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Abstract

Open-ended tasks can be decomposed into the three levels of Newell (1990)’s Cognitive

Band: the Unit-Task level, the Operation level, and the Deliberate-Act level. We ana-

lyzed the video game Co-op Space Fortress at these levels, reporting both the match of a

cognitive model to subject behavior and use of EEG to track subject cognition. The Unit

Task level in this game involves coordinating with a partner to kill a fortress. At this

highest level of the Cognitive Band, there is a good match between subject behavior and

the model. The EEG signals were strong enough to track when Unit Tasks succeeded or

failed. We were able to stitch together segments of model games to produce close matches

to subject games at the Unit-Task level. The intermediate Operation level in this task

involves legs of flight to achieve a kill. We were only able to stitch together games that

have a modest overlap with subject behavior in terms of their leg structure, limited by

the huge diversity of model and subject behavior at this level. The EEG signals asso-

ciated with these operations are much weaker than the signals associated with the Unit

Tasks, severely limiting tracking at this level. At the lowest Deliberate-Act level, there is

a mismatch between subject and model behavior that prevented tracking. We conclude

that the Unit-task level is the appropriate level for tracking open-ended tasks.
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Table 1: Newell’s Time Scales of Human Action

Scale 

(sec) 
Time Units System World 

(theory) 

107 months   

106 weeks  Social Band 

105 days   

104 hours Task  

103 10 min Task Rational Band 

102 minutes Task  

101 10 sec Unit Task  

100 1 sec Operations Cognitive Band 

10-1 100 msec Deliberate Act  

10-2 10 msec Neural circuit  

10-3 1 msec Neuron Biological Band 

10-4 100µs Organelle  

 

1. Introduction

One goal of this research is to use EEG to track what is happening as someone performs

a complex task. The advantage of EEG over other imaging modalities is its temporal

resolution and it has been used in many controlled laboratory settings to track processes

that happen in trials of no more than a few seconds. While such studies have some

advantages, we are interested in tracking cognition in longer, more opened-ended tasks

where events emerge as an interaction between an agent and the environment. This is

what happens in more naturalistic and ecologically valid contexts such as driving, decision-

making in complex social interactions, or problem-solving in uncontrolled settings. These

are circumstances that allow us to study how the detailed processes revealed in the short-

trial-based studies are combined to produce coherent behavior. Understanding how to

use EEG in such tasks also has applications to development of brain-computer interfaces

(for reviews, see Abiri et al., 2019; Lotte et al., 2018)

Given the time scale over which such tasks play out, one needs to consider the temporal

detail to which one aspires in tracking cognition. It is useful to place such aspirations

into Newell (1990)’s scales of cognition (see Table 1). The open-ended tasks reside in his
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Rational Band, which ranges from minutes to hours. Below the Rational Band is the

Cognitive Band, which he placed as spanning from Deliberate Acts which happen at the

rate of around 100 msec to Unit Tasks which happen at the rate of 10 seconds. It is

our belief (Anderson, 2002) that applications can be achieved by decomposing what is

happening at the Rational Band into activities happening in the Cognitive Band. Given

the temporal resolution of EEG, it might be possible to track events within the Cognitive

Band.

The Cognitive Band is the focus of many cognitive architectures (Kotseruba & Tsotsos,

2020, for a review), which break Rational Band activities into performance of tasks at

the Cognitive Band. We will be working with the ACT-R architecture (Anderson, 2007;

Anderson et al., 2004) to find an interpretation of the subject’s behavior on a specific

task in terms of execution of activities in the Cognitive Band. This paper will report

considerable success in doing so at the Unit-Task level of the Cognitive Band, limited

success at the Operations level, and a significant roadblock at the Deliberate-Act level.

While, in a certain sense, the results are specific to ACT-R (and many other details of

our approach), they are representative of the issues in tracking cognition in open-ended

tasks.

The open-ended task in this paper is a video game. Video games are becoming in-

creasingly popular vehicles for the study of cognition (e.g. Altarelli et al., 2020; Boot,

2015; Gray, 2017). Many video games are excellent examples of open-ended tasks, in that

behavior emerges as an interaction between the game software and the players. The video

games we have studied have involved a high rate of action from the players. Such games

combine the learning of complex strategies and perceptual-motor skills. Dealing with the

demands of such games has led to advances in the ACT-R architecture (Anderson et al.,

2019, 2021; Gianferrara et al., 2021). The high rate of action also provides a solid ground

truth for judging the accuracy of tracking from EEG.

1.1. Using EEG to Track Cognition

While the more typical application of EEG for tracking cognition in open-ended tasks

has been to identify relatively enduring states like fatigue in driving (e.g. Jap et al.,

2009). or workload while managing a system (Baldwin & Penaranda, 2012), our concern

is the identification of specific cognitive events localized in time. We have had success in

localizing events like memory retrieval in short trials of a few seconds (Anderson et al.,

2016; Borst & Anderson, 2021). In these well-defined tasks, a combination of multi-

variate pattern analysis (MVPA) and hidden semi-Markov analysis (HSMM) can localize
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Deliberate Acts with fair precision. This approach treats the Deliberate Acts as forming

a semi-Markov process where probability of the next act and the time to that act depend

only on the previous act. The MVPA provides the probability that the EEG signal reflects

a particular act at each point in the trial. The HSMM combines these probabilities with

estimates of the temporal distribution of the acts to localize the acts in the trial.

We were not able to extend these methods directly to open-ended tasks. Part of the

difficulty is that as tasks get longer, uncertainty increases about temporal location of the

acts which overwhelms signal-to-noise ratio (Fincham et al., 2020). The other difficulty

is that there are serious violations of the semi-Markov assumption in open-ended tasks.

The next step along any path through the task depends not just on the last action but

the state of the environment which reflects effects of prior actions. In most open-ended

tasks that set of possible states is too large to represent in a practical HSMM.

Anderson et al. (2020) reported what they called the sketch-and-stitch method for

localizing acts in such a task. It is built around critical events that happen relatively

infrequently (at the Unit-Task level time scale) and whose distribution can often be given

a semi-Markov treatment. Also, these critical events often produce strong EEG signals.

An HSMM-MVPA can localize the critical events with relatively high levels of precision.

The critical events so localized provide a sketch of what happened. While such a sketch

is sufficient for some purposes, we can go on to stitch in a hypothesis about lower-level

processes that led from one critical event to another. The steps at this lower level depend

on much more than the prior step, seriously violating the Markov assumption. Rather,

we use a computational model that represents how the next step depends on past steps.

There tend to be many sequences of model actions that will produce the same transition

between critical events. Capitalizing on the fact that cognitive acts are associated at least

weakly with EEG activity, we can use EEG to judge the probability of different candidate

sets of lower-level cognitive steps.

The video game in this paper is a version of the Space Fortress game (e.g. Mané

& Donchin, 1989) which has been used for decades to test training regimes: subjects

fly a ship around a central fortress trying to destroy it without being destroyed by the

fortress. In the last decade, detailed modeling of Space Fortress has become the target

of cognitive modeling because it reflects a complex mixture of perceptual, motor, and

other skills, how they are integrated, and improve with practice. Anderson et al. (2020)

demonstrated the sketch-and-stich method with a rather simple version of the game which

is called Autoturn. While the choice of simplicity was strategic for the initial exploration,

its simplicity had limitations for purposes of a strong evaluation. There were significant
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constraints on key patterns and flight path, leaving the game at the low end of open-

endedness.

