
those two chunks are merged together so that the names lawyer-0 and lawyer refer to the same

13

ACT-R Tutorial 10-Dec-19 Unit Five

chunk. Both names may occur however in the slots of other chunks.

As discussed in the previous unit, the :ncnar parameter can be used to have the system normalize
such references to make it easier to debug the system. If :ncnar is enabled (not nil) then the
setting of the :dcnn (dynamic chunk name normalizing) parameter determines when those names
are corrected. If :dcnn is set to t, which is the default value, then those changes are made
immediately while the model runs. Since this model leaves the :ncnar and :dcnn parameters at
their default values of t, the chunk in the imaginal buffer will be changed to look like this after
the lawyer-0 and lawyer chunks are merged:

CHUNK0-0
 ARG1 LAWYER

If :dcnn were set to nil, then the arg1 slot would continue to hold the value lawyer-0 until the
model stopped running at which time the chunk0-0 chunk would be updated if the :ncnar
parameter were not nil. The important thing to note is that regardless of which name is shown in
the slot, once those chunks have been merged the same chunk is being referenced whether a
particular slot value is normalized or not.

Often having :dcnn and :ncnar set to t makes it easier to debug a model, but sometimes it may be
useful to disable the dynamic updating so that one can more directly track a reference to a chunk
from a buffer, even if it is eventually merged. For this unit the demonstration models leave
:dcnn and :ncnar set to their default values of t, thus the slot values are dynamically adjusted as
the model runs.

5.4.2 A simple target trial

The first case we will look at is the target sentence “The lawyer is in the store”. Both the person
and location in this sentence have a fan of one in the experiment – they each only occur in that
one study sentence.

The imaginal buffer’s chunk looks like this at the time of the critical retrieval (as discussed
above):

CHUNK0-0
 ARG1 LAWYER
 ARG2 STORE

We will now look at the retrieval which results from the retrieve-from-person production firing.
For the following traces we have enabled the activation trace parameter (:act) by setting it to t.
That causes additional information to be displayed in the trace when a retrieval attempt is made.

14

ACT-R Tutorial 10-Dec-19 Unit Five

It shows all of the chunks that were attempted to be matched, and then for each that does match it
shows all the details of the activation computation. Here is the trace of the model when that
retrieval occurs:
0.585 DECLARATIVE start-retrieval
Chunk P13 matches
Chunk P12 does not match
Chunk P11 does not match
Chunk P10 does not match
Chunk P9 does not match
Chunk P8 does not match
Chunk P7 does not match
Chunk P6 does not match
Chunk P5 does not match
Chunk P4 does not match
Chunk P3 does not match
Chunk P2 does not match
Chunk P1 does not match
Computing activation for chunk P13
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (STORE LAWYER)
 Spreading activation 0.45342642 from source STORE level 0.5 times Sji 0.90685284
 Spreading activation 0.45342642 from source LAWYER level 0.5 times Sji 0.90685284
Total spreading activation: 0.90685284
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P13 has an activation of: 0.90685284
Chunk P13 has the current best activation 0.90685284
Chunk P13 with activation 0.90685284 is the best
0.585 PROCEDURAL CONFLICT-RESOLUTION
0.839 DECLARATIVE RETRIEVED-CHUNK P13

In this case, the only chunk which matches the request is chunk p13. Note that this would look
exactly the same if the retrieve-from-location production had fired because it would still be the
only chunk that matched the request and the sources of activation are the same regardless of
which one fires.

Remember that we have set the parameter F to .63, the parameter S to 1.6, and the base-level
activation for the comprehend-sentence chunks is 0 in this model.

Looking at this trace, we see the Sji values from store to p13 and lawyer to p13 are both
approximately .907. That comes from the equation:

)ln(jji fanSS −=

The value of S was estimated to fit the data as 1.6 and the chunk fan of both the store and lawyer
chunks is 2 (not the same as the fan from the experiment which is only one) because they each
occur as a slot value in only the p13 chunk plus each chunk is always credited with a reference to
itself. Then substituting into the equation we get:

15

ACT-R Tutorial 10-Dec-19 Unit Five

 0.90685284)2ln(6.1)13)(()13)((=−== plawyerpstore SS

The Wj values (called the level in the activation trace) are .5 because the source activation from
the imaginal buffer is the 1.0 value which was set and there are two source chunks.

Thus the activation of chunk p13 is:

∑+=
j

jijii SWBA

907.)907.*5(.)907.*5(.013 =++=pA

Finally, we see the time to complete the retrieval (the time between the start-retrieval and the
retrieved-chunk actions) is .254 seconds (.839- .585) and that was computed as:

iA
i FeTime −=

0.2543521863. 907.
13 == −eTimep

Adding that retrieval time to the fixed costs of .585 seconds to do the perception and encoding
and the .26 seconds to perform the response gives us a total of 1.099 seconds, which is the value
in the fan 1-1 cell of the model data for targets presented above.

Now that we have looked at the details of how the retrieval and total response times are
determined for the simple case we will look at a few other cases.

5.4.3 A different target trial

The target sentence “The hippie is in the bank” is a more interesting case to look at. Hippie is
the person in three of the study sentences and bank is the location in two of them. Now we will
see why it takes the model longer to respond to such a probe. Here are the critical components
from the trace when retrieve-from-person is chosen:
Computing activation for chunk P3
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (BANK HIPPIE)
 Spreading activation 0.25069386 from source BANK level 0.5 times Sji 0.5013877
 Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566
Total spreading activation: 0.3575467
Adding transient noise 0.0

16

ACT-R Tutorial 10-Dec-19 Unit Five

Adding permanent noise 0.0
Chunk P3 has an activation of: 0.3575467
Chunk P3 has the current best activation 0.3575467
Computing activation for chunk P2
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (BANK HIPPIE)
 Spreading activation 0.0 from source BANK level 0.5 times Sji 0.0
 Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566
Total spreading activation: 0.10685283
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P2 has an activation of: 0.10685283
Computing activation for chunk P1
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (BANK HIPPIE)
 Spreading activation 0.0 from source BANK level 0.5 times Sji 0.0
 Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566
Total spreading activation: 0.10685283
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P1 has an activation of: 0.10685283
Chunk P3 with activation 0.3575467 is the best

There are three chunks that match the request for a chunk with an arg1 value of hippie. Each
receives the same amount of activation being spread from hippie. Because hippie is a member of
three chunks it has a chunk fan of 4 and thus the S(hippie)i value is:

 0.21370566)4ln(6.1)(=−=ihippieS

Chunk p3 also contains the chunk bank in its arg2 slot and thus receives the source spreading
from it as well.

Now we will look at the case when retrieve-from-location fires for this probe sentence:
Computing activation for chunk P6
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (BANK HIPPIE)
 Spreading activation 0.25069386 from source BANK level 0.5 times Sji 0.5013877
 Spreading activation 0.0 from source HIPPIE level 0.5 times Sji 0.0
Total spreading activation: 0.25069386
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P6 has an activation of: 0.25069386
Chunk P6 has the current best activation 0.25069386
Computing activation for chunk P3

17

ACT-R Tutorial 10-Dec-19 Unit Five

Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (BANK HIPPIE)
 Spreading activation 0.25069386 from source BANK level 0.5 times Sji 0.5013877
 Spreading activation 0.10685283 from source HIPPIE level 0.5 times Sji 0.21370566
Total spreading activation: 0.3575467
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P3 has an activation of: 0.3575467
Chunk P3 is now the current best with activation 0.3575467
Chunk P3 with activation 0.3575467 is the best

In this case there are only two chunks which match the request for a chunk with an arg2 value of
bank.

Regardless of which production fired to request the retrieval, chunk p3 had the highest activation
because it received spreading activation from both sources. Thus, even if there is more than one
chunk which matches the retrieval request issued by retrieve-from-person or retrieve-from-
location the correct study sentence will always be retrieved because its activation will be the
highest, and that activation value will be the same in both cases.

Notice that the activation of chunk p3 is less than the activation that chunk p13 had in the
previous example because the source activation being spread to p3 is less. That is because the
sources in that case have a higher fan, and thus a lesser Sji. Because the activation is smaller, it
takes longer to retrieve such a fact and that gives us the difference in response time effect of fan
in the data.

5.4.4 A foil trial

Now we will look at a foil trial. The foil probe “The giant is in the bank” is similar to the target
that we looked at in the last section. The person has an experimental fan of three and the
location has an experimental fan of two. This time however there is no matching study sentence.
Here are the critical components from the trace when retrieve-from-person is chosen:
Computing activation for chunk P10
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (BANK GIANT)
 Spreading activation 0.0 from source BANK level 0.5 times Sji 0.0
 Spreading activation 0.10685283 from source GIANT level 0.5 times Sji 0.21370566
Total spreading activation: 0.10685283
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P10 has an activation of: 0.10685283
Chunk P10 has the current best activation 0.10685283
Computing activation for chunk P9
Computing base-level
Starting with blc: 0.0

18

ACT-R Tutorial 10-Dec-19 Unit Five

Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (BANK GIANT)
 Spreading activation 0.0 from source BANK level 0.5 times Sji 0.0
 Spreading activation 0.10685283 from source GIANT level 0.5 times Sji 0.21370566
Total spreading activation: 0.10685283
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P9 has an activation of: 0.10685283
Chunk P9 matches the current best activation 0.10685283
Computing activation for chunk P8
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (BANK GIANT)
 Spreading activation 0.0 from source BANK level 0.5 times Sji 0.0
 Spreading activation 0.10685283 from source GIANT level 0.5 times Sji 0.21370566
Total spreading activation: 0.10685283
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P8 has an activation of: 0.10685283
Chunk P8 matches the current best activation 0.10685283
Chunk P10 chosen among the chunks with activation 0.10685283

There are three chunks that match the request for a chunk with an arg1 value of giant and each
receives the same amount of activation being spread from giant. However, none contain an arg2
value of bank. Thus they only get activation spread from one source and have a lesser activation
value than the corresponding target sentence had. Because the activation is smaller, the retrieval
time is greater. This results in the effect of foil trials taking longer than target trials.

