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A B S T R A C T

Resource-rational analysis is used to develop models that assume that people behave optimally given the
structure of the task environment and the cost of cognitive operations. We argue in favor of a tight resource-
rational analysis, an extension in which model parameters are independently constrained. As a case in point,
we demonstrate how to develop a tight resource-rational model of the video game Space Track. Our approach
consists of four steps. First, we measure performance-critical parameters in independent micro-tasks, which
we input into mathematical models of cognitive processes. Second, we validate these models in other process-
specific micro-tasks. Third, we rely on a theory of the cognitive architecture (i.e., ACT-R) to derive estimates of
the time costs of these processes. Finally, we generate predictions for the main task, Space Track, by assuming
that subjects are doing their best given their abilities. The generated individualized predictions were close to
observed subject asymptotic performance, which demonstrated the viability of our approach, even in tasks of
similar complexity to that of Space Track.
1. Introduction

Ever since rational analysis was first introduced (Anderson, 1991;
Anderson & Milson, 1989), evidence has been accumulating that hu-
mans are adaptively rational, that is, optimally adapted to their sur-
roundings. People have been demonstrated to achieve near-optimal
performance in perception, motor control, inductive and statistical
learning, and reasoning in their natural environment (see, Lieder &
Griffiths, 2020, for a review). For some tasks, a careful task analy-
sis sufficed to demonstrate optimality, without considering cognitive
constraints. For example, Oaksford and Chater (1994) demonstrated
that, although disagreeing with the normative prescription, people’s
choices in the Wason selection task maximized information gain in
an environment where causal relations are rare. Optimality without
considering cognitive limitations was also showcased for sequential
decision making in uncertain environments (Sims, Neth, Jacobs, &
Gray, 2013) and even for curiosity (Dubey & Griffiths, 2020), among
others.

Yet, when applying rational analysis to other tasks, details about the
cognitive architecture were crucial in predicting task performance and
these were named resource-rational (Lieder & Griffiths, 2020). Resource-
rational models are typically more complex, because they include a
characterization of both task and cognitive capacities. For example,
let us take Howes, Lewis, and Vera (2009)’s cognitively bounded ratio-
nal analysis of the psychological refractory period. The psychological
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refractory period is a slow down of responses when two choice reac-
tion time tasks are in close temporal proximity. Howes et al. (2009)
investigated if the slow down is a consequence of architectural or
strategic limitations. To address this question, they incorporated two
theories of the mind (the cognitive architectures ACT-R, Anderson,
2007, and EPIC, Meyer & Kieras, 1997) into their analysis and predicted
the refractory period for multiple strategies. Hence, even a task that
appeared simple at first sight resulted in a relatively complex model.

Complex models contain multiple parameters with varying param-
eter ranges input into functions of different form (Pitt, Myung, &
Zhang, 2002). Complex models are naturally capable of fitting a broad
spectrum of data patterns, which raises concerns about such models
overfitting the data. Confidence in such models will depend on getting
the model details sufficiently correct or, as Lieder and Griffiths (2020)
concretely put it, resource-rational models need to be optimal ‘‘with re-
spect to [people’s] actual cognitive constraints’’ (p. 13). To ensure that
the underlying constraints are correct, they suggest that ‘‘independently
measuring people’s cognitive constraints [is] an important direction for
future work’’ (same page).

Here we demonstrate how to achieve this. Our approach marries
resource-rational analysis with a proposal put forth half a century ago
by Newell (1973) in one of his three suggestions on how to build
stronger psychological theories. Specifically, he proposed to ‘‘focus a
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Fig. 1. The dynamic task Space Track. The task goal is to traverse as many rectangular
segments (25 points), while crashing as little as possible (−100 points). Segments are
oriented at various angles relative to each other, randomly drawn from a uniform
distribution between 30 (panel a) and 150 degrees (panel b).

series of experimental and theoretical studies around a single complex
task’’ with ‘‘all the studies. . . designed to fit together. . . ’’ (p. 303).
Newell gave an example of a doctoral dissertation on mental multi-
plication, in which all model parameters were estimated in separate
micro-tasks, and the thus constrained model tested on the main task.

In this work, we will strive to adhere to Newell’s prescription when
constructing a resource-rational analysis of a complex task. Specif-
ically, we will use a series of independent micro-tasks to estimate
per-subject model parameters and to validate model components. We
will then input the estimated parameters and validated components
into a resource-rational model of a main task. The model will incor-
porate task-relevant components of a theory of the mind (i.e., ACT-R),
the measured individualized parameters, and the assumption that each
subject is doing their best. This will result in an individualized no-free-
parameter resource-rational model, what we call, to use Newell’s term,
a tight resource-rational model. We will now describe the main task
that we focus on in this work before proceeding with the experimental
design and model development.

1.1. The main task

The task of choice, Space Track, is a dynamic task recently used in
studies and modeling endeavors on skill acquisition (Anderson, Betts,
Bothell, Hope, & Lebiere, 2019; Seow, Betts, & Anderson, 2021). In
this task, subjects fly a spaceship through a frictionless track in space
that is constructed of equally-sized rectangular segments, oriented at
various angles 𝛽 relative to each other (uniformly distributed between
30 degrees, Fig. 1, a, and 150 degrees, Fig. 1, b). As soon as the ship
traverses one segment and enters a new one, the subsequent segment
appears. The goal is to fly through as many segments as one can while
crashing as little as possible, as each traversed segment brings 25 bonus
points and each crash leads to a 100 point penalty. The ship can
turn clockwise (‘‘D’’ key) and counterclockwise (‘‘A’’ key), and thrust
forward (‘‘W’’ key). The effect of pressing the keys is proportional to
the length of the key press. For example, pressing the thrust key longer
will result in a larger change in velocity.

A ship in a frictionless environment behaves differently than a car
on the ground. For example, the ship maintains its velocity unless a
thrust changes it. Also, the ship does not fly in the direction that it is
facing. Instead, its velocity after a thrust is a vector sum of its starting
velocity and the velocity change introduced by the thrust. Hence, to
steer the ship, a subject needs to take the ship’s current velocity into
account in order to aim the ship appropriately and then thrust. Learning
how and when to do this is one of the difficulties that subjects face in
this task (those interested, can try the task out at https://andersonlab.
net/demos/small-tasks-spacetrack/).
2

Although initially counterintuitive, subjects eventually learn to con-
trol the ship. The ACT-R model of the task (Anderson et al., 2019)
describes how this learning process takes place, which involves learning
multiple control parameters and proceduralization of the knowledge of
how to act in the task. Asymptotically the model reaches the procedural
phase of skill acquisition, in which it directly maps the task state to key
presses.

Central for our experimental design is that, according to this model,
the key presses can be executed in two ways: a single short ballistic
motor act that we call a tap or two consecutive motor acts (i.e., a
key press act followed by another motor act - release of that key) that
together constitute a long key press. We expect that taps and long key
presses have different properties, because tap accuracy should only be
limited by the motor system, whereas long key press accuracy by both
perceptual and motor systems. For example, during a long turn, subjects
decide to release the pressed key when they detect that the ship is at a
certain orientation (perceptual system), which is then followed by the
actual key release (motor system).

These key presses are usually executed towards a certain goal such
as a target ship orientation or a target ship velocity. Reaching such a
goal might involve one or several key presses (either taps or long key
presses). We call a sequence of key presses toward a single goal an
action. Since both taps and long key presses are involved in actions,
individual differences in both types of key presses should determine
turn or thrust action properties.

Although paralleling each other in many ways, turn and thrust
actions differ in one key manner: turning is bidirectional, whereas
thrusting is not. This means that turn errors can be immediately cor-
rected with further turn key presses, whereas thrust errors can only
be corrected if the thrust had been shorter than intended. If longer,
a thrust can be corrected only if the ship is re-aimed before thrusting
again, that is, an additional turn action is needed. This means that turn
actions have the potential to be more accurate, but also that they might
require more key presses if subjects execute many corrections on the
way to achieving that accuracy.

Action properties, such as their accuracy or the number of key
presses required to complete the action, influence Space Track per-
formance. For example, noise in target ship orientation and in target
velocity, which is inevitably introduced by the actions, will offset the
ship from its ideal trajectory. This, in turn, will affect the probability
that the ship crashes. Additionally, the more slowly subjects complete
their actions (i.e., with more key presses), the less likely they are
to steer the ship away from an impending crash. Note that action
completion time includes both the time to execute each key press and
any cognitive delays associated with preparing the key presses. The
cognitive delays include not only motor preparation time, but also those
related to perceptual and central cognitive processes.

To summarize, mastering Space Track consists in mastering two
actions, the accuracy and latency of which are a function of mul-
tiple cognitive processes. This makes the task a good candidate for
showcasing our approach. Moreover, previous studies with this task
have demonstrated large individual differences in performance, which
suggest a large explanatory potential based on individual difference
measures. A rational analysis of this task would reveal if Space Track
performance is determined mostly by subjects’ individual perceptual-
motor limitations or if the learning process introduces suboptimalities
in performance (as has been demonstrated in other complex tasks,
see Fu & Gray, 2006), because if subjects were to reach the performance
predicted by an optimal model, that would indicate that the learning
processes have impaired performance very little.

2. Methods

2.1. Participants

Subjects were recruited on Amazon Turk. Informed consent ap-
proved by the Carnegie Mellon University Institutional Review Board

https://andersonlab.net/demos/small-tasks-spacetrack/
https://andersonlab.net/demos/small-tasks-spacetrack/
https://andersonlab.net/demos/small-tasks-spacetrack/
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Fig. 2. Study design. Two micro-tasks (Tap task and Long turn task) serve to measure tap duration and long key press accuracy (specifically of turning). These are used to develop
models of the two actions in the main task: turning and thrusting. The turning model is validated in another micro-task (Turn action task). The turn and thrust action models are
the building blocks of a rational analysis of the main task, Space Track.
was obtained from each participant. 18 subjects (13 males, mean age:
33 years, min age: 25, max age: 43) participated in this study.1 Three
subjects were excluded from further analyses because of their poor
performance in one of the tasks (2 in the Tap task and 1 in Space
Track, see below). All subjects were paid a base payment of $20 and a
performance-contingent bonus.