In video games like Space Fortress, both subjects and models can show great variability

in the detail of their behavior. Faced with this, the typical model evaluation is to com-

pare statistics averaged from subjects with statistics averaged from the model. However,

this method leaves open the question of whether a model that produces these averages

corresponds to any specific subject (Siegler, 1987) There are methods for comparing sim-

ulation models like ACT-R with individual subject behavior(Fisher et al., 2020), but they

cannot extend to open-ended tasks like video games. This paper will assess an ACT-R

model by comparing average statistics, but also by addressing the question of whether it

can produce the specific behavior that subjects show in specific games.
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Figure 1: The Co-Op Space Fortress screen, showing the hexagonal battle area with the Fortress in the

middle. The Fortress has turned and has shot shells at the bait. The shooter Is behind the Fortress and

has shot a shell at the exposed rear of the fortress.

1.2. Co-op Space Fortress

The video game in this paper is a 2-player version of Space Fortress, called Co-Op

Space Fortress1, which has a recent ACT-R model (Dimov et al., 2023). The data in this

paper provide a further test of the Dimov model. In Co-Op Space Fortress, depicted in

Figure 1, two players control two identical, but differently colored spaceships and their

goal is to destroy a fortress located in the middle of a grey hexagon. The distinctive

feature of Co-Op Space Fortress is that the two players need to coordinate their actions

to destroy the fortress. The fortress is surrounded by a shield, which is impenetrable to a

ship’s missiles, but the back portion of the shield disappears when the fortress fires shells

at a ship. One player, the bait, tempts the fortress to shoot at it and so expose its rear.

Then the other player, the shooter, can move behind the fortress and shoot it with a

missile.

1Available for demo at http://andersonlab.net/demos/coop-eeg-paper-2023/
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As in Space Fortress, these spaceships fly in a frictionless environment and are con-

trolled with four keys: W to thrust, D and A for clockwise and counterclockwise turns,

respectively, and the space bar to launch a missile. The Appendix describes the detailed

effects of these key presses as well as other details of the game. Navigating the ship with-

out friction is counterintuitive. For example, the ship never stops unless the player turns

180 degrees relative to the flight direction and thrusts for just the right amount of time.

Consequently, as in previous Space-Fortress-based games, learning to navigate has been

a major challenge. This is even a greater challenge in this game because the needed flight

paths are much more open, reflecting a dynamic game situation that is partly determined

by the other player.

At the beginning of each game, the two players start outside (i.e., to the left and

right of) the gray hexagon. They both need to enter the hexagon, because it defines the

effective range of fortress shells and ship missiles. The fortress will not take aim at the

bait while it is out of the hexagon and the shooter cannot destroy the fortress when it is

outside of the hexagon. If the fortress is destroyed, 100 points are gained and both players

must leave the hexagon before the fortress respawns and they can attack again. Players

lose 100 points if a ship is shot by the fortress or if the ship crashes into the fortress or the

outer boundary of the game. After a ship death, the ship will respawn 1 second later in

the starting position. In addition to points gained by kills and lost by deaths, 10 points

are lost for every shot that does not destroy the fortress.

Unlike in the original Co-Op game, one player is always the shooter and the other

always the bait. In the current study the bait is an artificial agent developed in Dimov

et al. (2023), the bot, to minimize variation in success due to the second player. The

motor timing of the bot was based on the ACT-R model including randomness in exact

motor execution. It basically behaves as a highly trained model and was better than most

subjects or models.

The ACT-R model for Co-Op Space Fortress leveraged many of the features of past

models to play other Space Fortress games (see Dimov et al., 2023, or a detailed description

of the model). As other ACT-R models of skill acquisition, it starts with a declarative

representation of how it should act. As role choice is fixed in this version of the game,

this declarative representation is simpler than in the original Dimov model, because it

skips information about role determination. The model transitions with practice from a

beginning stage of retrieving this knowledge and deciding how to use it in the game to a

final stage of direct actions which simply recognize what to do in a game state. Also,

with practice the model learns control parameters that determine exactly how it performs
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actions – e.g., how fast to fly or what an adequate shooting aim is. A major extension of

this model over previous models was learning to predict where the ship would be in the

future and where the other ship would be. This information is used to plan and adjust

flight directory.

EEG data were collected after subjects (and models) had achieved a fairly stable and

successful level of play. Subjects played a series of 30 3-minute games. The first 10 games

were played without EEG and subjects had to average at least 200 points per game in

games 8-10 to go onto the final 20 games which were played with EEG. Most of the

learning for these successful subjects was complete by the 10th game.

2. Methods

2.1. Subjects

A total of 27 subjects were recruited from the CMU population of students and staff

between the ages of 18 and 40. 5 subjects were excluded because they failed to meet

the performance criterion on the first 10 games, leaving 22 subjects (13 male, 9 female,

mean age 23.9 years). All were right-handed. None reported a history of neurological

impairment. Subjects were paid $60 for participation in the experiment that lasted about

2 hours. In addition, they earned a bonus for performance (4 cents per 100 points, total

bonus range $3.41 to$ 21.29 with an average of $13.43). All subjects signed informed

consent and the experimental procedure and data handling was approved by the ethics

committee of Carnegie Mellon University.

2.2. Game Play

After subjects studied game instructions, they played 10 3-minute games choosing to

move on to the next game at their own pace. If they passed the criterion of an average of

at least 200 points in the last 3 games, they went into the EEG lab and were fitted with

the headset. Then they played 20 more games again at their own pace. The game records

every 60th of a second the state of the game (e.g., whether the ships and fortress are

alive, where the ships are and their direction and speed of movement, whether shells or

missiles are on the screen, whether a key is pressed, and whether the fortress has opened

its shield). This serves as the ground truth both for training the EEG decoder and for

testing its predictions.
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2.3. EEG Analysis and Classifier

The EEG was recorded from 64 Ag-AgCl sintered electrodes (10-20 system) using

a Biosemi Active II System (Biosemi, Amsterdam, Netherlands). The EEG was re-

referenced online to the combined common mode sense (CMS) and driven right leg (DRL)

circuit. Electrodes were also placed on the right and left mastoids. Scalp recordings were

algebraically re-referenced offline to the average of the right and left mastoids. The EEG

and EOG signals were digitized at 512 Hz and were subsequently filtered with a bandpass

filter of .1 to 40.0 Hz. and were digitized at 512 Hz. The vertical EOG was recorded as

the potential between electrodes placed above and below the left eye, and the horizontal

EOG was recorded as the potential between electrodes placed at the external canthi.

The EEG recording was decomposed into independent components using the EEGLAB

FastICA algorithm (Delorme & Makeig, 2004). Components associated with eye blinks

were automatically identified and manually confirmed. All but the marked ICAs were

projected back to the EEG signal.

The EEG signal was recorded continuously for the entire experimental session and

broken into 3-minute games. To match the rate of game recording, the data were down-

sampled to 60 Hz with default EEGLab anti-aliasing filtering applied (FIR low-pass filter,

45 Hz cutoff frequency (-6dB) and 10 Hz transition bandwidth). We excluded any 60 Hz

sample that had an electrode with a value below -500 microvolts or above 500 microvolts.