Before concluding this section however, let us look at the trace if retrieve-from-location were to
fire for this foil:
Computing activation for chunk P6
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (BANK GIANT)
 Spreading activation 0.25069386 from source BANK level 0.5 times Sji 0.5013877
 Spreading activation 0.0 from source GIANT level 0.5 times Sji 0.0
Total spreading activation: 0.25069386
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P6 has an activation of: 0.25069386
Chunk P6 has the current best activation 0.25069386
Computing activation for chunk P3
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing activation spreading from buffers
 Spreading 1.0 from buffer IMAGINAL chunk CHUNK0-0
 sources of activation are: (BANK GIANT)
 Spreading activation 0.25069386 from source BANK level 0.5 times Sji 0.5013877

19

ACT-R Tutorial 10-Dec-19 Unit Five

 Spreading activation 0.0 from source GIANT level 0.5 times Sji 0.0
Total spreading activation: 0.25069386
Adding transient noise 0.0
Adding permanent noise 0.0
Chunk P3 has an activation of: 0.25069386
Chunk P3 matches the current best activation 0.25069386
Chunk P3 chosen among the chunks with activation 0.25069386

In this case there are only two chunks which match the request for a chunk with an arg2 value of
bank. Again, the activation of the chunk retrieved is less than the corresponding target trial, but
it is not the same as when retrieve-from-person fired. That is why the model is run with each of
those productions fired once for each probe with the results being averaged together. Otherwise
the foil data would only show the effect of fan for the item that was used to retrieve the study
chunk.

5.5 Partial Matching

Up to now models have either always retrieved a chunk which matched the retrieval request or
resulted in a failure to retrieve anything. Now we will look at modeling errors in recall in more
detail. There are two kinds of errors that can occur. One is an error of commission when the
wrong item is recalled. This will occur when the activation of the wrong chunk is greater than
the activation of the correct chunk. The second is an error of omission when nothing is recalled.
This will occur when no chunk has activation above the retrieval threshold.

We will continue to look at productions from the fan model for now. In particular, this
production requests the retrieval of a chunk:

(P retrieve-from-person
 =imaginal>
 ISA comprehend-sentence
 arg1 =person
 arg2 =location
 ?retrieval>
 state free
 buffer empty
 ==>
 =imaginal>
 +retrieval>
 ISA comprehend-sentence
 arg1 =person)

20

ACT-R Tutorial 10-Dec-19 Unit Five

In this case an attempt is being made to retrieve a chunk with a particular person (the value
bound to =person) that had been studied. If =person were the chunk giant, this retrieval request
would be looking for a chunk with giant in the arg1 slot. As was shown above, there were three
chunks in the model from the study set which matched that request and one of those was
retrieved.

However, let us consider the case where there had been no study sentences with the person giant
but there had been a sentence with the person titan in the location being probed with giant i.e.
there was a study sentence “The titan is in the bank” and the test sentence is now “The giant is in
the bank”. In this situation one might expect that some human participants might incorrectly
classify the probe sentence as one that was studied because of the similarity between the words
giant and titan. The current model however could not make such an error.

Producing errors like that requires the use of the partial matching mechanism. When partial
matching is enabled (by setting the :mp parameter to a number) the similarity between the
chunks in the retrieval request and the chunks in the slots of the chunks in declarative memory
are taken into consideration. The chunk with the highest activation is still the one retrieved, but
with partial matching enabled that chunk might not have the exact slot values as specified in the
retrieval request.

Adding the partial matching component into the activation equation, we now have the activation
Ai of a chunk i defined fully as:

ε+++= ∑∑∑
l

li
k j

jikjii PMSWBA

 Bi, Wkj, Sji, and ε have been discussed previously. The new term is the partial matching
component.

Specification elements l: The matching summation is computed over the slot values of the
retrieval specification.

Match Scale, P: This reflects the amount of weighting given to the similarity in slot l. This is a
constant across all slots and is set with the :mp parameter (it is also often referred to as the
mismatch penalty).

Match Similarities, Mli: The similarity between the value l in the retrieval specification and the
value in the corresponding slot of chunk i.

21

ACT-R Tutorial 10-Dec-19 Unit Five

The similarity value, the Mli, can be set by the modeler along with the scale on which they are
defined. The scale range is set with a maximum similarity (set using the :ms parameter) and a
maximum difference (set using the :md parameter). By default, :ms is 0 and :md is -1.0. The
similarity between anything and itself is automatically set to the maximum similarity and by
default the similarity between any other pair of values is the maximum difference. Note that
maximum similarity defaults to 0 and similarity values are actually negative. If a slot value
matches the request then it does not penalize the activation, but if it mismatches then the
activation is decreased. To demonstrate partial matching in use we will look at two example
models.

5.6 Grouped Recall

The first of these models is called grouped and found in the gropued-model.lisp file with the unit
5 materials and the task is implemented in the grouped file for each language. This is a simple
demonstration model of a grouped recall task which is based on a larger model of a complex
recall experiment. As with the fan model, the studied items are already specified in the model, so
it does not model the encoding and study of the items. In addition, the response times and error
profiles of this model are not fit to any data. This demonstration model is designed to show the
mechanism of partial matching and how it can lead to errors of commission and errors of
omission. Because the model is not fit to any data, and the mechanism being studied does not
rely on any of the perceptual or motor modules of ACT-R, they are not being used, and instead
only a chunk in the goal buffer is used to hold both the task state and problem representation.
This technique of using only the cognitive system in ACT-R can be useful when modeling a task
where the timing is not important or other situations where accounting for “real world”
interaction is not necessary to accomplish the objectives of the model. The experiment
description text for this unit gives the details of how that is accomplished in this model and in an
alternate version of the fan model which also does not use the perceptual and motor modules.

If you check the parameter settings for this model you will see that it has a value of .15 for the
transient noise s parameter and a retrieval threshold of -.5. Also, to simplify the demonstration,
the spreading activation described above is disabled by not providing a value for the :mas
parameter. This model is set up to recall a list of nine items which are encoded in groups of
three elements. The list that should be recalled is (123) (456) (789). To run the model, call the
grouped-recall function in Lisp or the recall function from the grouped module in Python. That
will print out the trace of the model doing the task and return a list of the model’s responses.
Because the :seed parameter is set in the model you will always get the same result with the
model recalling the sequence 1,2,3,4,6,5,7,8 (you can remove the setting of the :seed parameter
to produce different results if you would like to explore the model further). It makes two errors

22

ACT-R Tutorial 10-Dec-19 Unit Five

in recalling that list, it mis-ordered the recall of the 5 and 6 and it failed to recall the last item, 9.
We will now look at the details of how those errors happened.

5.6.1 Error of Commission

If one turns on the activation trace for this model you will again see the details of the activation
computations taking place. The following is from the activation trace of the error of commission
when the model recalls 6 in the second position of the second group instead of the correct item,
5. The critical comparison is between item5, which should be retrieved and item6, which is
instead retrieved:

Computing activation for chunk ITEM5
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing partial matching component
 comparing slot GROUP
 Requested: = GROUP2 Chunk's slot value: GROUP2
 similarity: 0.0
 effective similarity value is 0.0
 comparing slot POSITION
 Requested: = SECOND Chunk's slot value: SECOND
 similarity: 0.0
 effective similarity value is 0.0
Total similarity score 0.0
Adding transient noise -0.59634924
Adding permanent noise 0.0
Chunk ITEM5 has an activation of: -0.59634924
Chunk ITEM5 has the current best activation -0.59634924
Computing activation for chunk ITEM6
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing partial matching component
 comparing slot GROUP
 Requested: = GROUP2 Chunk's slot value: GROUP2
 similarity: 0.0
 effective similarity value is 0.0
 comparing slot POSITION
 Requested: = SECOND Chunk's slot value: THIRD
 similarity: -0.5
 effective similarity value is -0.5
Total similarity score -0.5
Adding transient noise 0.11740411
Adding permanent noise 0.0
Chunk ITEM6 has an activation of: -0.3825959
Chunk ITEM6 is now the current best with activation -0.3825959
...
Chunk ITEM6 with activation -0.3825959 is the best

In these examples the base-level activations, Bi, have their default value of 0, the match scale, P,
has the value 1, and the only noise value is the transient component with an s of 0.15. So the
calculations are really just a matter of adding up the match similarities and adding the transient

23

ACT-R Tutorial 10-Dec-19 Unit Five

noise.