2.2. Procedure

The study consisted of a series of micro-tasks, followed by the main
task, Space Track (Fig. 2). Two micro-tasks served to measure tap (Tap
task) and long key press accuracy (specifically of turning, Long turn
task). We only included a long key press task for turning, because we
expected that they have a larger influence on Space Track performance
than thrust actions. A third micro-task served to develop and validate a
model of turn actions (Turn action task), which was necessary because
we could not validate the turn action model directly in the main task.

We expected that the parameters measured in the micro-tasks would
be relatively stable over the time course of the experiment (∼2 h)
and, hence, be accurate estimates of perceptual-motor constraints in
Space Track. Note that all tasks include rewards to incentivize best
performance. Reward in the main task is linear with performance,
where segment traversals gain a quarter of what crashes cost (25 vs.
−100 points). Reward in all micro-tasks is a quadratic function of
performance: the better subject performance, the superlinearly more
points they receive (see Appendix A for details). We now proceed by
describing all tasks.

2.2.1. Tap task
The Tap task was designed to measure the mean 𝑡tap and variability

𝜎tap of tap duration. At the beginning of each trial, subjects were
directed to press one of three keys (‘‘A’’, ‘‘D’’, and ‘‘W’’) for as short
a duration as they could (see Fig. 2). Immediately after the key press
was completed, subjects received feedback about the duration of the
key press (in ms) and the corresponding trial reward. The task consisted
of 150 trials and took about 13 min to complete on average.

1 We expected a correlation between the micro-task measures and Space
Track of at least 0.77 based on inter-task correlations in Anderson et al. (2019).
Specifically, in that study, subjects were faced with the tasks Space Track and
You Turn, each of which was played for 20 games. The correlation between
performance in the two tasks was 0.77 (coincidentally, both in the ‘‘Space
Track - You Turn’’ condition and the ‘‘You Turn - Space Track’’ condition). To
detect such a correlation with 𝛼 = 0.05 and 𝛽 = 0.20, a sample size of 11 is
needed. Conservatively, we collected data from a few more subjects.
3

2.2.2. Long turn task
The Long turn task was designed to measure the variability of a long

turn key press 𝜎tu. On each trial, the ship started at a random orienta-
tion 𝛼 and its target orientation 𝛼tar was denoted by a red line. Subjects
could press a single key (either ‘‘A’’ or ‘‘D’’) only once to orient the
ship as closely as possible to the target orientation. The ship’s starting
orientation was chosen among 12 values evenly spaced between 0 and
330 degrees (i.e., every 30 degrees). Starting orientations were paired
with 10 evenly spaced values between 90 and 180 degrees of relative
target orientation, which was randomly selected to be either clockwise
or counterclockwise relative to the starting orientation. Large relative
target orientation values were chosen so that turns cannot be completed
in a single ballistic key press (e.g., at the given turn rate, turning 90
degrees takes 500 ms, which is roughly an order of magnitude longer
that the duration of taps that subjects are capable of). The exhaustive
pairing of starting and relative target orientations resulted in 120 trials.
Moreover, an additional 10 practice trials were added at the beginning
for a total of 130 trials. Subjects took about 15 min on average to
complete them.

2.2.3. Turn action task
In the Turn action task, subjects had to orient the ship within a

region 𝜀𝛼 around a target orientation, that we call aim accuracy. Unlike
in the Long turn task, subjects were free to use as many key presses
𝑛tu as they desired, but the trial was only completed once the ship
was within the target region. Subjects were rewarded based on the
time 𝑡tu act they needed to complete the turn action. Two different aim
accuracy 𝜀𝛼 values were used: ±6 degrees and ±12 degrees. As in the
Long turn task, the ship’s starting orientation was chosen among 12
evenly spaced values between 0 and 330 deg, whereas its relative target
orientation was chosen among 6 evenly spaced values between 90 and
170 degrees (i.e., every 20 deg). Additional 10 practice trials were
added at the start, for a total of 154 trials. This task took about 15 min,
on average, to complete.

2.2.4. Main task: Space track
Subjects started by reading detailed instructions about the game

mechanics, actions and goal, by the end of which they had full knowl-
edge of how the game is played. They continued with 20 3-minute
long games of Space Track and finished with a feedback questionnaire.
Subjects could see their score at any moment during the game. They
took, on average, 77 min to complete this task.

3. Results and discussion

We estimated asymptotic performance for each task by removing
all learning trials and outliers (see Appendix B for additional details



Cognitive Systems Research 86 (2024) 101239C.M. Dimov et al.

2
T
w
r
p
o
e
i
a
b
s
t

3

i
q
t
p

f
w
a
j

t
t
1
a
f
𝑎
b

c
o
n
t

F

v
t
s

6

Table 1
Ranges of individual means and standard deviations for asymptotic values on micro-tasks.

Task Measure Notation Min Max Median

Tap Mean duration 𝑡tap 20 105 57
SD of duration 𝜎tap 8 51 15

Long turn SD of error of angle 𝜎tu 5.4 16.8 7.9

Turn action Mean number of key presses 𝑛̄tu,𝜀𝛼=6 1.3 2.7 1.6
(given tolerance 𝜀𝛼) 𝑛̄tu,𝜀𝛼=12 1.0 2.3 1.3
Probability of one key press 𝑃 (𝑛tu,𝜀𝛼=6 = 1) = 𝑃1,𝜀𝛼=6 0.30 0.75 0.57
(given tolerance 𝜀𝛼) 𝑃 (𝑛tu,𝜀𝛼=12 = 1) = 𝑃1,𝜀𝛼=12 0.39 0.98 0.74

Space Track Mean score Score −919 1475 494
Mean number of crashes 𝑛crash 0.25 12 1.75
Mean speed 𝑠̄ 0.53 1.79 0.94
Mean number of key presses in a segment 𝑛̄kp 3.20 8.18 5.14
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of the data cleaning procedure).2 Specifically, we eliminated the first
5 trails for the micro-tasks for most subjects. For two subjects in the
ap task and two subjects in the Long turn task, whose performance
as not stable after trial 25, additional data points were eliminated. To

emove outliers in the Tap and Long turn tasks, we eliminated all data
oints outside 1.96 SD around the mean tap duration and turn angle
ffset, respectively.3 In the Turn action task, all uncompleted trials were
xcluded. For Space Track, we computed various performance measures
n the four consecutive games that produced the highest average score
s the best approximation to asymptotic performance. We selected the
est scoring consecutive games instead of the last games, because some
ubjects systematically decreased their performance toward the end of
he experiment, likely because of loss of motivation.

.1. Individual differences

Subjects demonstrated large individual differences on all measures
n all tasks (see Table 1 for a summary of the estimated per-subject
uantities; Appendix C presents plots related to each task). In the Tap
ask, the most capable subject could produce a five times smaller key
ress duration (𝑡𝑡𝑎𝑝 = 20 ms) than the least capable (𝑡tap = 105 ms).

Note that two subjects averaged 𝑡𝑡𝑎𝑝 above 200 ms, which likely resulted
rom misunderstanding the task. As mentioned in the methods section,
e excluded these subjects from further analyses, because tap measures
re a necessary input of our model (see Appendix H, for a further
ustification).

This value is effectively the lower limit on the duration of both
urn key presses and thrust key presses in the main task. Translated to
urn angle (turn rate in Space Track: 3 deg/tick4; game tick duration:
6.(6) ms), this corresponded to a minimum angle change as small
s 𝛥𝛼 = 4 deg for the best subject and as large as 𝛥𝛼 = 19 deg
or the worst. Analogously, translated to speed change (acceleration:
= 0.05 pixels∕tick2), this corresponded to a minimum speed change

etween 𝛥 𝑠 = 0.06 for the best subject and 𝛥 𝑠 = 0.32 pixels∕tick for the
worst.

Large individual differences were observed in the turn-related
micro-tasks too. In the Long turn task, there was a threefold difference
between the most capable (long turn variability 𝜎tu = 5.4 deg) and least
apable subject (𝜎tu = 16.8 deg). In the Turn action task, we relied
n two measures of performance: the average number of key presses
eeded to complete the trial 𝑛̄tu and the probability of completing the
rial in a single key press 𝑃 (𝑛tu = 1), which we estimated separately for

2 All data and data analysis code can be found on the Open Science
oundation website at 10.17605/OSF.IO/MGFXH.

3 Since the outlier removal procedure led to an underestimation of sample
ariability, SDs were adjusted by dividing them by 0.872. Specifically, when
he outlier removal procedure is applied to a normal distribution, the resulting
ubsample has a standard deviation equal to 0.872 that of the original.

4 A tick is the time unit of the game. The game runs at a frequency of
4

0 Hz, which results in a game tick duration of 16.(6) ms. t
the two tolerance regions (𝜀𝛼 = 6 deg and 𝜀𝛼 = 12 deg). The relative
ifferences in performance along those measures were between 2 and
.5-fold.

We characterized Space Track with mean score, mean number of
rashes 𝑛crash, mean speed 𝑠̄, and mean number of key presses in

segment 𝑛̄kp. There were large individual differences on all four
easures. For example, some subjects could not reach positive score

ven in the their best 4 games, whereas others scored positively already
n game 1.5 Similarly, there was a more than threefold difference in
hip speed and a 2.5-fold difference in the number of key presses in a
egment.

.2. Relationship between measures

Table 2 summarizes the correlations between the measures pre-
ented in the previous section.6 The various micro-task measures corre-
ate highly significantly with each other (lowest 𝑟: 0.66, highest 𝑟: 0.93).
nterestingly, Tap duration and Long turn variability correlate strongly
𝑟 = 0.81) even though the first is a purely motor measure, whereas
he second perceptual-motor. Additionally, performance measures in
he Turn action task correlate with both Tap duration and Long turn
ariability, since key presses in a turn action can be both taps or
ong key presses. The high inter-task correlations above point toward a
ingle motor factor behind the performance in all micro-tasks.

Micro-task measures also strongly predicted Space Track score and
umber of crashes, which corroborates our hypothesis that asymptotic
pace Track performance is mostly limited by perceptual-motor skills.
owever, they did not correlate significantly with average ship speed 𝑠̄

and average number of key presses in a segment 𝑛̄kp. Instead, only Space
Track score significantly correlated with 𝑠̄. Finally, there was a strong
egative correlation between 𝑠̄ and 𝑛̄kp. This correlation was likely a
onsequence of the fact that a faster flying ship traverses a segment in
ess time, which in turn restricts the number of key presses that can be
xecuted.