This resulted in loss of data for 60 of the 440 games (22 subjects x 20 games). For these

cases the number of samples lost from the 10800 ticks (3 minutes x 60 seconds x 60) varied

from 1 to 1591 with a mean of 244. A one-second window around each game tick (30

game ticks before, the game tick, and 30 game ticks after) was used to classify whether

a game tick contained a critical event. This means that each game tick had associated

with it a vector of 61*64=3904 electrode readings, representing regional effects, frequency

effects (below 30 Hz), and their interactions. Because the vector associated with a game

tick requires complete signal for 1 second, game ticks at the beginning and end of a

game do not have corresponding vectors, nor do game ticks in or near periods of deleted

signal. The available vectors for each game were z-scored to standardize them across

games. To reduce dimensionality and filter out noise, the vectors for the games of each

subject received principal component analysis (PCA) and the 1000 top dimensions were

kept. Depending on how many points were excluded, the result was 8,572 to 10,740

(mean 10,689) 1000-element vectors associated with game ticks. These are what were

used for all classification analyses. The PCA and classifications were performed on a

per subject basis, which resulted in better classification results than combining data over
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subjects in Anderson et al. (2020). Not surprisingly, EEG patterns are somewhat distinct

among subjects, perhaps reflecting true subject differences or perhaps differences in exact

locations and recording properties of the electrodes for different subjects. Nonetheless,

the EEG patterns are somewhat similar across subjects, again not surprising.

Two linear classifiers were trained, one for identification of events at the Unit-Task

level and one for identification at the Operation level. These classifiers learned the condi-

tional probabilities of the EEG patterns associated with different categories of tick events.

Assuming normal distributions of the 1000 PCA features for any category, the classifier

estimated the parameters of the distribution and so could map any vector onto conditional

probabilities for each category. For any game that the subject played, the parameters

were estimated from the other 19 games of that subject and used to classify the vectors

of the target game. The Unit-Task classifier learned 4 categories: the patterns associated

with kills, deaths, and missed shots, plus the pattern of other ticks called Null events.

The Operations classifier learned 3 categories: ticks where the subject began a new flight

path, ticks were the flight path ended, and Null events. Most of the game ticks are Null

events (an average of 99.8% of the ticks for the Unit-Task classifier and 98.6% of the ticks

for the Operation classifier). Anderson et al. (2020) only used a subset of the Null events

for training. However, using all Null events leads to better estimates of the covariance

matrix used by the linear classifier.

2.4. Model Data

We ran the mode2 using the same combination of 25 individual-difference parameters

as in Dimov et al. (2023). Even within a particular individual difference setting, there

was substantial variability in the games the model played, reflecting randomness both in

the model and the bot. We ran 300 models for each of the 25 parameter settings for a

total of 7500 model runs. However, 206 of these models failed to meet the criterion of an

average of 200 points over games 8-10 that was used with subjects. Those were removed,

which resulted in 7294 model runs of 30 games each, creating a library of 218,820 games

which were used at the stitch level of the analysis.

3. Results

Figure 2a shows the growth in points by subjects and models who met the selection

criterion. The EEG data come from games 11 through 30. Most of the learning seems

2Available at
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Figure 2: Mean values (line) and standard errors (area around lines) per game for subjects and models

as a function of game (a) Points; (b) number of fortress destructions; (c) number of shooter (human)

deaths; (d) number of bait (bot) deaths; (e) Proportion of shots that are misses.
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complete by game 11, although there is a weak but significant increase in performance

after the 10th game (6 points per game, t(21)=2.97, p ¡ .01). Points reflect kills (+100

points) minus deaths (-100 for either shooter (human) or bait (bot) deaths) minus misses

(-10). The majority of deaths (66.5%) are deaths of the human shooter. Figures 2b-2e

display the data for these subcomponents of the score. The figures also show the data

from the model, which generally match up, although the model reaches a lower death rate

in Figure 2c.

The remainder of this Results section will consist of a more detailed discussion of this

task at the three levels in Newell’s Cognitive Band: first the Unit-Task level, then the

Operation level, and then more briefly the Cognitive-Act level. We will be concerned

with games 11-30 where EEG was collected.

3.1. Unit-Tasks: Critical Events

The Unit tasks in this game are attempts to achieve a kill that can either end in a

success (the kill) or a failure (miss or death). The deaths of interest are those of the

human subject, who always played the role of shooter (Figure 2c). Because our EEG

analysis requires 30 ticks around the event we excluded misses that were within 30 ticks

of a kill or death (reducing their mean number per game from 5.8 to 3.8). Continuing the

terminology of Anderson et al. (2020) we will refer to these three outcomes as critical

events. These events are rare – on average only 19.2 of the 10800 ticks in a game are

associated with these events.

3.1.1. EEG analysis

Figure 3 shows the activity of the three central electrodes for a second around the

events plus the scalp profiles 19 ticks (.32 seconds) after the event. Figure 3d shows the

average pattern for the remaining ticks which is essentially 0, reflecting the normalizing of

the EEG signal. Figure 3 shows activity averaged over subjects, but note that the classifier

estimates patterns subject by subject and individual subjects may show different patterns

and the classification will exploit the subject-specific patterns. Nonetheless the relatively

narrow standard errors displayed in Figure 3 indicate somewhat consistent patterns.

These patterns associated with the critical events in Figure 3 seem be variants of the

P300 event-related potential (Verleger, 2020). They vary in the timing and magnitude

of the positive deflection, with the largest response to deaths and the weakest to misses.

While the peaks are the most striking feature, the classifier is based on the activity of all

64 electrodes over all 61 ticks. Essentially the 4 patterns in Figure 3 can be conceived of as
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Figure 3: EEG activity (mean values and standard errors) of 3 central electrodes from a half second

before a critical event to a half second afterwards. The scalp profiles illustrate activity at .32 seconds

after the event. (a) Kill: scalp profile is scaled to range between -15 and +15 microvolts; (b) Death:

scalp profile is scaled to range between -20 and +20 microvolts; (c) Miss: scalp profile is scaled to range

between -10 and +10 microvolts; (d) Null Event.
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occupying points in a 64x61=3904-dimensional space (or a 1000-dimensional space after

the PCA compression). These four points in high-dimensional space can be projected

down into a 3-dimensional subspace, and as it turns out, that 3-dimensional subspace can

be projected down into 2 dimensions with little loss. Figure 4a illustrates the location of

the points in a 2-D space with an attempt at an informative choice of axes and scale. The

0-0 point reflects the zero activity that the Null pattern approximates. The horizontal

dimension reflects the magnitude of game points and the vertical axis represents loss. In

terms of EEG activity, as one moves up one adds proportionally more of the pattern in

Figure 4b and as one moves to the right one adds proportionally more of the pattern in

Figure 4c. A death which is at the 1-1 point can be reconstructed as the sum of these two

patterns. The two patterns 4b and 4c reflect 2 peaks of activity at somewhat different

points in time – vertical dimension peaking 26 ticks after the event (.43 seconds) and

the horizontal dimension peaking 14 ticks after the event (.23 seconds). The activity

across the 64 electrodes at the two peaks are strongly correlated and no electrode shows a

significant difference between the two peaks (maximum t for a difference is t(21)=1.53).