One thing to notice is that the :recently-retrieved request parameter is specified in all of the
requests the model makes to retrieve the items, like this one:

 +retrieval>
 isa item
 group =group
 position second
 :recently-retrieved nil

Thus, only those chunks without a declarative finst are attempted for the matching. :recently-
retrieved is not a slot of the chunk and thus does not undergo the partial matching calculation.

Looking at the matching of item5 above we see that it matches on both the group and position
slots resulting in the addition of 0 to the base-level activation as a result of mismatch. It then
receives an addition of about -0.596 in noise which is then its final activation value.

Next comes the matching of item6. The group slot matches the requested value of group2, but
the position slots do not match. The requested value is second but item6 has a value of third.
The similarity between second and third is set to -0.5 in the model, and that value is added to the
activation. Then a transient noise of .117 is added to the activation for a total activation of -.383.
This value is greater than the activation of item5 and thus because of random fluctuations item6
gets retrieved in error.

The similarities between the different positions are defined in the model using the set-similarities
command:

(set-similarities
 (first second -0.5)
 (second third -0.5))

Similarity values are symmetric, thus it is not necessary to also specify (second first -0.5). The
similarity between a chunk and itself has the value of maximum similarity by default therefore it
is not necessary to specify (first first 0), and so on, for all the positions. Also, by default,
different chunks have the maximum difference thus the similarity between first and third is -1
since it is not specified.

5.6.2 Error of Omission

Here is the portion of the detailed trace relevant to the failure to recall the ninth item:

24

ACT-R Tutorial 10-Dec-19 Unit Five

Computing activation for chunk ITEM9
Computing base-level
Starting with blc: 0.0
Total base-level: 0.0
Computing partial matching component
 comparing slot GROUP
 Requested: = GROUP3 Chunk's slot value: GROUP3
 similarity: 0.0
 effective similarity value is 0.0
 comparing slot POSITION
 Requested: = THIRD Chunk's slot value: THIRD
 similarity: 0.0
 effective similarity value is 0.0
Total similarity score 0.0
Adding transient noise -0.5353896
Adding permanent noise 0.0
Chunk ITEM9 has an activation of: -0.5353896
Chunk ITEM9 has the current best activation -0.5353896
No chunk above the retrieval threshold: -0.5

We see that item9 starts out with an activation of 0 because it matches perfectly with the request
and thus receives no penalty. However, it gets a transient noise of -.535 added to it which pushes
its activation below the retrieval threshold and thus it cannot be retrieved. Because it is the only
item chunk which is not marked as recently-retrieved it is the only one that can potentially be
retrieved. Thus there are no chunks above the threshold and a retrieval failure occurs.

5.7 Simple Addition

The other example model for the unit which uses partial matching is fit to experimental data.
The task is an experiment performed by Siegler and Shrager on the relative frequencies of
different responses by 4 year olds to addition problems. The children were asked to recall the
answers to simple addition problems without counting on their fingers or otherwise computing
the answer. It seems likely that many of the kids did not know the answers to the larger
problems that were tested. So we will only focus on the addition table from 1+1 to 3+3, and here
are the data they reported:

 0 1 2 3 4 5 6 7 8 Other (includes no response)
 1+1 - .05 .86 - .02 - .02 - - .06
 1+2 - .04 .07 .75 .04 - .02 - - .09
 1+3 - .02 - .10 .75 .05 .01 .03 - .06
 2+2 .02 - .04 .05 .80 .04 - .05 - -
 2+3 - - .07 .09 .25 .45 .08 .01 .01 .06
 3+3 .04 - - .05 .21 .09 .48 - .02 .11

25

ACT-R Tutorial 10-Dec-19 Unit Five

The siegler model is found in the siegler-model.lisp file of the unit and the code to perform the
experiment is found in the siegler file of the code directories. As with the grouped task, there is
no interface generated for the task, and thus it is not possible to run yourself through the
experiment. That should not be too much of a problem however because one would guess that
you would make very few errors if presented with such a task.

You can run the model through this task using the function called siegler-experiment in Lisp or
experiment in the siegler module of Python. It requires one parameter which is how many times
to present each of the problems, and it will report the results of those trials and the comparison to
the data from the children. Since there is no learning involved with this experiment, for
simplicity, the model is reset before each trial of the task. It is presented the numbers to add
aurally and responds by speaking a number. Here is an example of the output:

CORRELATION: 0.966
MEAN DEVIATION: 0.054
 0 1 2 3 4 5 6 7 8 Other
1+1 0.01 0.12 0.74 0.11 0.01 0.00 0.00 0.00 0.00 0.02
1+2 0.00 0.00 0.14 0.70 0.12 0.00 0.00 0.00 0.00 0.03
1+3 0.00 0.00 0.00 0.15 0.76 0.04 0.00 0.00 0.00 0.04
2+2 0.00 0.00 0.01 0.13 0.79 0.03 0.00 0.00 0.00 0.04
2+3 0.00 0.00 0.00 0.02 0.25 0.51 0.07 0.01 0.00 0.14
3+3 0.00 0.00 0.00 0.00 0.01 0.09 0.64 0.07 0.00 0.18

Like the fan model, this model does not rely on the goal buffer at all for tracking its progress.
The model builds up its representation of the problem in the imaginal buffer and relies on the
module states and buffer contents to determine what needs to be done next. Most of the
conditions and actions in the productions for this model are similar to those that have been used
in other tutorial models up until now. Thus, you should be able to understand and follow the
basic operation of the model and we will not cover it in detail here. However, there are two
productions which have actions that have not been used previously in the tutorial. We will
describe those new actions and then look at how we determined the parameter settings used to
match the data.

5.7.1 A Modification Request

This production in the siegler model has an action for the imaginal buffer which has not been
discussed previously in the tutorial:

(p harvest-arg2
 =retrieval>
 =imaginal>
 isa plus-fact

26

ACT-R Tutorial 10-Dec-19 Unit Five

 addend2 nil
 ?imaginal>
 state free
 ==>
 *imaginal>
 addend2 =retrieval)

An action for a buffer which begins with a * is called a modification request. It works similarly
to a request which is specified with a + in that it is asking the buffer’s module to perform some
action which can vary from module to module. The modification request differs from the normal
request in that it does not clear the buffer automatically in the process of making the request.
Not every module supports modification requests, but both the goal and imaginal modules do
and they both handle them in the same manner.

A modification request to the goal or imaginal buffer is a request for the module to modify the
chunk that is in the buffer in the same way that a production would modify the chunk with an =
action. With the goal module the only difference between an =goal action and a *goal action
will be which module is credited with the action. Consider this production from the count model
in unit1:

(p start
 =goal>
 ISA count-from
 start =num1
 count nil
 ==>
 =goal>
 ISA count-from
 count =num1
 +retrieval>
 ISA count-order
 first =num1
)

The =goal action in that production results in this output in the trace:

 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL

Indicating that the procedural module modified the chunk in the goal buffer. If instead the start
production used a *goal action like this:

(p start
 =goal>

27

ACT-R Tutorial 10-Dec-19 Unit Five

 ISA count-from
 start =num1
 count nil
 ==>
 *goal>
 ISA count-from
 count =num1
 +retrieval>
 ISA count-order
 first =num1
)

Then the trace would look like this:

 0.050 PROCEDURAL MODULE-MOD-REQUEST GOAL
 0.050 GOAL MOD-BUFFER-CHUNK GOAL

It shows that the procedural module made a modification request to the goal buffer and then the
goal module actually performed the modification to the chunk in the buffer. That may not seem
like an important distinction, but if one is trying to compare a model’s actions to human brain
activity then knowing “where” an action occurred is important.

For the imaginal module there is another difference between the =imaginal and the *imaginal
actions. As we saw previously a request to create a chunk in the imaginal buffer has a time cost
of 200ms. The same cost applies to modifications made to the chunk in the imaginal buffer by
the imaginal module, whereas the production makes a modification immediately. Therefore if
that start production were instead using the imaginal buffer (the retrieval request has also been
removed since all that matters for this discussion is the modification of the imaginal buffer by
this production):

(p start
 =imaginal>
 ISA count-from
 start =num1
 count nil
 ==>
 =imaginal>
 ISA count-from
 count =num1
)

We would see this trace for the =imaginal action:

28

ACT-R Tutorial 10-Dec-19 Unit Five

0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MOD-BUFFER-CHUNK IMAGINAL

However if the production used the *imaginal action (which should also include a query to test
that the module is not busy as should be done for all requests):

(p start
 =imaginal>
 ISA count-from
 start =num1
 count nil
 ?imaginal>
 state free
 ==>
 *imaginal>
 ISA count-from
 count =num1
)

Then we would see this sequence of events in the trace:

0.050 PROCEDURAL PRODUCTION-FIRED START
0.050 PROCEDURAL MODULE-MOD-REQUEST IMAGINAL
0.250 IMAGINAL MOD-BUFFER-CHUNK IMAGINAL

Which shows the 200ms cost before the imaginal module makes the modification to the chunk in
the buffer.

The *imaginal action is the recommended way to make changes to the chunk in the imaginal
buffer because it includes the time cost for the imaginal module to make the change. However if
one is not as concerned about timing or the imaginal cost is not important for the task being
modeled then the =imaginal actions can be used for simplicity as has been done up to this point
in the tutorial.