. A tight resource-rational model of Space Track

What is the functional relationship between the parameters mea-
ured in micro-tasks and Space Track score? To answer this question,
e develop a resource-rational model that starts from tap and long key
ress parameters as inputs into turn and thrust action models, then
ropagates the effects of these actions onto a track parameterized as

5 A ship left to fly freely at the starting speed of 0.5 pixels/tick would crash
pproximately every 15 s and reach a score of −1200 points. This would be
he score that a passive subject would reach. We used this score value as a
erformance threshold. One subject did not reach even that score in its best
onsecutive 4 games and was therefore excluded.

6 Since the shortest key press duration exhibited scalar variability (𝜎tap was
roportional to 𝑡tap with a coefficient of 0.35, 𝑟 = 0.86), we only include 𝑡tap in

he table.
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Table 2
Correlation between individual measures on micro tasks and Space Track. 𝑡tap - mean tap duration; 𝜎tu - long turn SD; 𝑛̄tu, 𝜀𝛼=𝑥 - average number
of key presses needed to turn to an aim tolerance of x degrees; 𝑃1, 𝜀𝛼=𝑥 - probability of turning to an aim tolerance of x degrees in a single
key press; 𝑠̄ - average speed; 𝑛̄kp - average number of key presses in a segment.

𝑡𝑡𝑎𝑝 𝜎𝛼 𝑛̄𝑡𝑢,𝜀𝛼=6 𝑛̄𝑡𝑢,𝜀𝛼=12 𝑃1,𝜀𝛼=6 𝑃1,𝜀𝛼=12 Score ncrash 𝑠̄

𝜎𝛼 .81∗∗∗

𝑛̄𝑡𝑢,𝜀𝛼=6 .88∗∗∗∗ .80∗∗∗

𝑛̄𝑡𝑢,𝜀𝛼=12 .76∗∗ .79∗∗∗ .84∗∗∗∗

𝑃1,𝜀𝛼=6 −.86∗∗∗∗ −.77∗∗∗ −.86∗∗∗∗ −.66∗∗

𝑃1,𝜀𝛼=12 −.87∗∗∗∗ −.88∗∗∗∗ −.87∗∗∗∗ −.93∗∗∗∗ .88∗∗∗

Score −.81∗∗∗ −.91∗∗∗∗ −.82∗∗∗ −.86∗∗∗∗ .77∗∗∗ .88∗∗∗∗

𝑛𝑐𝑟𝑎𝑠ℎ .85∗∗∗∗ .93∗∗∗∗ .84∗∗∗∗ .84∗∗∗∗ −.79∗∗∗ −.92∗∗∗∗ −.91∗∗∗∗

𝑠̄ −.48 −.49 −.51 −.58∗ .43 .49 .74∗∗ −.39
𝑛̄𝑘𝑝 .02 .05 .05 −.02 −.01 .08 −.30 .40 −.80∗∗∗
in our experiment, and quantitatively predicts score.7 The central idea
ehind this model is that unless subjects have sufficient time at their
isposal to complete their actions, they will crash and lose valuable
oints. So subjects need to adjust their behavior to avoid this while
till managing to traverse as many segments as possible. In our model,
ubjects adjust their behavior through two freely chosen parameters,
he target speed they aim to fly at 𝑠tar and the aim accuracy 𝜀𝛼 they
each before thrusting. Both of these parameters influence how much
ime is needed to complete actions, action completion time 𝑡act , and how

much time is left before the ship crashes, time to crash 𝑡crash. For example
a narrow aim accuracy requires more key presses to reach than a wide
one, leading to long 𝑡act . However, it also leads to a more accurate
trajectory and hence longer 𝑡crash. Analogously, flying at a high speed
needs longer thrusts to steer the ship and, consequently, longer 𝑡act ,
while also leaving short time to crash 𝑡crash. However, it also increases
the rate at which segments are traversed. The optimal values of 𝜀𝛼 and
tar will be highly individual for each subject.

The Space Track model estimates the optimal score for each subject
n 5 steps (see Fig. 3, for an overview). Specifically, the model estimates
he 𝑡act (steps 1–3) and 𝑡crash (step 4) distributions for each subject as

function of the individual parameters measured in the micro-tasks
highlighted in red in that figure), parameters for a typical subject
erived from the cognitive architecture ACT-R (highlighted in yellow),
nd the two free parameters 𝜀𝛼 and 𝑠tar (in green). To estimate the

action completion time distribution, we first develop models of the
number of key presses in turn and thrust actions (step 1). We then
generate estimates of the cognitive costs 𝜏 associated with these actions
derived from models constructed in ACT-R (step 2). By combining these
two, we produce individualized distributions of turn completion time
𝑡tu act and thrust completion time 𝑡th act (step 3). To estimate the time to
crash distribution, we investigate the affect of aim accuracy 𝜀𝛼 , target
speed 𝑠tar and thrust variability 𝜎th act on flight direction variability 𝜎𝜃
and the resultant 𝑡crash (step 4). In the final model, we estimate the
number of crashes and number of traversed segments by comparing 𝑡act
and 𝑡rash and compute score (step 5). This final model also exploits the
symmetry in the problem by assuming periodic boundary conditions
(explained below).

We will now provide a brief overview of ACT-R, followed by a
detailed explanation of the 5 steps. We will provide examples with
three inter-segment angles 𝛽 throughout, which cover the full range of
possible values: 𝛽 = 30 deg (flight direction almost reversed), 𝛽 = 90 deg
(segments perpendicular), and 𝛽 = 150 deg (only a small trajectory
adjustment necessary). Moreover, in all calculations, we will consider
ship target speed between 𝑠tar = 0.5 pixels∕tick, which is the speed at
which the ship starts, and 𝑠tar = 3 pixels∕tick, which is the maximum
speed it can fly at. A overview of all variables used in the analysis can
be found in Table 3 for reference.

7 All model analysis code can be found on the Open Science Foundation
ebsite at 10.17605/OSF.IO/MGFXH.
5

Table 3
Main variables used in the resource-rational analysis of Space Track.

Variable Notation

Action completion time 𝑡act
Time to crash 𝑡crash
Inter-segment angle 𝛽
Velocity 𝑣
Velocity noise 𝛥 𝑣noise
Speed 𝑠
Speed offset 𝛥 𝑠
Flight direction 𝜃
Flight direction variability 𝜎𝜃
Aim 𝛼
Aim accuracy 𝜀𝛼
Long turn variability 𝜎tu
Number of key presses in turn action 𝑛tu
Turn completion time 𝑡tu act
Time to prepare first turn 𝜏ntu=1
Time to prepare turn correction 𝜏ntu>1
Long thrust variability 𝜎th
Number of key presses in thrust action 𝑛th
Thrust action variability 𝜎th act
Thrust completion time 𝑡th act
Time to prepare first thrust 𝜏nth=1
Time to prepare thrust correction 𝜏nth>1

4.1. A brief overview of ACT-R

ACT-R is both a unified theory of cognition and a software imple-
mentation of that theory, which can be used to construct cognitive
models. Here we will provide a brief overview of the cognitive ar-
chitecture, sufficient to follow the model development below. Those
interested in a more detailed introduction to ACT-R can refer to the
primer of Dimov, Khader, Marewski, and Pachur (2019) or the detailed
book of Anderson (2007).

ACT-R is split into independent modules that model different cogni-
tive capacities. At the heart of ACT-R lies a procedural module, which
is responsible for selecting cognitive operations to execute. It stores a
collection of production rules (or IF-THEN rules), which fire when the
cognitive system matches their conditions (the IF part) and execute the
operations specified in their actions (the THEN part). Conditions are
states of other modules, whereas actions are requests to those modules.
A production rule fires when module states agree with its conditions,
which then results in requests to modules to perform certain operations
and thus change their state. This can enable other production rules to
fire, which can further change module states, and so on.

Modules are responsible for different aspects of peripheral and
central cognition. For example, there are perceptual modules respon-
sible for visual and auditory perception. In addition, there are motor
modules responsible for interaction with computer devices and for
producing speech. Moreover, there is a module that holds the current
representation of the problem at hand and a module that models
declarative memory. All modules have parameters associated with them
that determine the specifics of their behavior, such as the latency or

accuracy of their operations. For example one parameter determines the
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Fig. 3. Overview of tight resource-rational analysis of Space Track. We start by developing action models that predict the number of key presses needed when turning and thrusting
(STEP 1). We proceed with estimating action preparation time with the cognitive architecture ACT-R (STEP 2). These models are then used to estimate turn and thrust completion
time (STEP 3). Independently, we also estimate the time to crash (STEP 4). Action completion time and time to crash are the main input into the rational model of Space Track,
which finds the parameter values that optimize score. For each model, we highlight the input and output variables. The variables that were fixed in independent micro-tasks are
highlighted in red, those that are fixed by relying on ACT-R’s default parameters are highlighted in yellow, whereas the parameters that were optimized by model and subject are
in green.
rate at which long-term memory decays, whereas another determines
the noise in motor actions.

Here we will rely mainly on the latency parameters of the architec-
ture in order to estimate the time costs related to various processes. Of
interest are mainly the latency parameters associated with peripheral
processes (i.e., visual perception and finger movement on a keyboard)
and with the procedural module. Specifically, the time it takes for a
production rule to fire is fixed at 50 ms, whereas the time it takes to
encode a visual object already attended to is 85 ms. The time it takes
to prepare a finger movement depends on the number of features that
need to be prepared. The models we construct specify the sequence in
which cognitive processes are executed and produce time estimates as
a sum of such latencies.