While Figures 3 and 4 display average patterns, the challenge for the classifier is

to identify individual game ticks using signals which may depart substantially from the

subject’s average. Table 2 summarizes the success of the classifier using patterns from

other games of that subject to classify a particular game. Tables 2a and 2b give the

counts with which various types of ticks were assigned various labels. They use different

thresholds for assigning a label to a tick. Table 2a assigns it to the category with the

highest conditional probability while Table 2b assigns it to the category which is most

likely given the different frequencies of the categories. Our preferred d-prime measure

of discriminability (Wickens, 2002) is 2.63 for Table 2a and 2.59 for Table 2b3. Overall

accuracy is 97.6% and 99.6% for the two tables. Table 2c gives the pair-wise d-primes

reflecting discriminability of the pairs of categories and Table 2d gives the pair-wise area

under the curve (AUC), which does not depend on threshold. The discriminability is

quite high and better than in Anderson et al. (2020), which reflects, at least in part, the

refinements in the procedure (training only using subject data, using all Null events in

estimating covariance matrix). Despite their striking appearance in Figure 3, deaths are

poorly identified because of their rarity. Classification is done on a per subject basis.

The number of deaths per subject varies from 3 to 54 with a mean of 19.5. There is a

3This is calculated by collapsing the n x n matrix into n 2x2 matrices representing presence versus

absence of the category and averaging the d-primes for the n matrices.
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Figure 4: (a) A representation of the 4 patterns in Figure 3 in a 2-dimensional space. (b) A representation

of the pattern associated with the vertical dimension – the scalp profile is at .43 seconds and is scaled to

range between -15 and +15 microvolts. (c) A representation of the pattern associated with the horizontal

dimension – the scalp profile is at .23 seconds and is scaled to range between -15 and +15 microvolts.
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Table 2: Classification of Game Ticks according to Critical Events

strong correlation (r = .809) between number of deaths for a subject and the proportion

correctly classified.

Looking at average patterns in Figure 3, it is not surprising that these critical events

can be discriminated with high accuracy from other Null game ticks. What may seem

surprising is that they are quite discriminable from one another. Part (e) of Table 2

shows the three-way classification by likelihood which has d-prime of 2.48. Discrimina-

tion between the 3 critical events depends on capitalizing on their distinctive features as

illustrated in Figure 4.

While good, the classification results by themselves do not provide a useful basis for

identifying critical events. Many events are erroneously labelled as critical events in Table

2a. While Table 2b has somewhat fewer such false positives, it is at the cost of missing

many critical events. The HSMM below will not use any particular assignment of ticks

to categories, but rather will use the conditional probabilities of the tick pattern for each

category.

3.1.2. Using an HSMM to Localize Critical Events

The function of the HSMM is to combine the probabilities from the classifier with

information about the probability of these events happening at different time points.

Figure 5 shows fitted distributions4 between events and the probabilities of one event

following another. Figure 5a includes both starts from the beginning of the game and

4Using the Matlab function ksdensity.
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Figure 5: Probabilities of transitions (given in parentheses) between events and distribution of intervals

between events in the simulations. (a)–(c) give the data from the subjects and (d)–(f) the data from the

model.

from when the ship reappears outside the hexagon after a death. The ships take a fair

amount of time (Figure 5a) to fly in from the start position and be in position to destroy

the fortress. It takes even longer to achieve another kill after a kill (Figure 5b) because

the two ships must first fly out of the battle zone and then back in. In other cases, one

event can rapidly follow another (although the HSMM was set to impose a .5 second

minimum interval between events). Figures 5d-5f show the corresponding distributions

from the model. There are both similarities and differences in the distributions, but there

is generally overlap which will enable the stitching efforts to follow.

While the distributional information shown in Figures 5a-5c is averaged overall sub-

jects, the HSMM used distributions estimated from other games of the subject in fitting

the data for any game from the subject. The HSMM also used conditional probabilities

of the EEG that were estimated from other games of that subject. Such per subject esti-

mation allows for tuning to the specifics of a particular subject’s game play. The Viterbi

algorithm (Rabiner, 1989) was used with the HSMM to identify the maximum likelihood

placement of events in the target game. The Appendix explains the probability function

that is being optimized by the Viterbi algorithm

In a semi-Markov model, the probability of the next event depends on the time since

the last event. However, it remains Markov in that what happens after an event only

depends on time from that event and not prior events or their timing. This assumption is
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reasonable for the timing between kills and deaths. After a death the ship respawns at its

starting position and carries with it no effect of what happened before the death. After

a kill, critical events prior to the kill have little if any influence on what the next event

will be or how long it will be. However, the Markov assumption becomes problematical

when misses are included. For instance, suppose a miss intervenes between one kill and

another kill. To achieve the next kill, the ship must fly outside the hexagon, wait for the

fortress to respawn, and re-enter. It matters little where on this journey the ship has its

miss. The time of the next kill depends on the time of an event 2 back, the prior kill, and

not the event one back, the miss.

We used a hierarchical HSMM (Fine et al., 1998; Johnson & Willsky, 2013) to avoid

violating the semi-Markov assumption. The first HSMM found the most probable lo-

cations of kills and deaths ignoring misses. Then with these anchored, another HSMM

placed misses in the intervals using information about the distribution of these misses rel-

ative to the other events. This two-pass HSMM identified a mean of 14.62 kills per game

compared to a mean of 14.41 in the actual games; a mean of 0.44 deaths per game com-

pared to 0.98 actual deaths, and 1.49 misses compared to 3.81 actual misses. Maximum

likelihood estimation is biased against rarer events.

For each game, as in Anderson et al. (2020), the match between the assigned events and

the actual events was calculated as a sum of a recall and a precision measure (Buckland

& Gey, 1994) calculated from locations of kills, deaths, and misses. The measure of

recall focused on the events that occurred in the game and identified the closest predicted

event. If that predicted event was the same category as the actual event and was within

1.5 seconds (90 game ticks), it was scored according to how many game ticks it was away

–thus the maximum score was 90. If the closest event was further away or the closest

event was a different category, the match for that event was also scored 90. The average

of these recall scores for a game can vary from 0 (perfect match to all actual events) to 90

(worst possible). The measure of precision applied the same scoring procedure but now

started with all predicted events and found the closest actual event. Figure 6 shows the

distribution of the recall and precision scores. The recall score tends to be larger because

the reconstructed games tended to have fewer events, leaving fewer potential matches to

the actual events.

The average measure of recall was 24.9 (median 22.8) and the average measure of

precision was 15.3 (median 12.0) for an average match rating of 20.2 (median 17.0).

This amounts to being about one-third of a second off on average. The average match

rating of 20.2 between a game and its reconstruction compares to an average match of
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Figure 6: Distributions of recall and precision ratings on a scale where 0 is perfect match between game

and its inferred sketch and 90 is the maximum possible mismatch score.

79.6 to reconstructions of other games. All but two games were best matched by their

own reconstructions over reconstructions from other games. The remaining two games’

second best match was their own reconstruction. The accuracy of the reconstructions

is considerably better than Anderson et al. (2020), even though that attempt was only

localizing events in a 1-minute period rather than a 3-minute period. The improvement

reflects two refinements in procedure – performing these analyses on a per subject basis

and dealing with the violation of the Markov assumption. Aspiring to predict critical

events to a 60th of a second is a high standard. Still 49.6% of all events are being identified

to the game tick and 76.2% of the events are being identified to within a tenth of a second

(6 ticks).

