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Abstract
Memory is a complex process that spans multiple time-scales and stages, and, as expected, involves multiple brain regions. 
Traditionally, computational models of memory are either too abstract (Shiffrin & Steyvers, 1997) to be meaningfully con-
nected to a biological substrate, or, when explicitly connected, are narrowly focused on one specific region and process (Blum 
& Abbott, 1996; Weber et al., 2017). By contrast, a comprehensive model of memory with a plausible neural interpretation 
would be extremely valuable to drive further research in memory function and dysfunction. In this paper, we attempt to 
fill in this gap by providing a detailed biological analysis of ACT-R’s declarative memory system. This system, developed 
over four decades, has evolved into a consistent framework that describes how memories are formed, retrieved, forgotten, 
mistaken, and merged. Building on existing mappings between some components and their biological counterpart, as well 
as the existing literature, this paper provides a comprehensive view of how the framework’s various computations map onto 
different brain regions, their network dynamics and functional connectivity, and biological structure. We also show that 
these mappings provide further insights and explanations for puzzling findings in the memory disorders literature. Finally, 
we outline the remaining gaps (such as the transition from episodic to semantic memory) and how they could be addressed 
by future research and modeling efforts.

Keywords  ACT-R · Computational model · Long-term memory · Episodic memory · Semantic memory · Retrieval · 
Forgetting · Hippocampus · Prefrontal cortex

Introduction

Long-term memory is a complex mental process that spans 
multiple timescales and biological mechanisms, from 
almost-instantaneous synaptic changes at the molecular 
level to the reorganization of large-scale cortical networks 
between brain regions taking place over months or years. 

The complexity and scale of this process pose significant 
challenges to the computational modeling community. As 
a result, most of the models that have been proposed cover 
only a limited amount of long-term memory’s scope. Some 
models (Shiffrin & Steyvers, 1997) focus on the mechanism 
of memory retrieval at an abstract level, thus capturing many 
classic experimental findings but largely avoiding a mean-
ingful connection to its biological substrate. Other models, 
in contrast, focus on changes in neural activity in a restricted 
region (for example, the hippocampus: Blum & Abbott, 
1996; Weber et al., 2017), successfully capturing neural 
population dynamics but missing higher-level effects (such 
as long-term forgetting or the spacing effect) and large-scale 
neuronal phenomena (such as reconsolidation).

A more comprehensive computational framework of 
long-term memory, capable of capturing how memories are 
remembered and forgotten across different temporal scales 
while also providing a plausible neural interpretation, would 
be extremely valuable to drive further research in memory 
function and dysfunction.
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In this paper, we attempt to fill in this gap by providing a neu-
robiological analysis of ACT-R’s declarative memory system. 
ACT-R is a cognitive architecture (Anderson, 1983a, 2007) and, 
as such, it encompasses multiple, integrated cognitive components 
(Anderson et al., 2004). Thus, however, we will restrict our atten-
tion to the declarative memory system and consider it independent 
of the rest of the architecture. Historically, the declarative mem-
ory system (Anderson & Bower, 1976) predates the cognitive 
architecture (Anderson, 1983a)—which is, in fact, built upon it. 
Moreover, the declarative memory component can be functionally 
isolated, as demonstrated by the existence of software packages 
that contain only ACT-R’s declarative memory, with no other 
component (Reitter & Lebiere, 2010).

ACT-R originated as a mathematical model of forget-
ting and retrieval, sharing many commonalities with other 
mathematical approaches to model these processes (Hintz-
man, 1984; Shiffrin & Steyvers, 1997). Later work, however, 
has led to a better understanding of the biological bases of 
the model’s mechanisms (Anderson, 2007; Anderson et al., 
2008; Borst et al., 2010) and to a finer interpretation of its 
equations in terms of neural network dynamics. To the best 
of our knowledge, most of this progress has been driven by 
individual contributions focused on specific aspects of the 
ACT-R memory theory, rather than a global interpretation. 
This paper intends to fill the gap, tying together the progress 
made in these different directions into a consistent frame-
work that describes how memories are formed, retrieved, 
forgotten, mistaken, and merged.