4.1.1. Step 1: Models of key presses in actions
Both turn and thrust actions are completed through either taps or

long key presses. The models for both actions will rely on the tap
duration and variability estimated in the Tap task. Moreover, the long
turn variability estimated from the Long turn task will be input into the
turn action model. When model parameters are not measured in micro-
tasks, we will rely on default values from the cognitive architecture
ACT-R. One such parameter common to both action models is the lower
boundary of the duration of a long key press, which is 130 ms in
ACT-R.8

8 Motor actions in ACT-R go through a preparation phase, an initiation
phase, and a burst phase. Both key press and key release will go through these
3 phases. Each phase has timing parameters associated with it. Preparation
time varies as a function of the number of features that need to be prepared.
The default motor initiation time is 50 ms as is the default motor burst time.
Moreover, ACT-R assumes that the key press is not detected after the finger
completes the movement, but already while the key travels a certain distance.
The default value for this parameter, key closure time, is 10 ms. Similarly, a
key release is detected before the release action is complete, specifically after
a key release time of 40 ms by default. To estimate the minimum long key
press, we should consider that the key release can be prepared as long as the
key press is no longer in preparation. However, the key release can only start
when the burst is complete. This results in minimum long key press of (burst
time - key closure time) + initiation time + key release time.
6

4.1.2. Key presses in turn action
We consider a turn action complete when the ship has been oriented

to within an aim tolerance region 𝜀𝛼 of a target orientation. When
aiming the ship, one would typically start with a long key press (unless
the orientation change is very small). In the turn action task, the
first key press is expected to be long based on the turn magnitude. If
that long press is unbiased (i.e., the subject aims exactly at the target
orientation), the probability of falling within the aim tolerance region
equals the proportion of the long turn distribution that falls within it
(see Fig. C.5 in Appendix B, for a visualization of the overlap between
the target orientation regions in the Turn action task and three turn
distributions spanning the full range of 𝜎tu).

𝑃 (𝑛tu = 1; 𝜎tu, 𝜀𝛼) = ∫

𝜀𝛼

−𝜀𝛼
 (0, 𝜎2tu)d𝛼, (1)

where  (0, 𝜎2tu) is the density function of turn angle. The predictions
of this equation for accuracies of 6 deg and 12 deg match well the
empirically observed relative frequencies (Fig. 4, a) with correlations
of 𝑟𝜀𝛼=6 = 0.75 and 𝑟𝜀𝛼=12 = 0.89 and little bias. Note that this equation
allows us to predict the probability for any aim accuracy.

If the first key press does not fall within the aim tolerance region,
corrective key presses need to be executed. These key presses can be
either long presses or taps. We tested three models to investigate their
nature. Model 1 assumed that all corrective key presses were long
(i.e., with a SD of 𝜎tu). Model 2 assumed that they are taps, and hence
were less variable than the first key press (as measured in the Tap task,
𝜎tap). This is a reasonable assumption given that the ship should be
close to the target aim region after the first turn. Model 3 extended
Model 2 by executing whichever (tap or long key press) gets the ship
closer to the target (Appendix D presents a mathematical formulation
of each model, derivations of their predictions, and a comparison of
their predictions to data).

In line with Models 2 and 3, the observed duration of corrective key
presses was close to the empirically measured tap averages (Fig. 4, b),
albeit a little bit longer. Among these, Model 3 did best at predicting
the average number of key presses in the Turn action task (with
correlations 𝑟𝜀𝛼=6 = 0.69 and 𝑟𝜀𝛼=12 = 0.78, Fig. 4, c). To summarize,
the turn model assumes that subjects orient a ship to a target accuracy
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𝑛

Fig. 4. Turn action model plots. (a) Predicted and observed (Turn action task)
probability of completing the turn in a single key press. (b) Tap duration (Tap task)
and median corrective key press duration (Turn action task). (c) Predicted and observed
(Turn action task) number of key presses in a turn action.

by first executing a long key press, possibly followed by corrective key
presses, which are in most cases short taps (accuracy as measured in
the Tap task), but also long key presses on occasion.

4.1.3. Key presses in thrust action
The goal of a thrust action is to change the ship initial velocity

to its target velocity. Before the thrust action is initiated, the ship
is aimed appropriately such that the subsequent thrust can reach the
target velocity. We consider a thrust action complete if the ship cannot
get any closer to that velocity without reaiming, that is, if the velocity
change produced by the thrust is at most half a tap below the target
velocity change. If the velocity change is further below, the model will
execute appropriate corrective thrust key presses.

Unlike for turn key presses, we have not measured long thrust vari-
ability 𝜎th. Instead, we will use a common parameter for all subjects.
Just as for long turn key presses, we will assume that the variability
of long thrust key presses is independent of press duration. Moreover,
we will assume that the same coefficient of variation found for taps
(i.e., 0.35, see Fig. C.1 in Appendix B) also applies for long thrusts and
estimate its SD as that for the smallest long key press: 𝜎th = 0.35 ⋅ 130 =
45.5 ms. The thrust action model assumes that an unbiased long key
press is executed with that SD, followed by one or several corrections
if the first thrust was shorter than the target thrust. The number of
corrective key presses is a function of how far the first thrust is below
the target thrust. For example, if it is between 0.5 and 1.5 taps below
the target thrust, a single tap will bring the ship closest to its target. If
it is between 1.5 and 2.5 taps below, 2 taps will be necessary, and so
on. The final estimate of expected key press number in a thrust action
̂th weighs the number of corrective taps by the probability that this
number of taps will be needed. This estimate matches well the observed
number of key presses in a thrust action in Space Track 𝑛̄th (𝑟 = 0.78,
see Fig. 5). Note that thrust corrections can be executed after the initial
thrust, which means that the thrust action variability 𝜎th act will be
smaller than that of a long thrust 𝜎 .
7

th
Fig. 5. Predicted and empirical average number of key presses in a thrust action. The
empirical average number of key presses is estimated in thrust actions in the main
task, Space Track.

Table 4
Estimated time costs associated with the cognitive processes responsible for triggering
an action and their corresponding game values. Empirical Turn correction cognitive
costs were computed as the time between consecutive turn key presses. The median
inter-key-press interval of the median subject is presented.

Action Notation ACT-R time estimate Data (median)

First turn 𝜏ntu=1 570 ms N/A
Turn correction 𝜏ntu>1 335 ms 300 ms
First thrust 𝜏nth=1 285 ms N/A
Thrust correction 𝜏nth>1 285 ms 267 ms

4.2. Step 2: Cognitive delay

Action completion time 𝑡act is the sum of turn completion time 𝑡tu act
and thrust completion time 𝑡th act . Each of these consists of a cognitive
delay 𝜏 (i.e., the time costs of all cognitive processes that prepare
the action) and key press time associated with potentially several
key presses. Here we estimate the cognitive delay 𝜏 by constructing
cognitive models of these actions in ACT-R.

We provide detailed process traces of the cognitive models in Ap-
pendix E and their time cost estimates in Table 4. To summarize these
models, preparing the first turn (i.e., 𝑛tu = 1) requires more work than
turn corrections (i.e., 𝑛tu > 1). The subject needs to first attend to the
inter-segment angle 𝛽 and extract its bisector in order to orient the ship
along it. Once extracted, the subject needs to attend to the ship and
start either a clockwise or a counterclockwise turn. These processes
are estimated to take 𝜏ntu=1 = 570 ms. Preparing turn corrections is
much simpler, because the subject has already determined the bisector
orientation and is already attending to the ship. The subject needs to
merely perceive its orientation and initiate the next key press, which is
estimated to take 𝜏ntu>1 = 335 ms. Finally, preparing thrusts requires the
same processes as turn corrections, but the motor command can be pre-
pared in advance, since it is always the same. This saves an additional
50 ms for 𝜏nth=1 = 𝜏nth>1 = 285 ms. The time estimates of preparing a
correction are close to subjects’ median (see Table 4; estimated through
the median inter-key-press-interval for all consecutive turn key presses
and thrust key presses in the main task).9

9 Some might argue that we can further validate our model predictions from
the Turn action task. However, inter-key-press-intervals in the Turn action task
are much longer than in the Space Track, because subjects have to attend
to visual feedback on whether their turn was successful or not. Hence, they
are not good estimates of turn correction cognitive delay. Moreover, in Space
Track there might be a waiting period between completing a turn and starting
the next thrust, and between completing a thrust and starting the next turn,
which make it hard to generate a reasonable empirical estimate of cognitive
delays related to the first turn or thrust.
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4.3. Step 3: Action completion time in Space Track

Turn and thrust completion times consists of cognitive delay and
key press time. Key press time can be estimated based on target value
and game parameters (i.e., the two constants: ship acceleration 𝑎, which
specifies by how much velocity changes each game tick when the thrust
key is pressed, and turn rate 𝜔, which specifies by how much orienta-
tion changes each game tick when a turn key is pressed). Specifically,
thrust key press time equals the absolute change in velocity divided by
ship acceleration |𝛥v|∕𝑎, whereas turn time equals the change in angle
divided by turn rate 𝛥𝛼∕𝜔. Note that velocity change is a vector and
here we take its absolute value to compute the vector length. Also note
that key press time will vary around the ideal value as a function of
subject tap and long key press variability.

Our model assumes the same cognitive delays 𝜏 for all subjects.
However, it does predict different action completion times based on
the number of key presses subjects need to complete turn and thrust
actions. Turn completion time is most strongly affected by the number
of key presses 𝑛tu a subject needs to reach an aim accuracy 𝜀𝛼 . All
subjects will need the same amount of time to prepare and execute
the first key press, but inaccurate subjects (i.e., those with a high 𝜎tu
and 𝜎tap) will need to prepare and execute one or a few corrective key
presses as well, especially at low aim tolerances (Fig. 6, a; green is
the turn completion time distribution of an inaccurate subject, whereas
red is of an accurate one). For example, when 𝜀𝛼 = ±6 deg, an
accurate subject will complete most of her turns within 2 s, whereas
an inaccurate subject will require as long as 4 s on occasion.10

Thrust completion time depends on tap duration 𝑡tap, speed 𝑠 and
inter-segment angle 𝛽 (Fig. 6, b). A faster flying ship will thrust longer
to steer in a new direction. Moreover, at a large 𝛽 the ship needs
to almost reverse its flight direction, a larger velocity change, which
requires more time than the more gentle adjustments required at small
𝛽. Finally, subjects with very short taps will need to execute more key
presses 𝑛th to correct too short thrusts. Overall, thrust completion time
can be as short as 0.5 s when target speed is slow and no corrective
key presses are needed and as long as 2.5 s when target speed is fast
and corrections are executed. Typically, turn completion time is longer
than thrust completion time, especially for an inaccurate subject flying
slowly. However, for a fast flying accurate subject, these two action
types take a similar amount of time to complete.