Nonetheless, the reconstructions themselves are not perfect. Even the best recon-

struction has a non-zero match rating (.11 reflecting all 18 events predicted but two off

by 1 game tick). Figure 7 illustrates the reconstruction of games whose ratings span from

the 5th percentile (better scores) to the 95th percentile (worse scores). As seen in these

examples, the best performance is achieved for kills, which are the most frequent events.

Figure 8 compares the scores subjects would have gotten for their games and the

score their game reconstructions would have gotten (ignoring bait deaths in both cases).

The correlation is strong although the HSMM tends to overpredict subject scores (mean
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Figure 8: Relationship between points earned in the actual game versus the EEG-based reconstruction

of the game.
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score is 1404 points for HSMM compared to 1315 for subjects). The overestimation

reflects the fact the HSMM underestimates the infrequent categories of deaths and misses.

Nonetheless, Figure 8 gives testimony to the ability of the HSMM analysis to identify how

well a subject is doing in a particular game.

3.1.3. Stitching in Kills and Deaths.

While the critical events represent highlights of the game, they do not represent any-

thing like the details of the subject’s thinking that resulted in these critical events. The

detailed cognitive steps contain major violations of Markov assumptions in that the next

step of cognition depends on much more than the last action. Thus, there is no hope

of extending the Markov approach to produce more detailed hypotheses about subject

cognition. Rather, we use the ACT-R model to find a sequence of cognitive steps that

would produce these critical events.

The following analyses involve the placement of three sets of critical events: those in

the subject games, those in the HSMM reconstructions, and those in the model games.

Matching subject critical events to model critical events addresses the question of whether

the model is like subjects. Matching HSMM critical events to model critical events ad-

dresses the question of reconstructing behavior from EEG. As it turns out, the conclusions

will not prove very different for these two goals, reflecting how close the HSMM critical

events are to the actual critical events.

A major challenge is the variability in subject and model games, even at the coarsest

time scale of the critical events level. No model or subject game came close to matching

any other model or subject game in terms of the placement of critical events. Using

the same assessment scale where HSMM reconstructions averaged 20.2 in their match to

the subject games (and the best match was .11), the best match score between 2 model

games was 22.5 (from over 20 billion pairwise comparisons). The best matches to the 440

subject games selected from the 200,000+ model games averaged 49.15.

Rather than trying to find a complete model game that matched a target set of critical

events, the Sketch-and-Stitch approach tries to stitch together segments from different

model runs to achieve a match. A segment goes from one critical event to another. We

focused on stitching in segments that bridge between kills and deaths because these place

navigational constraints on the flight. Usually, there were segments in model runs that

exactly matched the length of segments in subject games (or as defined by the HSMM)

5The best matches to the 440 subject games selected from the other 439 subject games averaged 60.3.
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but there were a few missed cases. In the case of subject critical events 24 segments

(out of 7207) are not matched in length by any segment from the model. In the case of

the HSMM reconstructions 3 segments are not matched. For both subjects and HSMM,

the missing segments were all very brief or very long. Very brief and very long intervals

are rare and even with 200,000+ model runs some possibilities are not covered. The

model can generate these extreme duration critical events, but they depend on such an

improbable sequence of model steps that they did not show up in the 200,000+ games6.

In each of its steps the stitching algorithm takes a game fragment that it has stitched

together as a match to the first n critical events and adds in a new segment to get a now

longer fragment that will match the first n+1 critical events. The Appendix describes

the details of the stitching algorithm, which used segments that were close when perfect

matches could not be found. A constraint on this stitching is that the resulting flight

path must be viable. Many stitched paths are not viable because when the actions in

the segment are added to the fragment they send the ship crashing into the fortress or

the outer border before the next critical event. When the segment is supposed to end in a

kill, the resulting path might not put the ship into a position where it can achieve a kill.

When the segment is supposed to end in a death, the resulting path might not end in a

ship death. The constraint of viable paths eliminates many combinations but usually not

all. Typically, there are too many viable stitches to practically compute them all, and

so the algorithm uses a beam search carrying forward a select subset of the fragments

at each iteration of stitching. The algorithm did not always produce perfect matches to

the critical events of subjects or games, but the best matches were close. The average

mismatch between event boundaries and stitched boundaries was .58 ticks for subject

critical events and .07 ticks for HSMM critical events.

In conclusion, for all intents and purposes, stitching can produce model runs that

match the critical events in the game play of subjects. Also stitching in games to match

the HSMM critical events produces model runs that are as close to the data as the HSMM

critical events were. These model runs offer hypotheses as to the detailed cognitive events

that were happening during the game. The next subsections addresses whether these

model details match subject details.
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Figure 9: Example beginning flight paths: (a) a subject game; (b) – (d) examples of matching stitched

games.

3.2. Operations: Legs of Flight

Figure 9a illustrates the flight path that a subject took in one game while achieving

the first three kills. The three segments (from start to first kill, from kill to kill) are color

coded. The individual segments contain linear legs of flight, connected by brief periods of

turning which are too short to discern in the flight path when examined on the scale of

Figure 9a. The Appendix describes the algorithm for identifying legs of a flight, but they

are often apparent in the flight path. In the model, and we assume in subjects, a switch

from one leg to another reflects a change in subgoal: there are legs that get the subject

into the hexagon, legs to get behind the fortress, legs to get out of the hexagon, legs to

avoid crashing, and legs to correct these legs when they turn out not to achieve their

subgoal (sometimes because of unexpected actions of the bait). These legs correspond at

least approximately to Newell’s Operation level within the Cognitive Band (Table 1).

3.2.1. Leg Structure

The analysis of leg structure produces an alternating sequence of legs and turns.

Figure 10 compares subjects and models in terms of several properties of these legs and

6For perspective, we note that there are 5388 extreme duration critical events from the model runs

that are not found in any subject game or any other model game.
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Figure 10: Comparison of subjects and models in terms of their leg structures.

turns. Figure 10a displays the number of legs contained inside kill-to-kill game segments.

Both subjects and models average a little more than 4 legs per kill-to-kill segment. Figure

10c shows durations of legs that start before a kill-to-kill segment and end after the initial

kill of the segment. These segment-crossing legs are much longer in both subjects and

models. The models (and we assume the subjects) have typically achieved the goal of

being on a trajectory that will put the ship behind the fortress well before the kill and are

drifting in position to perform the kill. The models (and we assume the subjects) wait

until they determine that they have achieved the kill and only then determine how to best

exit before ending the long crossing leg. Figure 10d shows the distributions of the briefer

times engaged in the turns between legs. While the model was designed before these data

on legs, the distributions in Figure 10 display much overlap. However, the model does not

show the very brief crossing legs that subjects occasionally (Figure 10c) have nor the very

long turns that subjects occasionally have( Figure 10d). The later section on Cognitive

Acts will discuss the source of these mismatches.

3.2.2. Stitching to Match Leg Structure

While segments can be stitched together to match the critical events, the detailed

model behavior can be quite different from the subject. Figure 9 illustrates this for a

subject game that began with 3 kills. Part (a) illustrates a subject’s trajectory while
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Table 3: Matching Leg Structure

parts (b) through (d) illustrates three obtained by stitching segments from model games

to match the timing of these critical events. Typically, there are many stitched flight

paths that are equivalent or nearly equivalent in terms of matching when the critical

events happened for the subject. The stitched flights in Figures 9b-9d are all perfect

matches in the temporal placement of the three kills. The first stitched path in (b) was a

random choice from the many available with matching segment lengths, while the paths

in (c) and (d) were chosen because they were similar to the subject path, but on different

criteria.