5.7.2 An indirect request

This production in the siegler model has a retrieval request using syntax that has not been
discussed previously in the tutorial:

(P harvest-answer
 =retrieval>
 ISA plus-fact

29

ACT-R Tutorial 10-Dec-19 Unit Five

 sum =number
 =imaginal>
 isa plus-fact
 ?imaginal>
 state free
 ==>
 *imaginal>
 sum =number
 +retrieval> =number)

This production harvests the chunk in the retrieval buffer and copies the value from the sum slot
of that chunk into the sum slot of the imaginal buffer and also makes what is called an indirect
request to the retrieval buffer to retrieve the chunk which is contained in that slot. That chunk
must be retrieved so that the value in its name slot can be used to speak the response.

An indirect request can be made through any buffer by specifying a chunk or a variable bound to
a chunk as the only component of the request. The actual request which is sent to the module in
such a situation is constructed as if all of the slots and values of that chunk were specified
explicitly. Thus, if in the production above =number were bound to the chunk eight from the
model:

(eight ISA number value 8 name "eight")

Then that retrieval request would be equivalent to this:

 +retrieval>
 value 8
 name "eight"

In fact, the module which receives the request will see it exactly like that – it has no access to the
name of the chunk which was used to make the indirect request. Therefore, an indirect request
will be handled by the module exactly the same way as a normal request.

In this case, since it is a retrieval request, it will undergo the same activation calculations and be
subject to partial matching just like any other retrieval request. Thus an indirect request to the
retrieval buffer is not guaranteed to put that chunk into the buffer. In this model, the correct
chunk should always be retrieved because it will match on all of its slots and thus receive no
penalty to its activation while all the other number chunks will receive twice the maximum
difference penalty to their activation since they will mismatch on both slots and there are no
similarities set in the model between numbers as used in the value slot or the strings used in the
name slot.

If one absolutely must place a copy of a specific chunk into a buffer in a production there is an

30

ACT-R Tutorial 10-Dec-19 Unit Five

action which will do that, but since that is not a recommended practice it will not be covered in
the tutorial.

5.7.3 Parameters to be adjusted

To achieve that fit to the data we will be using partial matching and adjusting the base-level
activations of the plus-facts for the model. We are not going to use spreading activation for this
demonstration. However, if you would like to explore the effect it has on the model feel free to
enable it and experiment with adjusting the source spread from the imaginal buffer which is
holding the contextual information in this task.

The specific parameters that we will need to adjust for the model are those related to activation
in general (the retrieval threshold, :rt, and the activation noise, :ans), those related to partial
matching (the similarities among the number chunks used as the addends of the plus-facts and
the match scale value, :mp), and the base-level activation values of the chunks.

That is potentially a lot of free parameters in the model. Treating them that way one could likely
produce an extremely strong fit to the reported data. However, doing that is not very practical
nor does it result in a model that is of much use for demonstrating anything other than the ability
to fit 60 data points using more than 60 parameters.

In the following sections we will describe the effects that the particular parameters have on the
model’s performance and outline an approach which can be taken to arrive at the parameter
settings in a model.

5.7.4 Initial model

The first thing to do for the model is make sure that it can do the task. In this case that is hear
the numbers, attempt to retrieve an addition fact, and then speak the result. To do that, we will
start without enabling the subsymbolic components of the system. Making sure the model works
right with basic symbolic information is a good start for modeling complex tasks because once
the subsymbolic components are enabled and more sources of randomness or indeterminate
behavior are introduced it can be very difficult to find potential errors in the productions or basic
logic of the model.

The assumptions for the model are that the children know the numbers from zero through nine
and that they have encountered the addition facts for problems with addends from zero to five.
Thus these will be the declarative memory elements with which the model will start. Along with
that, we are assuming that the children are not going to use any complex problem solving to try
to remember the answers and that if there is a failure to remember a fact after one try the model
will just give-up and answer that it does not know. For a task of this nature where we are

31

ACT-R Tutorial 10-Dec-19 Unit Five

modeling the aggregate data, using a single idealized strategy for the model is often a reasonable
approach, and has been how all the other models seen so far in the tutorial operate. In other
circumstances, particularly when individual participant data is being modeled, the specific
strategy used to perform the task may be important, and in those cases it may be necessary to
include different strategies into the model to account for the data.

With the model working correctly in a purely symbolic fashion we should see it answering
correctly on every trial and here are the results of the model in that case providing the starting
point for the adjustments to be made:

CORRELATION: 0.943
MEAN DEVIATION: 0.127
 0 1 2 3 4 5 6 7 8 Other
1+1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1+2 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00
1+3 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
2+2 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
2+3 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
3+3 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

5.7.5 Making errors

Now that we have a model which performs perfectly we need to consider how we want it to
model the errors. For this task we have chosen to use partial matching to do that. Specifically,
we want the model to retrieve an incorrect addition fact as it does the task and also to sometimes
fail to retrieve an addition fact at all (an important source of the “other” results for the model).
What we do not want it to do is retrieve an incorrect number chunk or fail to retrieve one while
encoding the audio input or producing the vocal output. The reason for that is because we are
assuming that the children know their numbers and thus do not produce errors because they are
failing to understand what they hear or failing to say an answer correctly. That is important
because we are not just looking to have the model fit the data but to actually have it do so in a
manner which seems plausible for the task.

To make those errors through partial matching requires that the model occasionally retrieve the
wrong chunk for the critical request which looks like this:

 +retrieval>
 ISA plus-fact
 addend1 =val1
 addend2 =val2

where the =val1 and =val2 variables are bound to number chunks, for example one and three.
Thus, the items which need to be similar are those number chunks which are the values requested
in the retrieval, and that is where we will start in setting the parameters.

32

ACT-R Tutorial 10-Dec-19 Unit Five

5.7.6 Setting similarities

The similarity settings between the number chunks will affect the distribution of incorrect
retrievals. While this looks like a lot of free parameters to be fit, in practice that is just not
reasonable. For a situation like this, where the chunks represent numbers, it is better to set the
similarity between two numbers based on the numerical difference between them using a single
formula to specify all of the similarities. There is a lot of research into how people rate the
similarity of numbers and there are many equations which have been proposed to describe it.
For this task, we are going to use a linear function of the difference between the numbers.

Also, to keep things simple we will use the default range of similarity values for the model,
which are from 0.0 for most similar to -1.0 for most dissimilar. Since we are working with
numbers from 0-9 an obvious choice for setting them seems to be:

() | |()ba=baSimilarity −∗− 0.1,

To set those similarities, we need to use the set-similarities command. Because the similarities
are symmetric we only need to set each pair of numbers once and we do not need to set the
similarity between a chunk and itself because that defaults to the most similar value. We also
note that since the model only has chunks for encoding the facts with addends from 0-5 we only
need to set the similarities for the chunks which are relevant to the task. Thus, here are the initial
similarity values set in the model:

(Set-similarities
 (zero one -0.1) (one two -0.1) (two three -0.1)(three four -0.1)(four five -0.1)
 (zero two -0.2) (one three -0.2)(two four -0.2) (three five -0.2)
 (zero three -0.3)(one four -0.3) (two five -0.3)
 (zero four -0.4) (one five -0.4)
 (zero five -0.5))

In addition to the similarities, we will also need to set the match scale parameter for the model.
Adjusting the match scale will determine how much the similarity values affect the activation of
the chunks since it is used to multiply the similarity values. Because we have chosen a linear
scale for our similarity values we will actually be able to just use the match scale parameter to
handle all of our adjustments instead of needing to adjust the available range or the parameter we
chose in our similarity equation.

The similarity value and the match scale are going to determine how close the activations
between the correct and incorrect chunks are. How large that needs to be to create the effect we

33

ACT-R Tutorial 10-Dec-19 Unit Five

want is going to depend on other settings in the model. Thus, there is not really a good guideline
for determining where it should be initially, but from experience we know that it is often easier
to adjust the parameters later if we start with values that allow us to see the effect each has on the
results. Therefore we want to make sure that we pick a value here which ensures that the
similarity will make a difference in the activation values. Since the default base-level activation
of chunks is 0.0 when the learning is off we are going to choose a large initial :mp value, like 5,
to make sure that the activations will differ noticeably.

With just these settings however, the model will still not make any errors because the correct
chunk will always have the highest activation and be the one retrieved. To actually get some
errors we will need to also add some noise to the activation values.

5.7.7 Activation noise

In the previous unit, we saw how the activation noise affects the probability that a chunk will be
above the retrieval threshold. Now, since there are multiple chunks which could all be above the
threshold, it is also going to affect the frequency of retrieving the correct chunk among the
incorrect alternatives. The more noise there is the less likely it is that the correct chunk will have
the highest activation.

As with the :mp value, choosing the initial value for the noise is not obvious because its effect is
determined by other settings in the model. For this parameter however, we do have some general
guidelines to work with based on past experience. For many models that have been created in
the past an activation noise value in the range of 0.0-1.0 has been a good setting and for most of
those the value tends to fall somewhere between 0.2 and 0.5. So, based on that, we will start this
model off with a value of .5, as was used for the models of the previous unit, and then adjust
things from there if needed later.