4.4. Step 4: Time to crash

Time to crash 𝑡crash is a function of the speed 𝑠 at which the ship flies
and the distance to segment border 𝑑𝜃 in its flight direction 𝜃. Since a
segment is longer than wide, if the ship is heading toward the segment
side, 𝑑𝜃 will typically be short and, consequently, 𝑡crash will be small.
After an inter-segment transition, the ship would ideally fly along the
second segment at target speed 𝑠tar (red velocity vector 𝑣1, Fig. 7). The
ideal velocity would be disturbed by imperfections in subject actions.
Specifically, the amount of noise in turn (i.e., 𝜀𝛼) and thrust actions
(i.e., 𝜎th act) would determine velocity noise 𝛥 𝑣noise. If 𝛥 𝑣noise is large
enough, 𝑡crash might be strongly affected, either because the ship is
heading to the segment side or because its speed is much faster than
intended.

How exactly velocity noise influences time to crash 𝑡crash will vary
with ship speed 𝑠 and inter-segment angle 𝛽. Specifically, ship speed
𝑠 modulates the relative influence of 𝛥 𝑣noise on flight direction 𝜃: the
faster the ship flies, the less will velocity noise 𝛥 𝑣noise distort its flight
direction. Inter-segment angle 𝛽 affects the angle between ship aim and

10 Note that we assume that trajectory corrections rely on a highly inaccurate
aim and, hence, there aiming the ship is always completed in a single key
press. This is because trajectory corrections are equivalent to inter-segment
transitions at small 𝛽, which are insensitive to aim accuracy.
8

Fig. 6. Predicted turn completion time (panel a) and thrust completion time (panel
b). The lines represent the 10th, 25th, 50th, 75th and 90th percentiles. We plot the
predicted distribution of a low completion time subject (green) and a high completion
time subject (red) for both turn and thrust actions. The distributions differ, because
the high completion time subject needs more key presses, on average, than the low
completion time one. The time distributions are a function of both the distributions
over the number of key presses to complete the action and various in-game parameters,
such as how far the ship turns and how long it thrust for.

target flight direction. At large 𝛽, ship aim is close to perpendicular to
the target flight direction (Fig. 7, a and b), whereas at small 𝛽, ship aim
is close to parallel (Fig. 7, c and d). In the first case (Fig. 7, a), 𝛥 𝑣noise
will disturb ship flight direction 𝜃 a lot and resultant speed to a lesser
extend, whereas in the second case (Fig. 7, c) it will mostly affect the
resultant speed and disturb flight direction to a much lesser extend.

If the ship is not ideally aimed (Fig. 7, b and d), then its speed
will have to be different than the ideal one if the subject aims to
achieve a flight direction along the second segment. How large the
speed disturbance 𝛥 𝑠 will be will vary with 𝛽. When 𝛽 is large, aim
noise will minimally affect resultant speed (Fig. 7, b). When 𝛽 is small,
compensating for aim noise might require large adjustments in target
speed to achieve a flight direction along the second segment (Fig. 7, d).

These effects will mean than at small 𝛽, mostly aim accuracy 𝜀𝛼
will influence if the ship is heading to the segment back or side (Fig. 8)
and, consequently, what 𝑡crash will be (Fig. 9). Here, when ship aim is
inaccurate, the ship might crash into the segment side in less than 1 s
after thrust is complete, even at moderate speeds. At large 𝛽, the effect
of thrust noise 𝜎th act will predominate for both variables and 𝑡crash will
be a little longer (>2 s), even when headed to the side.

4.5. Step 5: Putting it together

The complete model estimates the probability that the ship crashes
as a function of the parameters discussed in the previous sections.
There are many opportunities for the ship to crash in a segment if the
subject does not act fast enough, either during a trajectory correction
(of which there can be several in a segment) or during the inter-segment
transition. We label the cumulative probability of those the segment
crash probability 𝑝c (please refer to Table 5 for a list of all variables
used in this section). Note that 𝑝c is a function of many variables,
such as how the turn action in the main inter-segment transition was
executed, how thrust actions in trajectory corrections are executed, or
what trajectory the ship had followed in the previous transition.

If the ship crashes, all its progress is lost and it reappears at the
beginning of the segment, only to potentially crash again. The ship will
continue to reappear at the beginning of the segment after each crash
until it enters the subsequent segment. This means that the number of
crashes before successfully traversing a segment 𝑛c can be described
by a geometric distribution, whose average 𝑛̄c is a function of the
probability of crashing on each traversal attempt:

𝑛̄c =
𝑝c . (2)
1 − 𝑝c
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Fig. 7. Affect of thrust and turn noise on resultant speed for small and large inter-segment angles. Red vectors depict the ideal scenario, whereas yellow vectors the effect of
noise. (a) Affect of thrust noise at a large inter-segment angle. Here thrusting is close to perpendicular to flight direction and therefore thrust noise leads to a relative large change
𝛥𝑣noise in resultant velocity 𝑣1. This change affects flight direction a lot when target speed is small. (b) Affect of turn noise at a large inter-segment angle. When the ship thrusts
a few degrees form its ideal thrust direction, the ship’s final velocity is just barely affected. (c) Affect of thrust noise at a small inter-segment angle. Thrust direction is close to
parallel to the target flight direction, leading to minor influence of thrust noise on resultant flight direction. This influence is even smaller when speed is large. (d) Affect of turn
noise at a small inter-segment angle. Here minor deviations from the target thrust angle can lead to large changes of resultant speed to reach the target flight directions.
Table 5
Estimated time costs associated with the cognitive processes responsible for triggering
an action and their corresponding game values. Empirical Turn correction cognitive
costs were computed as the time between consecutive turn key presses. The median
inter-key-press interval of the median subject is presented.

Variable Notation

Segment crash probability 𝑝c
Segment crash frequency 𝑛c
Successful segment traversal time 𝑇s
Segment crash time 𝑇c
Segment time 𝑇seg
Number of traversed segments in a game 𝑛seg
Crash frequency in a game 𝑛crash

Each crash naturally increases the time the ship spends in a seg-
ment because progress in the segment is lost and, also, the ship only
reappears 1 s after the crash. Given the ship’s speed, it will traverse a
segment successfully in 𝑇s seconds. If the ship fails to traverse a segment
because of a crash, it will take on average 𝑇c seconds. The reset cost
of 1 s needs to be added to this to compute the overall time cost of a
crash. The average time the ship needs to traverse a segment 𝑇seg will
include both the average time lost because of crashing and the time to
successfully traverse the segment:

𝑇seg = 𝑇𝑠 + 𝑛̄c(𝑇c + 1). (3)

If a subject needs 𝑇seg seconds to traverse a segment, on average, s/he
will traverse 𝑛seg = 180∕𝑇seg segments in a single 3-minute game. Game
score will weight traversals by 25 points and crashes by −100 points,
25 ⋅ 𝑛seg − 100 ⋅ 𝑛crash, where 𝑛crash = 𝑛seg ⋅ 𝑛c.

These parameters are all related to the parameters estimated in the
previous section. Specifically, 𝑝c is the probability that 𝑡crash < 𝑡act for
the inter-segment transition and all trajectory corrections. 𝑇s is the
time the ship needs to traverse the segment given its velocity and 𝛽.
This time is a little bit longer than it would be if the ship were flying
at its target velocity at all times, because the ship temporarily slows
down during inter-segment transitions and this slowing down is more
significant the sharper the angle. Finally, 𝑇c is the expected value of
𝑡crash for all 𝑡crash shorter than 𝑡𝑎𝑐𝑡. To compute these values, we will
exploit the symmetry of the task.

To exploit the task’s symmetry, we will introduce the notion of
periodic boundary conditions. Periodic boundary conditions are used in
physics to describe symmetric large systems, such as crystals or liquids.
9

Specifically, when assuming periodic boundary conditions, one models
the entire system with a small part of it (the so called unit cell) that
repeats infinitely to produce the large system. For example, the electric
potential in a crystal would be approximated by the potential around
a single atom or collection of few atoms that constitute the smallest
unique part of the structure (i.e., the unit cell). An electron would be
assumed to reappear on the opposite side of the unit cell once it exits
from one side. Analogically, we can model a track in space, in which all
transitions have the same inter-segment angle, as a single inter-segment
transition consisting of two intersecting half-segments (see Fig. 10). In
this setup, the ship reappears at the beginning of the first half-segment
after it exits the second one. This reduces a large track of multiple
transitions to a single transition.

Assume that the ship always enters the unit cell at the same speed
𝑠tar , that it only sees a single 𝛽, that the ship is always aimed to within
the same aim accuracy 𝜀𝛼 , and that the thrust action is always executed
at the ideal moment with the same velocity noise. The inter-segment
transition would take 𝑡act seconds to complete and would result in a
time to crash distribution 𝑡crash, and the ship would crash whenever
𝑡act > 𝑡crash. Then an optimal model would choose 𝑠tar and 𝜀𝛼 which
produce the largest score. This setup demonstrates that smaller 𝛽 are
more difficult than larger ones, because they require longer thrusts to
almost reverse the ship flight direction and more turn key presses to
reach narrow aim tolerance regions that they require. Average score at
the lowest 𝛽 is consistently 1000 points less than at large 𝛽.

For the complete model, we relax two assumptions of this initial
setup. First, we introduce probabilistic periodic boundary conditions by
assuming that each 𝛽 is equally likely instead of assuming a single 𝛽.
The model needs to choose a single value for 𝑠tar and 𝜀𝛼 that works well
across all 𝛽. Because crashes are more costly than segment traversals,
this model will be biased towards values that work well at small 𝛽, that
is narrow 𝜀𝛼 and slow 𝑠tar . Second, we will relax the assumption that
the ship always enters at its ideal speed 𝑠tar . Instead, we will assume
that the speed at which the ship enters the unit cell is distributed just
as the speed at which it exits the unit cell if it does not crash. Often the
ship will fly at close to the ideal speed, but also far from it on occasion.
The further the ship is from the optimal speed, the lower the expected
score will be. Since less capable subjects will fly the ship at a more
variable speed, their performance will be more strongly penalized by
this assumption.