The path in Figure 9c was chosen to be physically close to the subject path. However,

differences in the position of the ship may not reflect significant differences in what the

subject is trying to do. Small differences in timing of keystrokes can accumulate and

result in the ship being in quite different locations. Two segments can be in opposite

sides of the space and reflect identical intentions and even involve identical keystrokes.

Figures 9a and 9d are most similar in terms of the timing of their leg structure, which

taps subject intentions in flight. It is not apparent from viewing the flight paths, but

all 9 legs in Figure 9a begin and end within 30 ticks of a beginning or end of the legs in

Figure 9d (although 9d has 3 extra legs). By this criterion Figures 9b and 9c only match

5 of the beginning of legs and 5 of the ends of legs in Figure 9a.

We developed a measure of how well the beginnings/ends in two games matched using
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hits and false alarms. A hit was a beginning or end of a leg in the stitched game that

had a beginning or end within half a second (30 game ticks) in actual games. Otherwise,

the beginning/end was classified as a false alarm. Proportion hits were calculated as hits

divided by the number of beginnings/ends in the actual game. Proportion false alarms

were number of false alarms divided by the number of blank periods in the actual game.

From these proportions we calculated a d-prime measure of match. Table 3a shows the

result when stitchings are selected to optimize this measure.

While these results are far from perfect, they reflect the best that can be obtained with

the current library of 200,000+ games.. That library usually provided a good number of

segments (an average of over 3,000) that matched the length of actual game segments.

However, only some of these would be viable when stitched in a game. Most severely,

only 0.65% of the kill-to-kill segments were viable when added to a fragment. There is a

relationship between how many model segments there are to match segments in the game

and how well we can reproduce the leg structure of the game. The correlation between

the average number of matching segments in a game and the d-prime measure of leg

correspondence was .81. If we had run even more model games, the results would have

improved somewhat.

Table 3b shows leg matches for random stitching. The d-primes are much lower, but

19 of the 22 subjects have positive d-primes. These small but positive d-primes show

the advantage of just matching the position of the critical events . The results in Tables

3a-3c contain the leg matches using the actual critical events to identify segments. Tables

3d-3e contain the corresponding results when using the critical structures as identified by

the HSMM. The results are quite similar, reflecting the fact that the critical segments

identified by the HSMM are quite close to the actual critical elements.

3.2.3. Using EEG to Identify Leg Structure

There was a modest level of correspondence when model games were stitched to best

match the leg structure of the target game. However, this stitching used knowledge of

the target leg structure. How well could we identify the leg structure using only the EEG

signal? Figures 11a and 11b show the patterns associated with the beginning and end

of legs. These patterns are much weaker than the patterns associated with the critical

events (Figure 3). Table 4 shows the results using the same classification methodology

that was used for critical events (Table 2). Despite the weaker signal, there is still some

discriminability among the categories. The classifier only uses other games of a subject

to classify a target game and these may have some distinctive properties not in the
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Figure 11: (a) EEG activity (mean values and standard errors) of 3 central electrodes from a half

second before the beginning of a leg; (b) EEG activity (mean values and standard errors) of 3 central

electrodes from a half second before the end of a leg; (c) Common Pattern (c) Difference between ends

and beginnings. The scalp profiles in all cases illustrates activity at .1 seconds after the event and are

scaled to range between -1 and +1 microvolts.
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Table 4: Classification of Leg Boundaries

averages displayed in Figure 11. Figures 11c and 11d attempt to display the basis for

the discriminability in the average data. Figure 11c shows the average pattern displayed

by EEG activity across both begin-leg and end-leg events, which is part of the basis for

discriminating these points from other Null points. It is somewhat surprising that there

is a common pattern as the beginning of a leg reflects the end of the navigational keying

that set the ship on its new path while the end of a leg reflects the onset of a new keying

to set the ship on a new path. If anything, one might have expected the pattern prior to

the beginning of the leg (x = 0) in Figure 11a to match the pattern posterior to the end

of the leg in Figure 11b. Figure 11d displays the difference between the activity patterns

for the beginning and end of legs. The activity in frontal electrodes is more negative 100

msec. after the end of a leg than 100 msec. after the beginning of a leg. The negative

dip for electrode FZ is significant across subjects (t(21)=3.59, p < .005).

While the discriminability is not as high for the markers of legs as it was for critical

events, there are many legs in a game which in combination can be quite discriminative.

We calculated the probability of the EEG signals for each of the 440 games given each

of the 440 leg structures of the games (a 440 x 440 matrix of probabilities)7. In 421

cases the EEG signal from that game is most probable given the leg structure of that

game. The average rank of the game’s reconstruction among the 440 was 1.7 and the

lowest rank was 88. Thus, even though Table 4 shows limited ability to identify where

individual legs begin or end, combined over a 3-minute game the leg structures result in

7This probability is conceptually the product of all the probabilities of the labels assigned to the

10,800 ticks by the leg structure. In implementation, we more efficiently calculate the log of a quantity

that is proportional to this product.
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Figure 12: Two examples of curved flight from a subject with a high tendency to overlap turn and thrust

keys.

highly discriminable EEG signatures.

While the EEG signal associated with key presses provides a good basis for identifying

a subject’s game, how well can it do in guiding how to stitch together a game? To

address this question, we selected segments for stitching whose leg structure made the

EEG signal associated with that game most probable. The results (Table 4c) prove to

be only modestly better than random stitching. 19 of the 22 subjects do have better

d-prime leg matches with the EEG signal than with random stitching, indicating that the

modest gain is still quite significant (p < .001 by a sign test). The stitchings we found

were the best given the library of model games and the beam search algorithm for finding

a stitching. We would have found better matches to the EEG signal had we a larger

library and searched with a larger beam. However, already the leg structure of 37 of the

stitched games makes the EEG signal more probable than the leg structure of the actual

games. The average leg d-primes for these 37 stitched games is not better than for the

remaining 407 (.234 vs .236). Thus, while the EEG signal for the leg structure of a game

tends to identify it from other actual games, it is quite possible to stitch together games

that make the EEG even more probable and still have only a weak correspondence to the

leg structure of the real game. The EEG signal does not provide enough guidance in this

context to identify a close match to the leg structure.

3.3. Deliberate Acts: Individual Keying Actions

Flight legs, the topic of the previous section, correspond to the Operations level in

Newell’s Cognitive Band. The individual keying actions reflect steps at Newell’s Deliber-
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ate Act level8. When we examined the individual keying actions, we found a discrepancy

between subjects and models. Subjects sometimes hold down a turn key (either clockwise

or counterclockwise) while they are holding down the thrust key. While all subjects show

some key overlap, 8 subjects showed such overlap less than 1% of the time that they were

pressing the thrust key. On the other hand, 4 subjects held a turn key down while thrust-

ing more than 10% of the time9 . While the ACT-R architecture is capable of producing

such overlapping key presses, the model kept the keying strategy of earlier models that

did not overlap keys. These were models of games where subjects rarely if ever overlapped

keys, probably reflecting the different navigational demands of these games. Figures 12a

and b display the flight paths for the first 3 kills in two games of the subject with the

highest proportion overlap, 47%. As can be seen these flight paths contain long curved

trajectories, although there are also linear legs. The algorithm, trying to parse the curved

portions of subject paths into linear legs, produces the short crossing legs in Figure 10c

that the model does not produce. It also produces the long turns in subject data that

are not found in model data (Figure 10d)10 . Overlapping keys is part of the reason for

the less-than-perfect match between model stitches and subject games in Table 3a.