The remainder of this paper is structured as follows. First, 
an overview of the ACT R memory system is provided. Sec-
ond, we review the neurobiology of memory at a systems 
level. Third, we outline a detailed mapping between ACT-R 
computations and different neural processes. Finally, we dis-
cuss a number of new extensions to the ACT-R declarative 
memory system and their possible biological counterparts.

The ACT‑R Theory of Long‑term Memory

The ACT-R theory of declarative long-term memory is 
the cornerstone of the larger ACT-R cognitive architecture 
(Anderson, 2007), an integrated computational framework 
for modeling cognition that is currently, and by far, the most 
successful and widely adopted architecture in the field of 
psychology and neuroscience (Kotseruba & Tsotsos, 2020). 
While the cognitive architecture includes multiple modules 
that capture sensory, motor, and procedural knowledge, here 
we will focus on the long-term memory component.

The Rational Analysis Framework

ACT-R’s declarative memory system was developed within 
a Bayesian, rational analysis framework (Anderson, 1990). 

While the ACT-R algorithms can be described without ref-
erence to this framework, it is useful to briefly summarize 
their assumptions. The main tenet of this approach is that 
memory is shaped by environmental constraints, and thus 
the availability of a memory reflects the probability that 
retrieving that memory would be useful at that particular 
moment (Anderson & Milson, 1989). At the same time, 
accessing and retrieving memories has a cost. An ideal lim-
itless organism (someone akin to the fictional character of 
Funes in Borges, 1944/1999) would not need to modulate 
the availability of a memory based on its learned need: every 
memory would be available at no cost. It is assumed, how-
ever, that maintaining memories comes at some price, so 
that memories should be allocated efficiently, with the most 
resources invested in the memories that are predicted to be 
needed (Anderson & Milson, 1989). This acknowledgment 
that memory is shaped by Bayesian principles but within the 
constraints of the human brain (i.e., the costs of maintaining 
memories) makes the rational analysis framework similar 
to the principle of bounded rationality. If costs are to be 
interpreted biologically, the same principle is reminiscent of 
Friston’s (2010) free energy principle, i.e., the idea that the 
human brain maximizes the predictability of future stimuli 
(or, equivalently, to minimize their surprisal) with the goal 
of reducing the metabolic costs.

In rational analysis terms (Anderson, 1990), a memo-
ry’s retention function (that is, its availability across con-
texts and times) adaptively reflects its probability of being 
needed. Thus, if we indicate the specific memory as m and 
the current context as Q (composed of different elemental 
cues q1, q2, …, qN) a memory retention function reflects 
the logarithm of its posterior need odds P(m|Q)/P(¬m|Q), 
which can be expressed, per Bayes’ theorem, as the prod-
uct of prior need odds P(m)/P(¬m) and the need likelihood 
P(Q|m)/P(Q|¬m). Assuming, for simplicity, that each cue q 
is independent of each other, we can simplify this expres-
sion as follows:

The last step in Eq. (1) is an approximation derived from 
the consideration that, for large numbers of memories, 
P(q|¬m) ≈ P(q).

The different terms in Eq. (1) have a straightforward 
explanation in terms of the cognitive psychology of mem-
ory (Anderson, 1983b, 1990; Anderson et al., 1996; Ander-
son et al., 2004). Specifically, the log posterior need odds 
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on the left-hand side of Eq. (1) correspond to a memory’s 
activation, an intuitive construct that describes a memory’s 
moment-to-moment availability. Similarly, the two quantities 
on the right-hand side also correspond to well-known cogni-
tive constructs, with the log of the need priors correspond-
ing to the base-level activation of m or B(m) (capturing the 
effects of the prior usage of m) and the log-likelihood cor-
responding to the contextual or spreading activation of m, or 
S(m) (capturing the additive effects that each environmental 
cue has on the memory’s activation). Thus,

 and, therefore, A(m) = B(m) + S(m).

Algorithmic Implementation

To implement these equations algorithmically (Anderson, 
2007), the quantities B(m) and S(m) are approximated in 
ways that predict the future use of a memory based on its 
previous history and its learned associations with contextual 
cues, respectively. It is this algorithmic implementation that 
will be used to make contact with neurobiology. Because the 
algorithmic implementation depends on further assumptions 
on how memories are represented, it is necessary to briefly 
introduce the main assumptions that ACT-R makes about 
the internal structure of memories.