Optimal 𝑠tar and 𝜀𝛼 values were found using grid search. The re-
sultant model predictions correlated strongly with subject asymptotic
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Fig. 8. Probability of heading toward the back or side of the segment, or crashing before completing thrust, as a function of speed 𝑠, tap noise 𝜎tap, and aim tolerance 𝜀𝛼 . At
𝜀𝛼 = 0, the ship is aimed at exactly the target orientation. At 𝛽 = 150 deg, aim tolerance barely influences flight direction, whereas at 𝛽 = 30 deg it has a strong influence.
Conversely, thrust noise strongly affects where the ship will head at large 𝛽, whereas at small 𝛽 its affect is much more modest. Note that when 𝜀𝛼 = 0, the ship is always aimed
at the inter-segment angle bisector.
game score (𝑟 = 0.87) and game crashes (𝑟 = 0.86, Fig. 11) and
were generally close to observations in absolute terms (mean absolute
error: MAE(score) = 332; MAE(𝑛crash) = 1.89). Moreover, predicted
score was, on average, slightly higher than observed score (mean signed
deviation: MSD(score) = 163), whereas predicted crashes were close
to observations (MSD(𝑛crash) = 0.15). The conclusions were drawn
with asymptotic performance estimated over a window of 4 games,
yet they remain robust when we systematically vary the window size
(for a study of the effect of window size over these measures, see
Appendix G). The model predictions are generated entirely from param-
eters measured in micro-tasks, without estimating any parameter values
from the main task. The majority of subjects are very close to their
predicted performance. Moreover, the model quantitatively predicts
that most subjects will rarely crash, whereas a few will crash much
more frequently.

5. General discussion

We developed a resource-rational model of Space Track, a task in
which producing rapid and precise actions is key to success. Impor-
tantly, both the time cost and the accuracy of actions are a function
10
of multiple cognitive processes. We developed models of these actions,
which specified action accuracy and latency. To estimate action accu-
racy, we created mathematical models, whose parameters were fixed
per subject in independent micro-tasks. The models were tested either
in an independent micro-task or in the main task. To estimate action
latency, we constructed ACT-R models and relied on ACT-R’s default
parameters. After propagating the effects of action accuracy and timing
onto the main task and assuming that each subject did their best, we
arrived at individualized score predictions close to asymptotic score.
This provided strong support for our model. Importantly we demon-
strated a method of estimating resource-rational model parameters in
independent micro-tasks that is useful in constraining complex models.
We will now discuss how and why our model deviates from the data
and then focus on different aspects of our modeling approach.

5.1. Deviations of model predictions from data

The predictions of our model corresponded well to observations.
Thus, we demonstrated that perceptual-motor limitations have a strong
influence on Space Track performance. Yet, even though model predic-
tions and data were close, model predictions were above observations
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Fig. 9. Time to crash 𝑡crash after an inter-segment transition as a function of speed 𝑠, tap noise 𝜎tap, and aim tolerance 𝜀𝛼 and flight direction category. At 𝜀𝛼 = 0, the ship is aimed
at exactly the target orientation. Plotted are regions between 5th and 95th percentiles of 𝑡crash.
Fig. 10. A depiction of the assumption of periodic boundary conditions in Space Track.
In this setup, the ship faces the same inter-segment angle. When the ship exits the unit
cell, which consists of two half-segments at the corresponding inter-segment angle, it
reappears at the start of the first half-segment. The ship is assumed to always select
the same aim accuracy (highlighted in yellow), which in turn determines the turn
completion time distribution. Moreover, the ship picks a single target speed to fly at,
which determines the thrust completion time distribution and the time before crash.
These jointly determine the probability of crashing and the number of segments that
will be traversed, and consequently, final score.
11
Fig. 11. Predicted asymptotic Space Track score and crash frequency in segment vs.
empirically observed values in the best performing 4-consecutive games of study. The
line of equivalence is plotted in red.
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for many subjects. Moreover, the model significantly overpredicted
one poor performing subject and underpredicted the best performing
subject. The discrepancy between predictions and observations can
come from violations of the assumption of rationality, from how Space
Track score is presented to subjects, from other measurement errors,
or from assumptions in the model. We will now look at each of these
separately.

Humans do not always behave rationally, because our learning pro-
cesses do not always find the optimal solution (e.g., Fu & Gray, 2006).
Even in the original experiments with Space Fortress (e.g., Donchin,
1995), a game on which Space Track is based, subjects were content
with finding any strategy that produced positive score, whether optimal
or not. Generally, in complex tasks, the space of possible solutions is
very large and subjects might not always find the global maximum, at
least within the time course of an experiment. In fact, skill acquisition
models of Space Track (Anderson et al., 2019; Seow et al., 2021) have
demonstrated that learning processes can introduce suboptimalities in
performance.

However, it is difficult to claim that subjects with a negative score
potential are behaving suboptimally when scoring below their esti-
mated potential. While we relied on the true Space Track score in our
analysis, this was not the score that subjects saw in the experiment.
When designing the study, we set a lower limit on score of 0 to
avoid frustrating poor subjects.11 Consequently, from subjects’ point
of view, all negative score was equally good. This might also explain
why one subject scored worse than a passive subject and others started
decreasing their score after a few games, which further tainted our
measurements.

In fact, this is not the only possible measurement error in our ap-
proach. Previous experiments with Space Track have shown an increase
in score even after 40 games, whereas subjects only played 20 games
in our study. Thus, it might be that subject were not given enough time
to reach their potential. We made this choice for practical reasons as
previous experiments have also shown that most learning is complete
within 20 games. In fact, providing subjects with raw scores might have
given valuable additional feedback that would speed up learning.

In addition to these data-centric problems, certain assumptions
in our model might be the cause for its predictions error. A major
simplification in the model is that it only relies on individual measures
related to action accuracy. For all other parameters, we used values of
an average subject from ACT-R. Individualizing all action parameters
might have produced a more accurate prediction. In fact, this is our best
guess about why the best subject is scoring higher than what our model
predicts: that subject likely payed smaller cognitive preparation costs
than ACT-R’s default parameters. Another simplification in the model
was to treat the setup as that of periodic boundary conditions with
a distribution of starting speeds around the optimal. This idealization
might have been too coarse for the poor performing subjects. Despite
these potential pitfalls of our model, we do find it useful for two
reasons. First, it demonstrates that subjects can be close to optimal even
in tasks such as Space Track and, consequently, that learning processes
would likely introduce only minor suboptimalities in tasks of similar
complexity. Second, it showcases that tasks of such complexity are also
amenable to a rational analysis.

5.2. Comparison with other approaches

Our approach naturally comes closest to other resource-rational
analyses, because of its focus on the impact of cognitive constraints on
task performance. It is perhaps closest to that of Howes et al. (2009).
Just as we do, they incorporated a cognitive architecture into a rational

11 On occasion, a true negative score can also be seen as a positive score if
he subject was performing relatively poorly at the beginning of the game, but
elatively well toward the end.
12
analysis and, also, they calibrated individual model parameters. The
difference is that they did not calibrate the parameters in independent
micro-tasks, but on the same task. Another difference is that they
did not need to validate model components in independent tasks.
The latter might be specific to more complex tasks, which require
multiple different component skills, each of which requires developing
an independent model.

In this sense, our approach is also close to certain skill acqui-
sition approaches. Skill acquisition models and rational models are
generally complementary, because the former aim to characterize
learning processes, whereas the latter aim to characterize behavior
once learning has done its job. Yet, Hoekstra, Martens, and Taatgen
(2020)’s skill-based approach has interesting touching points with our
approach. They emphasize the flexibility that humans exhibit in reusing
skills across multiple tasks and construct models that exhibit a similar
amount of flexibility. At the core of their modeling approach are
multiple simple skills that are shared across models. This is analogical
to the turning and thrusting models that we constructed and validated
as components of the Space Track model. The commonality between the
two approaches, we believe, is componential decomposition, which is
a natural step to take when dealing with complexity.

5.3. Tight resource-rational analysis

We offer tight resource-rational analysis as a method of dealing with
model complexity. This method is complementary to other method-
ological approaches, which focus on penalizing complex models ei-
ther through an explicit penalty on the number of free parameters
(e.g., Akaike Information Criterion or Bayesian Information Criterion)
or an implicit penalty based on the size of the space of all possi-
ble predictions (e.g., cross-validation). Our approach reduces model
complexity by fixing parameter values either through individualized
measurement in separate micro-tasks or through using group-level
average values from an established unified theory of cognition. More-
over, our approach reduces possible variation in functional form by
validating functional form hypotheses in additional micro-tasks. The
thus constrained models only vary within the bounds of parameter
measurement error, which, we believe, increases confidence in their
validity.

It is apparent why fixing parameters in independent micro-tasks
is not often performed: it is time consuming.12 Even with only three
micro-tasks, the duration of our experiment roughly doubled. Some
tasks might require tens of accompanying micro-tasks to constrain
model parameters, which would be difficult to implement. In fact, even
in our experiment we might have needed many more micro-tasks had
we not relied on ACT-R. The key is being selective and focusing on
parameters that would account for most of the inter-subject variability
in performance. In our case, we made an informed guess about which
parameters are most likely to be central to the task by the relying on
the existing ACT-R model and our intuition about what would affect the
probability of crashing in a segment most. In essence, one needs a rough
sketch of the detailed resource-rational model when deciding what to
measure. Despite this drawback, we believe that any researcher that
is moderately familiar with a task can make a informed guess about
what to measure and what not. Overall, we consider our approach
an important methodological stepping stone towards implementing
resource-rational models of more complex tasks.
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Appendix A. Micro-task rewards

Performance in all micro-tasks was incentivized through a quadratic
reward function. The specific values of the reward was calibrated such
that the average subject would achieve a reasonable number of points.

A.1. Tap task

The goal of this task was to measure the shortest key press subjects
could execute. Consequently, shorter key presses were awarded more
points. The specific reward function 𝑅 was chosen such that only
key presses of below 100 ms are awarded any points. Moreover, the
denominator was chosen such that a key press of a duration that half
of all subjects can achieve (i.e., 50 ms) would bring 1 point.

𝑅 =

{

(100−𝑡)2
2500 t < 100 ms

0 else

A.2. Long turn task

The goal of this task was to measure the variability of a long
turn key press. Only turns that fell within 15 degrees of the target
orientation were awarded any points. Moreover, turns that were 8
degrees away would receive 1 point, with the theoretically highest
award being 4 points, when the offset is 0 degrees.