Given that such overlap is not present in the model, we decided not to pursue stitching

games that matched subject behavior at the level of individual key presses. Given these

cases of key overlap, it is hard to always define an EEG signature associated with the

pressing or release of a key. Therefore, we also did not pursue an EEG analysis.

4. Conclusions

These results indicate both success and limitation with respect to the goal of tracking

open-ended tasks at the various levels of Newell’s Cognitive Band. The success involved

identifying critical events at the highest Unit-Task level. Killing a fortress has the char-

acteristics of a Unit Task (Card et al., 1983). Misses and deaths can be conceived of as

8There are other steps at this level that have no marker in the game record. Prominent among these in

the model, and we assume subjects, involve deciding where to fly next. These decisions are then followed

by executing the keystrokes
9It is also the case that subjects vary in how long they tend to hold both keys down. The 8 subjects with

low overlap also hold the keys briefly down when they do (an average overlap of 2.4 ticks) suggesting this

is just an accidental overlap where one finger fails to come up before another goes down. The 4 subjects

with high overlap tend to hold the keys down for long periods (an average of 10.3 ticks) indicating

deliberate intent to achieve curved flight.
10The correlation between proportion key overlap and proportion of crossing legs less than 100 ticks is

.89. The correlation between proportion key overlap and proportion of turns longer than 60 ticks is .74.
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failed Unit Tasks. The EEG-based MVPA did well identifying the critical events and we

could stitch together model games that matched these critical events. The HSMM-MVPA

analysis takes advantage of both the constraints on the timing of these critical events and

the strong EEG signals associated with their appearance. The improved success over

Anderson et al. (2020) reflects focusing on subject-unique patterns in classification and

satisfying the semi-Markov assumption.

There is reason to believe that one can pursue such HSMM-MVPA analysis at the

Unit-Task level for many open-ended tasks. If the task decomposes into Unit Tasks (like

the classic Card, Moran, and Newell text editing), each Unit Task will result in either

success or failure which should produce a strong EEG signal. Often the end of the next

Unit Task depends only on the last Unit Task and how long it has been since that last

Unit Task, satisfying the semi-Markov assumption. However, the independence of Unit

Tasks may only be partial, leaving violations of the semi-Markov assumption as in this

task. At least, sometimes these violations can be dealt with by going beyond a single

HSMM as we did here with a hierarchical HSMM. Recently, Anderson et al. (2023) have

extended HSMM-MVPA approach to identify critical events in the Mat-B task (Miller

et al., 2014) focusing on the correction of faults which appear as Unit Tasks in a 6-minute

task. The structure of that experiment creates long-term dependencies between different

types of faults. Rather than a hierarchical HSMM like here, we used parallel HSMMs

tracking different faults to remove these dependencies.

The EEG signals used to identify critical events are variants of the P300 ERP (Figure

3) which often used in BCI applications ((Fazel-Rezai et al., 2012). As the critical events

reflect positive or negative outcomes, one can ask how they relate to the ERN and FRN

(error-related negativity and feedback-related negativity, (Holroyd & Coles, 2002; Walsh

& Anderson, 2012) which appears as a negative frontocentral deflection 80-150 msec after

an error and 200-350 msec after negative feedback. Such a negative deflection can be

found in the vertical dimension that separates negative from positive events (Figure 4c).

There is approximately a 2.5 negative microvolt deflection in the FZ and CZ electrodes

about .25 seconds after the event. This is somewhat dwarfed by the following large

positive deflection reflect that dimension’s P300.

Having a sequence of critical events, either from the subject or the HSMM we investi-

gated whether the ACT-R model could produce these sequences. The ACT-R model not

only provides a good match to the statistics of these critical events (Figure 5), but it was

also possible to stitch together near perfect matches to the critical events. However, the

model was typically matching the critical events through different sequences of lower-level
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actions. There are many sequences of actions that result in the same critical event and

indeed the stitching algorithm was able to find many ways tthat he model could match

the critical events in a game (Figure 9).

We used the leg structure of games as a way of judging how well the subjects’ intentions

matched model intentions. A leg corresponds to the Operation level in Newell’s Cognitive

Band, in that it achieves a subgoal along the way to the goal of a kill. Even 200,000

games is not enough to provide an adequate library of segments. Less than 50% of subject

critical segments had even approximate matches in the model games in terms of their leg

structures. In many cases where there was a model segment that produced a good match

to the leg structure of a subject segment, it could not be stitched with other segments

to produce viable game play. The best stitchings (Table 3a and 3c) had only about 70%

of their legs placed close in time to the actual legs in the game. These results point to

practical limitations in trying to match subject behavior below the Unit-Task level.

The match to leg structure was much worse if we used only the EEG signal to guide

the stitching rather than knowledge of the target leg structure. While there are EEG

correlates of the leg structure, they are much weaker than the correlates of the critical

events. They do well at distinguishing one game from another, but they provide poor

guidance for constructing a stitching.

The presence of overlapping keys in subjects’ behavior probably contributed to the

difficulties at the leg level. The model did not produce curved legs dooming any at-

tempt to perfectly match the leg structure of a game that contained a substantial number

of overlapping keys. The model captured some but not all of the ways subjects could

achieve their navigation intentions. It depends on one’s goal in modeling, whether it is a

reasonable aspiration to try to achieve complete coverage at this level of detail.

The difficulties we faced in getting model correspondences at both the Operation level

and Deliberate Act level point to the challenges of modeling open-ended tasks at this level

of detail. The combinatorics are overwhelming: there are a great many ways that models

like ours can put these small pieces can be put together to achieve the same end. It is

not feasible to create a library that holds all the possibilities. Subjects show even greater

variability than the model with some subjects adopting styles that are not in the model.

While detailed modeling of such details may be feasible for brief, controlled laboratory

tasks, when it comes to open-ended tasks we have to be content with comparisons of

average behavior like Figure 10.

The unit-task level seems the right level of aspiration for detailed reconstruction of

open-ended tasks. Completion of one unit-task frees the performance of the next unit-
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task from the details of past history. When the stitching algorithm considered whether

a segment could be stitched into the fragment it was growing, it only had to consider

where that fragment had gotten to the ship, not how it got there. Similarly, we were able

to use semi-Markov methods in interpreting the EEG signal, which require independence

from past history. In addition, the EEG signal associated with such tasks tends to be

sufficiently robust to stand out against the noise. It is worth noting that while unit-

tasks occupy seconds of task, EEG allowed us to identify them of with an accuracy that

matched the temporal grain size of deliberate acts.
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Appendix A. Co-Op Space Fortress

The game is implemented in JavaScript and runs in NodeJS. It uses the SDL2 and

Cairo libraries for graphics output. The game updates 60 times a second. The game is

played in an area 710 pixels wide by 620 pixels tall. The gray hexagon is centered in

the middle of the game area at x=355, y=310 with a radius of 200. The fortress is also

centered in the middle of the game area at x=355, y=310. Surrounding the fortress is

its shield, a green hexagon of radius 40 that rotates with the fortress. The shooter ship

starts 230 pixels to the left of the fortress at x=125, y=310 and pointing up. The bait

ship starts 230 pixels to the right of the fortress at x=585, y=310 and pointing up. While

the thrust key is pressed, the velocity increases by 0.05 in whatever direction the ship is

pointing. While a turn key is pressed, the ship will turn 4 degrees per tick.