Now, given these settings, :ans .5 and :mp 5 with the similarities set as shown above, we can run
the model and see what happens. Here is what we see if we just run it to collect the data:

CORRELATION: -0.030
MEAN DEVIATION: 0.336
 0 1 2 3 4 5 6 7 8 Other
1+1 0.00 0.02 0.02 0.02 0.01 0.01 0.00 0.00 0.00 0.91
1+2 0.00 0.01 0.03 0.04 0.02 0.01 0.00 0.00 0.00 0.88
1+3 0.00 0.00 0.02 0.02 0.04 0.03 0.01 0.00 0.00 0.88
2+2 0.00 0.00 0.02 0.02 0.05 0.03 0.02 0.01 0.00 0.85
2+3 0.00 0.00 0.00 0.03 0.03 0.02 0.03 0.02 0.00 0.87
3+3 0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.01 0.02 0.88

The model is almost never correct and most of the errors are in the other category which means
that it probably did not respond. The important thing to do next is to understand why that is
happening. One should not just start adjusting the parameters to try to improve the fit without
understanding why the model is performing in that way.

34

ACT-R Tutorial 10-Dec-19 Unit Five

5.7.8 Retrieval threshold and base-levels

Running the model on a few single trials and stepping through its operations shows that the
problem is happening because the model is failing to retrieve chunks during all the retrieval
requests, including the initial encoding of the numbers. We want the model to sometimes fail on
the retrieval of the addition fact chunks, but we do not want it to be failing during the encoding
steps.

So, there are two changes which we will make at this point. The first is to adjust the retrieval
threshold so that we eliminate most, if not all, of the retrieval failures. This will allow us to work
on setting the other parameters to match the data with the model answering the questions. Then
we can come back to the retrieval threshold later and increase it to introduce more of the non-
answer responses into the model. Thus, for now we will set the retrieval threshold to a value of
-10.0 to make it very unlikely that any chunk will have an activation below the threshold.

The other thing we will do at this time is consider how to keep the number chunks from failing
once we bring the retrieval threshold back up to a reasonable value. The easiest way to handle
that is to increase the base-level activation of the number chunks so that the noise will be
unlikely to ever take them below the retrieval threshold. The justification for doing so in the
model is that it is assumed the children have a strong knowledge of the numbers and do not
confuse or forget them and thus we need to provide the model with a comparable ability.

To do that we will use the set-base-levels command which works similar to the set-all-base-
levels command that was used in the last unit. The difference is that for set-base-levels we can
specify specific chunks instead of applying the change to all of them. Again, this seems like it is
a lot of free parameters, but since we are not measuring the response time in this model all that
matters is that the chunks have a value large enough to not fail to be retrieved – differences
among them will not affect the error rate results as long as they are all being retrieved. We will
start by assigning them a value of 10 which is significantly larger than the retrieval threshold we
have now of -10 which should result in no failures for retrieving number chunks. When we
increase the retrieval threshold later we may need to adjust this value, but for now we will add
these settings to the model:

(set-base-levels
 (zero 10) (one 10) (two 10) (three 10) (four 10) (five 10)
 (six 10) (seven 10)(eight 10) (nine 10))

Unlike the similarities where we only needed to set the values for the numbers from 0-5 based on
the task, here we need to set all of the numbers from 0-9 since any of those values is a potential
sum of an addition fact in the model’s declarative memory which may need to be retrieved.

After making those additions to the model, running it produces this output:

35

ACT-R Tutorial 10-Dec-19 Unit Five

CORRELATION: 0.708
MEAN DEVIATION: 0.152
 0 1 2 3 4 5 6 7 8 Other
1+1 0.03 0.19 0.34 0.20 0.12 0.07 0.02 0.02 0.00 0.00
1+2 0.01 0.07 0.16 0.29 0.22 0.16 0.06 0.02 0.01 0.00
1+3 0.01 0.02 0.06 0.21 0.32 0.17 0.10 0.05 0.03 0.01
2+2 0.00 0.03 0.10 0.19 0.27 0.23 0.11 0.04 0.01 0.00
2+3 0.00 0.01 0.05 0.09 0.22 0.31 0.21 0.10 0.01 0.01
3+3 0.00 0.00 0.02 0.06 0.10 0.23 0.28 0.18 0.10 0.04

That shows a better fit to the data than the last one, though still not as good as we want, or in fact
as good as it was when perfect. Looking at the trace of a few individual runs seems to indicate
that the model is working as we would expect – the errors are only due to retrieving the wrong
addition fact because of partial matching.

5.7.9 Adjusting the parameters

The next step to take depends on what the objectives of the modeling task are – what are you
trying to accomplish with the model and what do you consider as a sufficient fit to the data. If
that fit to the data is good enough, then as a next step you would then want to start bringing the
retrieval threshold up to introduce more of the “other” responses (failure to respond) and
hopefully improve things a little more. In this case however we are not going to consider that
sufficient and will first investigate other settings for the :ans and :mp parameters before moving
on to adjusting the retrieval threshold.

To do that we are going to search across those parameters for values which improve the model’s
fit to the data. When searching for parameters in a model there are a lot of approaches which can
be taken. In this case, we are going to keep it simple and try manually adjusting the parameters
and running the model to see if we can find some better values. When the number of parameters
to search is small, the model runs fairly quickly, and one is not looking to precisely model every
point this method can work reasonably well. For other tasks, which require longer runs or which
have many more parameters to adjust other means may be required. That can involve writing
some code to adjust the parameters and perform a more thorough search or going as far as
creating an abstraction of the model based on the underlying equations and using a tool like
MATLAB or Mathematica to solve those for the best values.

The approach that we use when searching by hand is to search on only one parameter at a time.
Pick one parameter and then adjust that to get a better fit. Then, fix that value and pick another
parameter to adjust. Do that until each of the parameters has been adjusted. Often, one pass
through each of the parameters will result in a much better fit to the data, but sometimes it may
require multiple passes to arrive at the performance level you desire (assuming of course that the
model is capable of producing such a fit through manipulating the parameters).

Sometimes it is also helpful to work with only a subset of the parameters if you have an idea of
the effects which they will have on the data. For example, in this task we know that the retrieval

36

ACT-R Tutorial 10-Dec-19 Unit Five

threshold will primarily determine the frequency with which the model gives up. Thus we are
going to hold back on trying to fit that parameter until we have adjusted the others to better fit
the majority of the data for the trials where it produces an answer.

Since we are starting with a noise value that was based on other tasks and our match scale value
was chosen somewhat arbitrarily we will start searching across the match scale parameter.
Keeping the noise value at .5 we found that a value of 16 for the match scale parameter seems to
be our best fit:
CORRELATION: 0.942
MEAN DEVIATION: 0.074
 0 1 2 3 4 5 6 7 8 Other
1+1 0.01 0.13 0.75 0.10 0.01 0.00 0.00 0.00 0.00 0.00
1+2 0.00 0.00 0.12 0.74 0.13 0.01 0.00 0.00 0.00 0.00
1+3 0.00 0.00 0.01 0.13 0.75 0.10 0.01 0.00 0.00 0.00
2+2 0.00 0.00 0.01 0.11 0.75 0.12 0.01 0.00 0.00 0.00
2+3 0.00 0.00 0.00 0.00 0.14 0.73 0.13 0.00 0.00 0.00
3+3 0.00 0.00 0.00 0.00 0.01 0.13 0.76 0.10 0.01 0.00

Then, fixing the match scale parameter at 16 and adjusting the noise value we do not seem to
find a value which does any better than the starting value of .5. So, we will adjust the retrieval
threshold to introduce more of the other responses and hopefully improve the fit some more.
Searching there finds that a value of .7 improves the fit to this:

CORRELATION: 0.949
MEAN DEVIATION: 0.065
 0 1 2 3 4 5 6 7 8 Other
1+1 0.00 0.07 0.74 0.09 0.01 0.00 0.00 0.00 0.00 0.09
1+2 0.00 0.00 0.10 0.70 0.08 0.00 0.00 0.00 0.00 0.11
1+3 0.00 0.00 0.00 0.10 0.71 0.09 0.01 0.00 0.00 0.08
2+2 0.00 0.00 0.01 0.12 0.66 0.12 0.00 0.00 0.00 0.08
2+3 0.00 0.00 0.00 0.00 0.13 0.68 0.09 0.00 0.00 0.10
3+3 0.00 0.00 0.00 0.00 0.01 0.08 0.70 0.08 0.00 0.13

One important thing to do at this point is to make sure that the model is still doing the task as we
expect – that changing the parameters has not introduced some problems, like failing to retrieve
the number chunks. For the current model, looking at a couple of single trial runs in detail shows
that things are still working as expected. So, at this point we could go back and perform another
pass through all the parameters trying to find a better fit, but instead we are going to stop and
look at where our model seems to be deviating from the experimental data before trying to just
find better parameters.

5.7.10 Adjusting the model

It seems that one trend in the data which we are missing is that the children seem to respond
correctly more often to the smaller problems and that when they respond incorrectly the answers
are more often smaller than the correct answer. There seems to be a bias for the smaller answers.

37

ACT-R Tutorial 10-Dec-19 Unit Five

This agrees with other research which finds that addition facts with smaller addends are
encountered more frequently in the world.

Accounting for that component of the data is going to require making some adjustment to the
model other than just modifying the parameters which we have. The research which finds that
the smaller problems occur more frequently suggests a possible approach to take. The base-level
activation of a chunk represents its history of use, and thus by increasing the base-level
activation of the smaller plus-fact chunks we can simulate that increase in frequency and increase
the probability that the model will retrieve them. This should help improve the data fit in a
plausible manner.