𝑅 =

{

𝑎 (15−𝛥𝛼)2
64 𝛥𝛼 < 15 deg

0 else

A.3. Turn action task

The goal of this task was to measure how quickly a subject can
orient the ship to a target region. Consequently, rapid action was
incentivized. All trials that took longer than 1500 ms did not bring any
points. Moreover, a trial that would take 707 ms would bring 1 point.
Note that timing was initiated when the first key press was detected
and not at the very start of the trial.

𝑅 =

{

(1500−𝑡𝑡𝑢 𝑎𝑐𝑡)2

500000 𝑡𝑡𝑢 𝑎𝑐𝑡 < 1500 ms
0 else

Appendix B. Data cleaning

We are interested in measuring asymptotic performance in all tasks.
To this end, we eliminated all learning trials on all tasks. For micro-
tasks, we removed the first 25 trials and for Space Track, we only
considered the 4 games with highest average performance. Additional
data cleaning was performed for the Tap and Long turn tasks. First,
some subjects continued improving their performance on a task or
did not reach a stable-state performance until later. For those subjects
later trials were considered. Second, outliers were eliminated by not
considering all data points that lay outside of 1.96 standard deviations
around the mean. In the following subsections, we highlight which
data were removed (green: learning trials; red: outliers) and which kept
(black) for the all tasks.
13
Fig. B.1. Per-subject data from Tap task. Each panel plots a subject. The first 25 trials
were removed for all subjects as subjects were assumed to still be learning the task
(green). Two subjects required removing more data. Among the remaining subjects,
outliers were eliminated (red). Distributions were fitted to the remaining data (black).

Fig. B.2. Per-subject data from Long turn task. Each panel plots a subject. The first
25 trials were removed for all subjects as subjects were assumed to still be learning
the task (green). Two subjects required removing more data. Among the remaining
subjects, outliers were eliminated (red). Distributions were fitted to the remaining data
(black).

B.1. Tap task

Fig. B.1 plots learning, outlier and normal data for the Tap task. For
the majority of subjects, the first 25 trials were considered learning
trials. In addition, one subject (first row, second column) exhibited
unrealistically fast response times in the middle of the task. For this
subject, we extended learning trials to include all trials until the end
of this fast streak (trial 100). A second subject (second row, second
column) continued decreasing response time after trial 25, which also
necessitated considering additional trials as learning trials. As described
above, we removed the 5% most extreme data points as outliers. Before
eliminating these outliers, all trials with duration of 1 or 0 ms were
removed (artifacts). These are highlighted as outliers too.
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Fig. B.3. Per-subject data from Turn action task. Each panel plots a subject. The first
25 trials were removed for all subjects as subjects were assumed to still be learning
the task (green). Among the remaining subjects, failed trials were eliminated (red).

Fig. B.4. Per-subject data from Space Track. Each panel plots a subject. The four
consecutive games with the highest average score were selected as an approximation
of asymptotic performance.

B.2. Long turn task

Fig. B.2 highlights learning, outlier and normal trials in the Long
turn task. For the majority of subjects, the first 25 trials were considered
learning trials. Two subjects did not stabilize their performance until
later (second row, second column; first row, third column). For these,
trials up to trial 60 were considered learning trials. The 5% most
extreme data points were removed as outliers.

B.3. Turn action task

Fig. B.3 highlights learning, failed and normal trials in the Turn
action task. The first 25 trials were considered learning trials for all
subjects. Failed trials are those, in which subjects could not orient the
14
Fig. C.1. Mean tap duration and variability. Each observation corresponds to a single
subject. Error bars represent confidence intervals. Tap duration exhibits a scalar
variability (i.e., mean tap duration is proportional to tap SD) with a coefficient of
0.35.

Fig. C.2. Long turn mean signed difference (MSD) and variability (SD). Each obser-
vation corresponds to a single subject. Error bars represent confidence intervals. The
majority of subjects are not biased (MSD not significantly different from 0).

ship to within the target region within the trial time limit. Those were
removed from further consideration.

B.4. Space Track

To approximate subject optimal performance, we took the four
consecutive games that had the highest average score (highlighted in
green in Fig. B.4). We did not take the last 4 games, because some
subjects showed a decrease in performance in the later games (e.g., row
1, column 1; row 2, column 2), probably due to lack of motivation.

Appendix C. Additional data analysis plots

The main text provides only summary measures of quantities of
interest. Here, we present plots related to each micro-task for the
interested.

C.1. Tap task

Tap duration exhibits scalar variability. The majority of subjects
could execute taps shorter than 100 ms, but two subjects were much
slower, both at around 200 ms. These two subjects were removed from
further analyses.

C.2. Long turn task

The majority of subjects produced unbiased long turns. They varied
widely in variability (SD between 5 and 19 degrees; see Fig. C.2).
Unlike the previous task, no outlier subjects were detected. We also
visualize the long turn variability of three example subjects: a good
one, an average one, and a poor one (see Fig. C.3).
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Fig. C.3. Three example turn distributions, spanning the full range of subject single
turn variabilities. The red line represent the ship’s target orientation. The ship’s turn is
assumed to be unbised. More saturated yellow regions correspond to regions of higher
probability density.

Fig. C.4. Number of key presses in a turn action and probability of completing a turn
action with a single key press in the Turn action task. The two panels (and colors)
represent the two tolerance regions. There is a strong linear relationship between these.

Fig. C.5. Three example turn distributions, spanning the full range of subject single
turn variabilities, superimposed over the two tolerance regions in the Turn action task.
The ship’s aim is assumed to be unbiased (i.e., on average, it is in the center of
the tolerance region). More saturated yellow regions correspond to regions of higher
probability density. The proportion of the yellow curve that falls within the red region
correspond to the probability of falling within the tolerance region in a single turn.

C.3. Turn action task

Subjects varied too in the average number of key presses they
needed to complete a trial in the turn action task. Here we provide plots
relating the two measures of interest: average number of key presses in
a turn action 𝑛̄𝑡𝑢 and probability of completing a turn action in a single
key press 𝑃 (𝑛𝑡𝑢 = 1) (Fig. C.4). Similar to the long turn task, we also
visualize subject long turn SD relative to the two tolerance regions in
our experiment (see Fig. C.5).
15
Fig. C.6. Average subject score over best performing 4 games, ranked by score.

Fig. C.7. Average number of key presses required to complete a trial in the Turn action
task as a function of turn variability for trials of tolerances of ±6 and ±12 degrees.
Each point corresponds to a subject. The line represents the best fitting linear model.

Fig. C.8. Relative frequency of completing a turn in a single key press as a function of
turn variability for trials of tolerances of ±6 and ±12 degrees. Each points corresponds
to a subject. The linear represents the best fitting linear model.

C.4. Space Track

In Fig. C.6 we plot the asymptotic score estimate in Space Track,
ordered according to subject ranking.

There were large individual differences in main task performance.

C.5. Relationship between tasks

There was a strong correlation between long turn variability 𝜎tu
and the two turn action measures, average number of key presses in
a turn action 𝑛̄tu (Fig. C.7) and probability of completing the turn with
a single key press 𝑃 (𝑛tu = 1) (Fig. C.8). This is because that probability
corresponds to the portion of the single turn distribution that falls
within the tolerance region (see Fig. C.5 for an example of that portion
for three subjects spanning the full range of 𝜎tu and both tolerance
regions used in the study). Both 𝑡 and 𝜎tu both strongly correlated with
Space Track score (Fig. C.9).
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Fig. C.9. Relationship between asymptotic subject performance in Space Track (i.e., av-
erage score over best scoring 4 games) and individual difference measures. (a) Long
turn variability and score. (b) Mean tap duration and score.

Appendix D. Action models

D.1. Turn action

We tested three models of how subjects orient the ship to within
an aim accuracy. All models assume that the first key press is executed
with the variability of a long key press 𝜎tu as measured in the Long
turn task. The probability of reaching the aim accuracy with a single
key press of such a variability was defined in the main text as 𝑃 (𝑛tu =
1; 𝜎tu, 𝜀𝛼). Here, we will use the notation 𝑃long as a shorthand.

The models differ in the variability that they assume corrective
turns are executed with. Some assume 𝜎tu, whereas others assume that
corrective turns are brief taps and, hence, are less variable. Models are
tested based on their predictions of 𝑛tu for both aim tolerances of 6 and
12 degrees.

D.1.1. Model 1: All key presses are long
Model 1 assumes that each turn is equally variable with a SD of

𝜎tu. The probability of completing the turn in 𝑛tu key presses equal the
probability of failing the turn in the first 𝑛tu − 1 turns and succeeding
on the following one:

𝑃ntu=1 = 𝑃long

𝑃ntu=2 = (1 − 𝑃long) ⋅ 𝑃long

𝑃ntu=3 = (1 − 𝑃long)2 ⋅ 𝑃long

⋮

𝑃ntu=𝑖 = (1 − 𝑃long)(𝑖−1) ⋅ 𝑃long

This results in a geometric series, which has a well-known closed-
form solution, in this case for the expected number of key presses 𝑛̄tu :

̄tu =
∞
∑

𝑖=1
𝑖 ⋅ 𝑃long ⋅ (1 − 𝑃long)(𝑖−1) =

1
𝑃long

(D.1)

This equation predicts well the number of key presses for high 𝜖𝛼 ,
but overestimates it for the low one (Fig. D.1).

D.1.2. Model 2: Corrective key presses are taps
According to Model 2, all corrective turns are taps with a SD of 𝜎tap

(scaled by the turn rate 𝜔 = 3 deg∕tick), which have a probability of
succeeding 𝑃tap:

𝑃tap = 𝑃 (𝑛tu = 1; 𝜎tap, 𝜖𝛼) =
𝜖𝛼
 (0, 𝜎2tap)𝑑𝛼 (D.2)
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∫−𝜖𝛼
Fig. D.1. Turn action model 1: Predicting number of key presses required to complete
Turn action task. Black line plots line of the equivalence.

Fig. D.2. Turn action model 2: Predicting number of key presses required to complete
the Turn action task. Black line plots the line of equivalence.