When the fire key is pressed, a missile is created at the ship’s position. It points in

the same direction as the ship and each game tick advances 10 pixels in that direction.

After 15 ticks the missile disappears. This limits a missile’s range such that the shooter

must be inside the gray hexagon in order to hit the fortress. Another missile will not be

fired until the fire key is released and pressed again. Only the shooter may fire missiles.

When the bait ship is inside the grey hexagon, the fortress turns to point at the bait

at a rate of 1 degree per tick. When the bait is outside the gray hexagon, the fortress

turns clockwise at a rate of 0.25 degrees per tick. A gap opens in the fortress’ shield,

making it vulnerable to a kill shot, when the bait is inside the gray hexagon and there is

at least one shell visible.

On each game tick where the bait is inside the gray hexagon, the fortress’ orientation

in degrees is divided by 10 and rounded to the nearest whole number. A shell is fired

if this value has not changed in 60 ticks, the bait is inside the gray hexagon, and it has

been at least 60 ticks since a shell has been fired. This means the bait must traverse at

least 10 degrees of arc around the fortress in one second or the fortress will fire a shell

at it. Shells are fired pointing directly at the bait ship. They start 30 pixels from the

fortress’ position and travel at 0.8 pixels per tick. After 180 ticks, the shell disappears.

This means shells disappear roughly at the edge of the gray hexagon.

For the purposes of collision detection, ships are considered a single point located

where the wings meet the body. A collision occurs between a ship and a shell if the ship’s

collision point is inside the shell’s diamond shape. Relative to the position of the shell, the

shape is defined by the following x-y pairs: 8,0; 0,-6; 16,0; and 0,6. A collision between a

ship and the edge of the game area occurs if the ship’s collision point is outside the game
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area. A collision occurs between the ship and the fortress’ green hexagonal shield if the

ship’s collision point is inside the hexagon.

For the purposes of collision detection, missiles are considered a single point located

at the center of the missile. A collision occurs between a missile and the fortress’ shield

if the ship’s collision point is inside the hexagon. A collision occurs between a missile

and the fortress shield if the ship’s collision point is inside the fortress’ collision box. The

box is formed from 4 points on the rear section of the fortress. Relative to the fortress’

position they are the following x-y pairs: 18,18; 18,-18; 0,-18; and 0,18.

The results of a collision are as follows:

• A collision between missile and fortress results in a fortress kill.

• A collision between missile and fortress shield results in the missile disappearing.

• A collision between missile and game boundary results in the missile disappearing.

• A collision between ship and fortress results in the ship exploding.

• A collision between ship and shell results in the ship exploding.

• A collision between ship and game boundary results in the ship exploding.

Appendix A.1. Probability Maximized by the Viterbi Algorithm

Any sequence of events (kills, deaths, misses) can be denoted as events a1, a2, ..., an

occurring at game ticks t1, t2, ..., tn where a1 is the start of the game (hence t1 is the first

game tick) and an is the last event before the last game tick 10,800. The following gives

the probability of the sequence assuming it satisfies the semi-Markov assumption.:

Prob(a1, a2, ..., an) ≈

(
n−1∏
i=1

(trans(ai, ai+1)× f(ti+1 − ti|ai, ai+1)× P (EEG(ti + 1 : ti+1)|ai+1))

)
×S(10800− tn|an)× P (EEG(tn + 1 : 10800|Null)

where trans(ai, ai+1) is the probability of transition between the events ai and ai+1,

f(ti+1 − ti|ai, ai+1) is the probability of the ti+1 − ti game ticks between the events ai

and ai+1, P (EEG(ti + 1, ti+1)|ai+1) is the conditional probability of the EEG signal for

this period if it ends in ai+1, and S(10800 − tn|an) iis the probability that there are

no critical events in the remaining game ticks if the last event is an. While calculating

this quantity for all possible sequences is prohibitive, the Viterbi algorithm uses dynamic

programming to efficiently identify the most probable sequence. Anderson et al. (2020)
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describe a further efficiency that allows us to ignore the probability of the EEG signal for

Null ticks and deals with the non-independence of the EEG signal on adjacent ticks.

Appendix A.2. Stitching Algorithm

Segments start from either a kill or a starting position (the ship is in a starting position

at the beginning of a game and after a death) and end in a kill, death, or end of the game.

Thus, there are 3x2=6 types of segments. The model runs provide 3,283,423 segments.

The majority, 78.470% are between two kills. The least frequent (from a starting position

to game end), 0.35% still have 11,595 cases.

Since each death in a game returns the ship to the starting position. The stitching

of segments after a death does not depend on the stitching of segments before a death.

Therefore, we run the algorithm separately on every stretch of a game that goes from a

starting position to a death or to game end. For any such stretch the algorithm initializes

its beam width to 100. If it fails with that width, it will double the width until it is

able to stitch segments for that stretch. With the beam set to n, the algorithm starts

with n segments from start to the first critical event. If there are more than n segments

that match the length of the critical event, it selects the first n if choice is random, the n

segments with highest d-prime leg match if trying to match leg match, or the n segments

with the highest EEG match probability if trying to maximize that. If there are not n

segments of the target length it expands its set to be the n that are closest in length.

The segments selected for the first critical event will be the starting set of fragments.

Then it repeatedly performs the following steps until it reaches the end of the game

stretch:

1. Find n segments to the next critical event that are closest in length to the target

segment. If there are more than n matching length exactly, it selects according to

same criterion it used for selecting the initial segments.

2. Create a new set of fragments by combining the segments with current fragments

and keeping those fragments that have viable flight paths.

3. If there are more than n new fragments, select those that are best by the chosen

metric.

The number of fragments that are produced in step 2 can be quite variable. If there

are m existing fragments and n new fragments it can be anywhere from 0 to m × n .

Stitching fails if there are 0 and a new search is started with n doubled.
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The determination of a viable path depends on how the next segment began and

ended. If it ended in a kill a viable path had to end inside the hexagon and be aiming at

the fortress. If it also began with a kill, it had to fly outside the hexagon and back in. A

final criterion for kill segments was that the speed never exceeded 2.5 pixels per time tick

because few successful subject kills happened at such speed. If the next segment ended

in a death, the flight path also had to end either within the fortress or outside of the

border. Of such segments the algorithm choses the ones that crashed closest to when the

target segment crashed. This could mean that some of the stitched deaths were shorter

that the target segment. If the next segment ended the game, flight paths were accepted

that did not have a death before that point.

Appendix A.3. Legs of Flight

A thrust will send the ship on a new path. Therefore, legs of flight begin when the

thrust key is lifted up, leaving flight direction unchanged, and they end when the thrust

key is depressed, changing flight direction. Turns are often achieved by thrusting, then

turning the ship some more, and then thrusting again to achieve a new path. This can

result in a short period of constant flight direction between the two thrusts. To avoid

treating these as true legs, we required that legs be at least 30 ticks (half a second long)

and considered the shorter legs part of a turn.
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