Like the similarities, this is another instance where it looks like there are a lot of free parameters
that could be used to fit the data, but again a principled approach is advised. In this case we are
going to increase the base-level activation of all the small plus facts (which we have chosen to be
those with a sum less than or equal to four), and we are going to give all of those chunks the
same increase to their base-level activation. The default base-level activation for the plus-facts is
0. So we are going to set those chunks to have a value above that by using the set-base-levels
command as we have done with the number chunks like this:

(set-base-levels
 (f00 .1)(f01 .1)(f02 .1)(f03 .1)(f04 .1)
 (f10 .1)(f11 .1)(f12 .1)(f13 .1)
 (f20 .1)(f21 .1)(f22 .1)
 (f30 .1)(f31 .1)
 (f40 .1))

Using the values for the other parameters found previously we will search for a base-level value
which improves the data fit and what we find is that a value of .5 seems to improve things to this:

CORRELATION: 0.962
MEAN DEVIATION: 0.059
 0 1 2 3 4 5 6 7 8 Other
1+1 0.00 0.10 0.77 0.10 0.00 0.00 0.00 0.00 0.00 0.02
1+2 0.00 0.00 0.12 0.75 0.11 0.00 0.00 0.00 0.00 0.01
1+3 0.00 0.00 0.00 0.11 0.82 0.04 0.00 0.00 0.00 0.03
2+2 0.00 0.00 0.00 0.14 0.77 0.05 0.00 0.00 0.00 0.03
2+3 0.00 0.00 0.00 0.02 0.17 0.67 0.09 0.00 0.00 0.05
3+3 0.00 0.00 0.00 0.00 0.01 0.11 0.64 0.13 0.00 0.11

Given that, we will make one more pass over all the parameters (noise, match scale, retrieval
threshold, and small plus-fact base-level offset) to find the final set of parameter values which
are set in the given model and produce this fit to the data:

CORRELATION: 0.966
MEAN DEVIATION: 0.054
 0 1 2 3 4 5 6 7 8 Other
1+1 0.01 0.12 0.74 0.11 0.01 0.00 0.00 0.00 0.00 0.02
1+2 0.00 0.00 0.14 0.70 0.12 0.00 0.00 0.00 0.00 0.03
1+3 0.00 0.00 0.00 0.15 0.76 0.04 0.00 0.00 0.00 0.04

38

ACT-R Tutorial 10-Dec-19 Unit Five

2+2 0.00 0.00 0.01 0.13 0.79 0.03 0.00 0.00 0.00 0.04
2+3 0.00 0.00 0.00 0.02 0.25 0.51 0.07 0.01 0.00 0.14
3+3 0.00 0.00 0.00 0.00 0.01 0.09 0.64 0.07 0.00 0.18

We could continue to search over the parameters or attempt other changes, like modifying the
similarities used to something other than linear, but these results are sufficient for this
demonstration. You are free to explore other changes to the parameters or the model if you are
interested.

5.8 Learning from experience

The task for this assignment will be to create a model which can learn to perform a task better
based on the experience it gains while doing the task. One way to do that is using declarative
memory to retrieve a past experience which can be used to decide on an action to take. The
complication however is that in many situations one may not have experienced exactly the same
situation in the past. Thus, one will need to retrieve a similar experience to guide the current
action, and the partial matching mechanism provides a model with a way to do that.

Instead of writing a model to fit data from an experiment, in this unit we will be writing a model
which can perform a more general task. Specifically, the model must learn to play a game better.
The model will be assumed to know the rules of the game, but will not have any initial
experience with the game thus must learn the best actions to take as it plays. In the following
sections we will introduce the rules of the game, how the model interacts with the game, a
description of the starting model, what is expected of your model, and how to use the provided
code to run the game.

5.8.1 1-hit Blackjack

The game we will be playing is a simplified version of the casino game Blackjack or Twenty-
one. In our variant there are only two players and they each have only one decision to make.

The game is played with 2 decks of cards, one for each player, consisting of cards numbered 1-
10. The number of cards in the decks and the distribution of the cards in the decks are not
known to the players in advance. A game will consist of several hands. On each hand, the
objective of the game is to collect cards whose sum is less than or equal to 21 and greater than
the sum of the opponent’s cards. When summing the values of the cards a 1 card may be
counted as 11 if that sum is not greater than 21, otherwise it must be considered as only 1. At the
start of a hand each player is dealt two cards. One of the cards is face up and the other is face
down. A player can see both of his cards’ values but only the value of the face up card of the

39

ACT-R Tutorial 10-Dec-19 Unit Five

opponent. Each player then decides if he would like one additional card or not. Choosing to
take an additional card is referred to as a “hit” and choosing to not take a card is referred to as a
“stay”. This choice is made without knowing your opponent’s choice – each player makes the
choice in secret. An additional constraint is that the players must act quickly. The choice must
be made within a preset time limit to prevent excessive calculation or contemplation of the
actions and to keep the game moving. If a player hits then he is given one additional card from
his deck and his final score is the sum of the three cards (with a 1 counted as 11 if that does not
exceed 21). If a player stays then his score is the sum of the two starting cards (with a 1 counted
as 11). Once any extra cards have been given both players show all of the cards in their hands
and the outcome is determined. If a player’s total is greater than 21 then he has lost. That is
referred to as “busting”. It is possible for both players to bust in the same hand. If only one
player busts then the player who did not bust wins the hand. If neither player busts then the
player with the greater total wins the hand. If the players have the same total then that is
considered a loss for both players. Thus to win a hand a player must have a total less than or
equal to 21 and either have a greater total than the opponent’s total or have the opponent bust.
After a hand is over the cards are returned to the players’ decks, they are reshuffled and another
hand begins. The objective of the game is to win as many hands as possible.

There are many unknown factors in this game making it difficult to know what the optimal
strategy is at the start. However, over the course of many hands one should be able to improve
their winnings as they acquire more information about the current game. One complication is
that the opponent may also be adapting as the game goes on. To simplify things for this
assignment we will assume that the model’s opponent always plays a fixed strategy, but that that
strategy is not known to the model in advance. Thus, the model will start out without knowing
the specifics of the game it is playing, but should still be able to learn and improve over time.

5.8.2 General modeling task description

To keep the focus of this modeling task on the learning aspect we have abstracted away from a
real interface to the game in much the same way as the fan and grouped models abstracted away
from a simulation of the complete experimental task. Thus the model will not have to use either
the visual or aural module for acquiring the game state. Similarly, the model will also not have
to compute the scores or determine the specific outcomes of each hand. The model will be
provided with all of the available game state information in a chunk in the goal buffer at two
points in the hand and will only need to make one of two key presses to signal its action.

At the start of the hand the model will be given its two starting cards, the sum of those cards, and
the value of the opponent’s face up card. The model then must decide whether to hit or stay.
The choice is made by pressing either the H key to hit or the S key to stay. The model has
exactly 10 seconds in which to make this choice and if it does not press either key within that
time it is considered as staying for the hand. After 10 seconds have passed, the model’s goal
chunk will be modified to reflect the actions of both players and the outcome of the game. The
model will then have all of its own cards’ values, all of the opponent’s cards’ values, the final

40

ACT-R Tutorial 10-Dec-19 Unit Five

totals for its hand and the opponent’s hand, as well as the outcome for each player. The model
must then use that information to determine what, if anything, it can or should learn from this
hand before the next hand begins. The time between the feedback and the next hand will also be
10 seconds.

5.8.3 Goal chunk specifics

Here is the chunk-type definition which specifies the slots used for the chunk that will be placed
into the goal buffer:

(chunk-type game-state mc1 mc2 mc3 mstart mtot mresult
 oc1 oc2 oc3 ostart otot oresult state)

The slots of the chunk in the goal buffer will be set by the game playing code for the model as
follows:

- At the start of a new hand

• state slot will be the value start

• mc1 slot will hold the value of the model’s first card

 a number from 1-10

• mc2 slot will hold the value of the model’s second card

 a number from 1-10

• mstart slot will hold the score of the model’s first two cards

 a number from 4-21 because a 1 will be counted as an 11 if there is one

• oc1 slot will hold the value of the opponent’s face up card

 a number from 1-10

• ostart slot will hold the opponent’s starting score

 a number from 2-11 because a 1 will count as 11

41

ACT-R Tutorial 10-Dec-19 Unit Five

• none of the other slots will be set in the chunk

- After the players have made their decisions for the hand and the full 10 seconds have
expired

• state slot will be set to the value results

• mc1, mc2, mstart, oc1, and ostart slots will be set to the same values as at the
start of the hand described above

• mc3

 if the model hits the slot will be the value of the model’s third card

• a number from 1-10

 if the model stays the mc3 slot will not be set

• mtot slot will hold the final total for the model’s two or three card hand

 a number from 4-30

• mresult slot will be the model’s result for the hand

 one of win, lose, or bust

• oc2 will be the opponent’s second card

 a number from 1-10

• oc3

 if the opponent hits the slot will be the value of the opponent’s third card

• a number from 1-10

 if the opponent stays the oc3 slot will not be set

• otot slot will be the final total for the opponent’s two or three card hand

 a number from 4-30

42

ACT-R Tutorial 10-Dec-19 Unit Five

• oresult slot will hold the opponent’s result for the hand

 one of win, lose, or bust

For testing, the model will be played through a series of 100 hands and its percentage of winning
in each group of 5 hands will be computed. For a fixed opponent’s strategy and particular
distribution of cards in the decks there is an optimal strategy and it may be possible to create
rules which play a “perfect” game under those circumstances. However, since the model will not
know that information in advance it will have to learn to play better, and the objective is to have
a model which can improve its performance over time for a variety of different opponents and
different possible decks of cards. Of course, since the cards received are likely random for any
given sequence of 100 hands the model’s performance will vary and even a perfect strategy
could lose all of them. Thus to determine the effectiveness of the model it will play several
games of 100 hands and the results will be averaged to determine how well it is learning.