The probability of failing to turn to the target region on the first
turn is (1 − 𝑃long), whereas it is (1 − 𝑃tap) on all subsequent turns:

𝑃ntu=1 = 𝑃long

𝑃ntu=2 = (1 − 𝑃long) ⋅ 𝑃tap

𝑃ntu=3 = (1 − 𝑃long)(1 − 𝑃tap) ⋅ 𝑃tap

⋮

𝑃ntu=𝑖 = (1 − 𝑃long) ⋅ (1 − 𝑃tap)(𝑖−2) ⋅ 𝑃tap

The expected number of key presses 𝑛̄tu can be rearranged to include
a geometric series, which has a closed-form solution too:

̄tu = 𝑃long + (1 − 𝑃long)

( ∞
∑

𝑖=2
𝑖(1 − 𝑃tap)𝑖−2𝑃tap

)

= 𝑃 +
1 − 𝑃long

1 − 𝑃tap

(

1
𝑃tap

− 𝑃tap

)

(D.3)

Model 2 predicts well the number of key presses for the more
narrow tolerance region, but underestimates them for the wider one
(Fig. D.2).

D.1.3. Model 3: Corrective key presses are either taps or long key presses
Model 3 assumes that corrective turns can be either taps or long key

presses. However, it does not assume that the choice of which to use
is random. Instead, it assumes that whichever key press brings the ship
closer to the target orientation will be chosen.

Which key press will bring the ship closer is based on the angle
change each key press leads to. For taps, this is assumed to be 𝑡tap,
scaled by the turn rate 𝜔. For long key presses, this is assumed to be
the time difference between the moment the ‘‘press’’ command is sent
and the moment the ‘‘release’’ command is sent according to ACT-R
(i.e., 130 ms). The final equation is the same as for Model 2, with 𝑃tap
modified to 𝑃corr :

𝑃corr =

(

𝑃𝑡𝑎𝑝 ⋅ ∫

𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡
 (0, 𝜎2tu)𝑑𝛼 + 𝑃long ⋅ ∫

∞
 (0, 𝜎2tu)𝑑𝛼

)

𝜖𝛼 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡
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Fig. E.1. Process trace of ACT-R model of first turn. The 𝑥-axis plots time (in ms),
whereas the 𝑦-axis represents the activity of the various modules of ACT-R that are
involved in this model. Before turning the model needs to estimate the ship target
orientation (i.e., the bisector), perceive the aim and then press the appropriate turn
key. Productions 1 and 2 direct attention to the inter-segment region and command
the visual module to perceive the region where the two segments intersect. This is
followed by the visual module attending to that region. Following that, production
3 fires, which extrapolates the bisector and stores it as the target orientation value.
In addition, this production directs visual attention to ship aim. Then, production 4
commands the visual module to encode the current ship aim, followed by the actual
encoding. Finally, production 5 compares the target ship aim and the current ship aim
and executes the appropriate key press.

Fig. E.2. Process trace of ACT-R model of turn corrections. The 𝑥-axis plots time (in
ms), whereas the 𝑦-axis represents the activity of the various modules of ACT-R that are
involved in this model. The model starts with a target aim already stored. Additionally,
the model is already attending to ship aim. Hence, the model needs to only encode
the current ship aim value (production 1 and visual module activity) before deciding
which key to press to execute the turn correction (production 2 and manual module
activity).

∕∫

∞

𝜖𝛼
 (0, 𝜎2tu)𝑑𝛼 (D.4)

In this equation, the midpoint is between the short tap and 130 ms.
This model has the following effect: At low 𝜀𝛼 , the ship can be closer to
the target orientation while still being outside of the tolerance region.
At high 𝜀𝛼 , the ship is always relatively far from the target orientation
(i.e., at least 12 deg away). Consequently, a short key press is more
likely to suffice at narrow tolerances than at wide ones. Its predictions
are in the main text.

Appendix E. Cognitive delays of turn and thrust key presses

We estimated the cognitive delays associated with preparing each
action using the ACT-R cognitive architecture. There are three cognitive
costs to estimate, for which we constructed separate models. First
are the costs associated with preparing the first turn (process trace:
Fig. E.1). Second are the costs associated with preparing turn correc-
tions (Fig. E.2). Last are the costs associated with preparing a thrust,
whether a first thrust or a thrust correction (Fig. E.3). The reason why
the first turn takes longer to prepare than turn corrections is because
the model needs to first estimate its target orientation before starting to
turn. This target orientation is already estimated when turn corrections
need to be executed, which makes preparing turn corrections faster.

Appendix F. Velocity after thrusting

If ship orientation is ideal, the ship is aimed at the angle bisecting
the inter-segment angle. The ship enters each intersection at a certain
speed and aims to maintain that speed after thrusting. Thus, it thrusts
for as long as it is necessary to be flying exactly along the second
17
Fig. E.3. Process trace of ACT-R model of thrusts. The 𝑥-axis plots time (in ms),
whereas the 𝑦-axis represents the activity of the various modules of ACT-R that
are involved in this model. The model starts with a target flight direction already
stored. Additionally, the model is already attending to ship flight direction. The model
encodes ship flight direction (production 1 and visual module activity) and then sends
a command to thrust (production 2 and manual module activity). Note that unlike
turning, there is only one button that can be used for thrusting. We therefore assume
that the thrust is prepared in advance and hence motor preparation time is reduced
by 50 ms relative to turn motor preparation time.

segment, on average. Any offsets from that ideal trajectory are due to
thrust noise. The distribution of the resultant velocities is given by:

𝑣f inal, x ∼ 
(

|𝑣target | cos (𝛽) , cos
(

180 + 𝛽
2

)

⋅ 𝑎 ⋅ 𝜎𝑡ℎ 𝑎𝑐𝑡

)

𝑣f inal, y ∼ 
(

|𝑣target | sin (𝛽) , sin
(

180 + 𝛽
2

)

⋅ 𝑎 ⋅ 𝜎𝑡ℎ 𝑎𝑐𝑡

)

,
(F.1)

where the 𝑎 is the acceleration value and 180+𝛽
2 is the orientation of the

bisector. The ship’s flight direction distribution can be computed from
the velocity distribution, whereby each velocity value is transformed
to a flight direction value (arctan(𝑣𝑥∕𝑣𝑦)). When its aim is not ideal,
the ship is not thrusting exactly at 180+𝛽

2 and the resultant velocity
distribution is adjusted accordingly. In that case, the ship needs to also
thrust for a little less or more than it would ideally. The general solution
to thrust time is given by:

𝑡target =
𝑣(cos(𝛼) − 1)

𝑎 ⋅ cos(90 + 𝛼∕2 + 𝛥𝛼)
(F.2)

Note that the analysis above assumes that thrust duration is a real
value, whereas it is discrete in the game, limited by game frame rate.
The actual simulations take into account only discrete thrust values.

Appendix G. Study of the robustness of model predictions

In the main text, we evaluate model predictions relative to asymp-
totic performance estimated as the 4 consecutive games with the high-
est score. Mean score and number of crashes are estimated over this
window. Here we systematically vary this window size between 1 and
10 games to demonstrate that the results in the main text are robust.
Overall, the correlation between model prediction and data remain
stable, as do the MAE and MSD values. Moreover, as indicated by MSD,
the model performs higher than subjects, the more games we include.
This is likely a consequence of including games, in which subjects are
not very skilled yet (see Table G.1).

Appendix H. Relationship between measures when outlier sub-
jects are included

In this section we provide justification that the two outlier subjects
responded unrealistically slow in the Tap task. As indicated in the
main text, their mean tap times were at least twice as slow as those
of any other subject (see 𝑥-axis of Fig. H.1). Moreover, in absolute
terms, the tap durations are excessively high. Moreover, they are not
commensurate with subject performance in other tasks. For example,
as indicated in Table 2, there is a highly significant positive correlation
between long turn variability and mean tap duration (see green points
in Fig. H.1). When the outlier subjects are included, the correlation
drops to 𝑟(𝑡𝑡𝑎𝑝, 𝜎𝛼) = .38 and is no longer significant. The same change is
observed for the correlations between the turn action task measures and
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Table G.1
Study of the robustness of resource-rational model evaluation as a function of the
window size (in terms of number of consecutive games) over which Space Track
asymptotic performance is computed. The two values compared are the asymptotic
score and number of crashes predicted for each subject by the model, and the
asymptotic values estimated over the said window size from data. We compared these
values with three measures: the correlation r, the mean absolute error (MAE), and the
mean signed deviation (MSD).

Averaging
window size

1 2 3 4 5 6 7 8 9 10

r(score) .85 .87 .87 .87 .87 .87 .87 .87 .88 .88
r(crashes) .89 .89 .91 .86 .89 .89 .89 .88 .88 .87
MAE(score) 328 332 319 332 323 327 337 341 347 356
MAE(crashes) 2.92 2.63 2.19 1.89 2.04 2.06 1.95 2.05 1.88 1.95
MSD(score) 2 92 135 163 170 185 201 212 232 293
MSD(crashes) .75 .25 −.03 .15 −.11 −.25 −.33 .54 −.61 −.61

Fig. H.1. Mean tap duration and long turn standard deviation for outlier and non-
outlier subjects. Each observation corresponds to a single subject. The outlier subjects
demonstrate a mean tap duration much higher than the group of non-outlier subjects.

tap duration, which now drop to 𝑟(𝑡𝑡𝑎𝑝, 𝑛̄𝑡𝑢,𝜀𝛼=6) = .46, 𝑟(𝑡𝑡𝑎𝑝, 𝑛̄𝑡𝑢,𝜀𝛼=12) =
.30, 𝑟(𝑡𝑡𝑎𝑝, 𝑃1,𝜀𝛼=6) = −.17, 𝑟(𝑡𝑡𝑎𝑝, 𝑃1,𝜀𝛼=12) = −.32 and are all no longer
significant. At the same time, all correlations between long turn and
turn action measures remain strong (𝑟(𝜎𝛼 , 𝑛̄𝑡𝑢,𝜀𝛼=6) = .77, 𝑟(𝜎𝛼 , 𝑛̄𝑡𝑢,𝜀𝛼=12) =
.84, 𝑟(𝜎𝛼 , 𝑃1,𝜀𝛼=6) = −.82, 𝑟(𝜎𝛼 , 𝑃1,𝜀𝛼=12) = −.89) and highly significant
even when the outlier subjects are included.
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