5.8.4 Starting model

A starting model for this task can be found in the 1hit-blackjack-model.lisp file with the unit 5
materials and the code for playing the game can be found in the onehit.lisp and onehit.py files.
The given model uses a very simple approach to learn to play the game. It attempts to retrieve a
chunk which contains an action to perform that is similar to the current hand from those which it
created based on the feedback on previous hands. If it can retrieve such a chunk it performs the
action that it contains, and if not it chooses to stay. Then, based on the feedback from the hand
the model may create a new chunk which holds the learned information for this hand to use on
future hands. As described below however, the feedback used by this model is not very helpful
in producing a useful chunk for learning about the game – it learns a strategy of always hitting.
Here are the productions from the starting model:

 (p start
 =goal>
 isa game-state
 state start
 MC1 =c
 ==>
 =goal>
 state retrieving
 +retrieval>
 isa learned-info
 MC1 =c
 - action nil)

43

ACT-R Tutorial 10-Dec-19 Unit Five

 (p cant-remember-game
 =goal>
 isa game-state
 state retrieving
 ?retrieval>
 buffer failure
 ?manual>
 state free
 ==>
 =goal>
 state nil
 +manual>
 cmd press-key
 key "s")

 (p remember-game
 =goal>
 isa game-state
 state retrieving
 =retrieval>
 isa learned-info
 action =act
 ?manual>
 state free
 ==>
 =goal>
 state nil
 +manual>
 cmd press-key
 key =act

 @retrieval>)

 (p results-should-hit
 =goal>
 isa game-state
 state results
 mresult =outcome
 MC1 =c
 ?imaginal>
 state free
 ==>
 !output! (I =outcome)
 =goal>
 state nil

44

ACT-R Tutorial 10-Dec-19 Unit Five

 +imaginal>
 MC1 =c
 action "h")

 (p results-should-stay
 =goal>
 isa game-state
 state results
 mresult =outcome
 MC1 =c
 ?imaginal>
 state free
 ==>
 !output! (I =outcome)
 =goal>
 state nil
 +imaginal>
 MC1 =c
 action "s")

 (p clear-new-imaginal-chunk
 ?imaginal>
 state free
 buffer full
 ==>
 -imaginal>)

The operation of most of those productions should be fairly straight forward, but there is
something different in the action of the remember-game production which is worth noting. On
its RHS we see this action:

 @retrieval>

The @ prefix is an action operator that has not been used in previous models of the tutorial. It is
called the overwrite action and its purpose is to have the production modify the chunk in a
buffer, much like the = operator. The difference between the overwrite and modification
operators is that with the overwrite action only the slots and values specified in the overwrite
action will remain in the chunk in the buffer – all other slots and values are erased. When it is
used without any modifications, as is the case here, the buffer will be empty as a result of the
action and the chunk which was there is not cleared and sent to declarative memory, it is simply
erased from the buffer as if it did not exist.

That is done in this model to prevent that chunk from merging back into declarative memory and
strengthening the chunk which was retrieved. The reason for that is because the chunk which

45

ACT-R Tutorial 10-Dec-19 Unit Five

was retrieved may not be the best action to take in the current situation either because it was
retrieved due to noise or because the model does not yet have enough experience to accurately
determine the best move. So, the model erases that information and waits for the feedback on
the hand before creating a new chunk to represent the action to take on this hand. If it did not do
that, then it could continue to strengthen and retrieve a chunk that makes a bad play just because
it was created and retrieved often early on in its learning.

The overwrite action is not often used because typically one wants the model to accumulate the
information it is using, and there are other ways to handle the situation of not reinforcing a
memory that may not be useful. One would be to mark it in some way to indicate that it was a
guess so that it did not reinforce the existing chunk, for example it could be modified like this:

 =retrieval>
 guess t

and then restrict the retrieval so that it avoids the previous guesses when trying to determine
what to do:

 +retrieval>
 - guess t
 ...

Another alternative would be to just eliminate the slots that contain the critical information so
that it cannot merge with the original which for the starting model would be:

 =retrieval>
 mc1 nil
 action nil

For this task however, to keep things simple and make it easier to look at declarative memory
and see the chunks which the model is using we have chosen to use the overwrite action.

Because there are many more potential starting configurations than hands which will be played
this model uses the partial matching mechanism to allow it to retrieve a similar chunk when a
chunk which matches exactly is not available. The given code provides the model with
similarity values between numbers by using a function. This is done through the use of a “hook
function” parameter in the model. A hook function parameter allows the modeler to override or
modify an internal computation through code and there are several which can be specified for a
model. In this case we are setting the :sim-hook parameter to compute the similarity values for
the model. This is being done because the set-similarities command only allows the modeler to
set the similarity value between chunks, but here we are using numbers to represent the card
values and hand totals. Even if we had used chunks to represent the card values however it

46

ACT-R Tutorial 10-Dec-19 Unit Five

would still have been easier to use the hook function to compute the similarity values instead of
having to explicitly specify all of the possible values for the similarities between the numbers
which can occur while playing the game – essentially all the possible pairs for numbers from 1 to
30.

The equation that is used to set the similarities between the card values is:

),max(

)(
),(

ba

baabs
baSimilarity

−−=

This ratio has two features which should work well for this task and it corresponds to results
found in the psychology literature. First, the similarity is relative to the difference between the
numbers so that the closer the numbers are to each other the more similar they are. Thus, 1 and 2
are more similar than 1 and 3. The other feature is that larger numbers are more similar than
smaller numbers for a given difference. Therefore 21 and 22 are more similar than 1 and 2 are.

There are several other parameters which are also set in the starting model. Those are divided
into two sets. The first set is those which control how the model is configured (which learning
mechanisms are enabled and how the system operates), and the second set is those which control
the parameters of the mechanisms used in the model. This is the first set of parameters:

(sgp :esc t :bll .5 :ol t :sim-hook "1hit-bj-number-sims" :cache-sim-hook-results t :er t :lf 0)

It enables the subsymbolic components of ACT-R. It turns on the base-level learning for
declarative memory with a decay of .5 (the recommended value) and specifies that the optimized
learning equation be used for the base-level calculation. It specifies the name of the command
which will compute the similarity values, and sets a flag to let the declarative module cache the
similarity values returned by that function i.e. it will only call the function once to get the
similarity for a given pair of numbers. Randomness is enabled to break ties for activations and
during conflict resolution. Finally, the latency factor is set to 0 so that all retrievals complete
immediately which is a simplification to avoid having to tune the model’s chunk activation
values to achieve appropriate timing since we are not matching latency data, but do have a time
constraint of 10 seconds. Those settings should also be used in the assignment model which you
write.

The other set of parameters in the starting model specifies the things which you may want to
modify:

(sgp :v nil :ans .2 :mp 10.0 :rt -60)

47

ACT-R Tutorial 10-Dec-19 Unit Five

In addition to the :v flag to control the trace it sets the activation noise to a reasonable value.
The mismatch penalty for partial matching is set at 10 and the retrieval threshold is set very low
so that the model should always be able to retrieve some relevant chunk if there are any. These
values worked well for the solution model, but may need to be adjusted for your model.

5.8.5 The Assignment

The assignment for the task is to create a model which can learn to play better in a 100 hand
game without knowing the details of the opponent or the distribution of cards in the decks in
advance. Thus, it must learn based on the information it acquires as it plays the game.

Although the specific information learned by the starting model does not do a good job of
learning to play better it does represent a reasonable approach for a model of this game. The
recommended way to approach this assignment is to modify that starting model so that it learns
to play better. You are not required to use that model, but your solution must use partial
matching and it must be able to learn verses a variety of opponents and with different
distributions of cards in the decks – it should not incorporate any information specific to the
strategy of the default opponent provided or the default distribution of cards in the decks.

Here is a high level description of how this model plays the game in English from the model’s
perspective. At the start of the game, can I remember a similar situation and the action I took? If
so, make that action. If not then I should stay. When I get the feedback is there some pattern in
the cards, actions, and results which indicates the action I should have taken? If so create a
memory of the situation for this game and the action to take. Otherwise, just wait for the next
hand to start.

If you choose to use the starting model, then there are two things that you will need to change
about it to make it learn to play the game better. One is the information which it considers when
making its initial choice, and the other is how it interprets the feedback so that it creates chunks
which have appropriate information about the actions it should take based on the information that
is available.

Specifically, you will need to do the following things:

- Change the learned-info chunk-type to specify the slots which hold the information your
model needs to describe the situation for the game (the current model only considers one
of its own cards).

- Change the start production to retrieve a chunk given the information you have
determined is appropriate.

- Change or replace the results-should-hit and results-should-stay productions to better test

48

ACT-R Tutorial 10-Dec-19 Unit Five

the information available at the end of the game to decide on a good action to learn (the
current model does not require any particular pattern and just has two productions, one of
which says it should hit regardless of the details and one which says stay regardless of the
details). You may want to add more than two options as well because there are many
reasonable ways to decide what move would have been “right”, but you should probably
start with a small set of simple choices and see how it works before trying to cover all
possible options. If you have overlapping patterns you may want to set the utilities to
provide a preference between them (the current model sets the results-should-hit
production to have a higher utility than results-should-stay).

With an appropriate choice of initial information and some reasonable handling of the feedback
that should be sufficient to produce a model which can learn against a variety of opponents.

There are other things which you could do that may improve that model’s learning even more,
and some of those are listed below. It is strongly recommended that you get a simple model
which can learn to play the game using the basic operation described above before attempting to
improve it with any of these or other mechanisms:

- Change the noise level and the mismatch penalty parameters to adjust the learning rate or
flexibility of the model.

- Add more productions to analyze the starting position either before or after retrieving an
appropriate chunk.

- Provide a strategy other than just choosing to stay when no relevant information can be
retrieved.

The important thing to remember however is that the model should not make any assumptions
about the distribution of cards in the decks or the strategy of the opponent.

5.8.6 Running the Game and Model

There are three functions that can be used to run a model through the game against an opponent
implemented in the game code. Each is described along with examples below.

Playing a number of hands

To play some number of hands of the game the onhit-hands function in Lisp or the hands
function in the onehit module of Python can be used. It takes one required parameter which is
the number of hands to play and an optional parameter which controls whether it prints out the

49

ACT-R Tutorial 10-Dec-19 Unit Five

details of each of those hands. It returns a list of four items. The items in the list are the counts
of the model’s wins, the opponent’s wins, the times when both players bust, and the times when
they are tied.

Here is an example of running it in Lisp without the optional parameter:
? (onehit-hands 5)
(1 4 0 0)

Here is an example of running it in Python with the optional parameter to show the details of the
hands played:
>>> onehit.hands(4,True)
Model: 10 5 -> 15 (lose) Opponent: 10 2 4 -> 16 (win)
Model: 2 1 8 -> 21 (win) Opponent: 1 7 -> 18 (lose)
Model: 8 9 10 -> 27 (bust) Opponent: 8 2 6 -> 16 (win)
Model: 10 9 7 -> 26 (bust) Opponent: 1 10 -> 21 (win)
[1, 3, 0, 0]

An important thing to note is that these functions do not reset the model. Thus it will retain any
information which it has learned from one use to the next, and if you want to start the model over
you will have to reset it explicitly.

Playing blocks of hands

The onehit-blocks function in Lisp and blocks function in the onehit module in Python take two
parameters which are the number of blocks to run and the number of hands to run in each block.
It runs the model through all of those hands and returns the list of results per block where each
block is represented by a list as returned by the function for running hands shown above. Here is
an example with running two blocks of 5 hands each in both Lisp and Python:

? (onehit-blocks 2 5)
((3 1 1 0) (2 3 0 0))

>>> onehit.blocks(2,5)
[[3, 2, 0, 0], [3, 2, 0, 0]]

Note that these functions also do not reset the model.

Showing learning over multiple runs of blocks of hands

The onehit-learning function in Lisp and learning function in the onehit module of Python are
used to run a model through multiple 100 hand games for analysis. It takes one required
parameter which is the number of games to run the model through and then average over. It also
takes an optional parameter to indicate whether or not a graph of the results should be drawn and
an optional parameter to indicate a function for specifying the game details. The model will be
reset before running each 100 hand game. The results of those games are collected and averaged

50

ACT-R Tutorial 10-Dec-19 Unit Five

as both 4 blocks of 25 hands and as 20 blocks of 5 hands. It returns a list of two lists. The first
list is the proportion of wins in the 4 blocks of 25. This list should give a quick indication of
whether or not the model is improving over the course of the game. The second list is the
proportion of wins considering 20 blocks of 5 hands to provide a more detailed description of the
learning. If the first optional parameter is not given or is specified as a true value, then an
experiment window will be opened and the detailed win data will be displayed in a graph. Here
is an example call and resulting graph of a run of the example model:
? (onehit-learning 100)
((0.3012 0.3052 0.28679997 0.292)(0.322 0.276 0.314 0.314 0.28 0.3 0.342 0.296 0.276
0.31199998 0.296 0.28 0.28599998 0.28399998 0.28800002 0.292 0.32 0.29000002 0.304
0.254))

>>> onehit.learning(100)
[[0.3216, 0.28280000000000005, 0.3096, 0.2944], [0.284, 0.33799999999999997, 0.30
2, 0.33799999999999997, 0.346, 0.27599999999999997, 0.252, 0.298, 0.32, 0.268, 0.
284, 0.29, 0.34199999999999997, 0.312, 0.32, 0.292, 0.286, 0.302, 0.31, 0.282]]

51

ACT-R Tutorial 10-Dec-19 Unit Five

If you do not want to see the graph then specifying the second parameter as a non-true value will
suppress it:

? (onehit-learning 100 nil)
((0.2972 0.29839998 0.29520002 0.30479997) (0.344 0.28599998 0.302 0.276 0.278 0.278
0.268 0.348 0.292 0.306 0.29000002 0.276 0.306 0.28599998 0.31800002 0.314 0.294 0.28
0.324 0.31199998))

>>> onehit.learning(100,False)
[[0.3216, 0.28280000000000005, 0.3096, 0.2944], [0.284, 0.33799999999999997, 0.30
2, 0.33799999999999997, 0.346, 0.27599999999999997, 0.252, 0.298, 0.32, 0.268, 0.
284, 0.29, 0.34199999999999997, 0.312, 0.32, 0.292, 0.286, 0.302, 0.31, 0.282]]

How to use the other optional parameter is described in this unit’s code description text.

There is one other function which can be used to run the model called play-against-model in Lisp
and play_against_model in the onehit module of Python. This function is similar to the one for
playing hands except that instead of running an opponent from code it opens a window like that
shown below which allows you to play against the model. It requires a number of hands to play
as a parameter along with an optional parameter indicating whether or not to print the hand
results.

At the start you will see your starting cards and the model’s face up card for 10 seconds in which
time you must respond by pressing h to hit or s to stay.

52

ACT-R Tutorial 10-Dec-19 Unit Five

After 10 seconds pass it will then show all of your cards and all of the model’s cards along with
the results for 10 seconds before going on to the next hand.

53

ACT-R Tutorial 10-Dec-19 Unit Five

5.8.7 The Default Game

The default game your model will be playing is an opponent who always stays with a score of 15
or more and both decks have an effectively infinite number of cards in a distribution like a
normal deck of playing cards (an equal distribution of cards with the values from 1-9 and four
times as many cards with a value of 10). Under those circumstances the optimal strategy against
that opponent would win about 46% of the time and choosing randomly wins about 32% of the
time.

The reference solution model is able to improve from winning about 37% of the time in the first
block to winning around 40% in the final block on average over the 100 hands as shown in this
graph from running 500 games.

54

ACT-R Tutorial 10-Dec-19 Unit Five

It is also able to learn against other opponents and when the distribution of cards in the deck
differs. Your model should show similar or better performance for that default game and also
still be able to learn in other situations i.e. just encoding an optimal strategy for the default
opponent and deck distributions into your model is not an adequate solution to the task.

After producing a model which learns to play the default game you may want to try testing it
with different opponents or other distributions of cards in the decks. The code which runs the
task has some flexibility built into it that allows for modifying the game that is played. Details
on how to change the game code and some suggestions for other game situations are found in the
code description text for this unit.

References

 Anderson, J. R. (1974). Retrieval of propositional information from long-term memory.
Cognitive Psychology, 5, 451 – 474.

 Siegler, R. S., & Shrager, J. (1984). Strategy choices in addition and subtraction: How do
children know what to do? In C. Sophian (Ed.), Origins of cognitive skills (pp. 229-293).
Hillsdale, NJ: Erlbaum.

55

	Unit 5: Activation and Context
	5.1 Spreading Activation
	5.2 The Fan Effect
	5.3 Fan Effect Model
	5.3.1 Model Representations
	5.3.2 Perceptual Encoding
	5.3.3 Determining the Response

	5.4 Analyzing the Retrieval of the Critical Study Chunk in the Fan model
	5.4.1 A note on chunks in buffers and the :dcnn parameter
	5.4.2 A simple target trial
	5.4.3 A different target trial
	5.4.4 A foil trial

	5.5 Partial Matching
	5.6 Grouped Recall
	5.6.1 Error of Commission
	5.6.2 Error of Omission

	5.7 Simple Addition
	5.7.1 A Modification Request
	5.7.2 An indirect request
	5.7.3 Parameters to be adjusted
	5.7.4 Initial model
	5.7.5 Making errors
	5.7.6 Setting similarities
	5.7.7 Activation noise
	5.7.8 Retrieval threshold and base-levels
	5.7.9 Adjusting the parameters
	5.7.10 Adjusting the model

	5.8 Learning from experience
	5.8.1 1-hit Blackjack
	5.8.2 General modeling task description
	5.8.3 Goal chunk specifics
	5.8.4 Starting model
	5.8.5 The Assignment
	5.8.6 Running the Game and Model
	Playing a number of hands
	Playing blocks of hands
	Showing learning over multiple runs of blocks of hands

	5.8.7 The Default Game

	References