Memory Representation

Memories are internally represented as records of features. 
Historically, these records are referred to as “chunks” and 
their features as “slots”, although this paper will use the 
more conventional and less technical terms “memories” and 
“features”. Features represent the individual, atomic compo-
nents of a memory, such the basic sensory information (e.g., 
the color yellow) and elementary concepts (e.g., the magni-
tude of a number) that make it up. Each feature is identified 
by a name and a value. For example, the feature of being 
yellow “yellow” is represented as the pair (Color: Yellow), 
with the first element being the feature name and the second 
the feature’s value1. Thus, the semantic knowledge that “A 
canary is a yellow bird” can be represented as a record of 
features such as ((Object: Canary), (Type : Bird), (Color: 
Yellow)). Memories do not have specific, predetermined 
types, and a single memory can be made up of an arbitrary 
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number of features. Long-term memory is a finite collection 
of such memories.

Although this representational format might seem arti-
ficial and symbolic, it is, in fact, equivalent to some vector 
representations used in other models of long-term memory 
(Hintzman, 1984; Shiffrin & Steyvers, 1997) or in neural 
network models of semantic (Rogers et al., 2004) and epi-
sodic memory (Alvarez & Squire, 1994). In these models, 
a memory is represented by a vector of fixed size, feature 
names are represented by a subset of element positions in a 
vector, and feature values by specific numeric values of the 
corresponding elements. For example, in Rogers’ model of 
semantic memory (Rogers et al., 2004), the property (Color: 
Yellow) is represented in the 64 “perceptual” artificial neu-
rons located in positions 41–104 of the network’s input layer. 
By contrast, the property (Type : Bird) is represented by 
values of the 16 neurons in position 137–152. Thus, any 
ACT-R memory can be transformed into a corresponding 
vector representation if the list of possible features is pre-
defined and the features that are not present in a memory 
are set to a default value of zero. This translation scheme, 
in fact, was used by one of the authors (Lebiere & Ander-
son, 1993) to create a functional neural implementation of 
ACT-R. Other encoding schemes that similarly allow for a 
binding of feature names and values, such as holographic 
reduced representations (Plate, 1995) or tensor-product vari-
able binding (Smolensky, 1990), have also been used in suc-
cessful large-scale neural network models of memory (e.g., 
Eliasmith et al., 2012).

In ACT-R, each memory can be represented only once 
in long-term memory, and two identical memories cannot 
exist. Instead, traces of the same memories are indirectly 
represented by maintaining a list of all of the times the same 
memory has been re-created and added to long-term mem-
ory. The addition of a new trace for a memory, therefore, 
results in the addition of a new creation time to the list.

Base‑Level Activation, Traces, and Memories

For each memory m, its associated base-level activation B(m) 
is approximated as follows. In general, researchers agree 
that the probability of retrieving a memory declines over 
time according to a power function (Newell & Rosenbloom, 
1981). Anderson and Schooler (1991) provided empirical 
evidence that this power decline over time reflects the sta-
tistical properties of the human environment; for example, 
words in child-directed speech, email receipts, and words in 
the New York Times titles exhibit similar statistics, with the 
probability of re-encountering the same word or an email 
from the same sender decline over time with a power func-
tion (Anderson & Schooler, 1991).

This power law applies to every trace associated with 
a memory. Thus, every time a memory m is encoded, a 

1  Note that a feature’s name is only a notational convention, and has 
no implication for how memories are implemented in the brain.



	 Computational Brain & Behavior

1 3

new trace is created, and its availability declines over time 
according to a power function with a decay rate d. The decay 
rate captures the basic mechanism of “passive” forgetting 
(Davis & Zhong, 2017), that is, forgetting that is due to the 
compound effects of different processes such as biological 
decay (Hardt et al., 2013) or interference from the acqui-
sition of new memories (Anderson & Reder, 1999; Wix-
ted et al., 2004).2 The architecture does not make a firm 
commitment to the precise temporal- or interference-based 
mechanisms underpinning the decay rate parameter although 
both are thought to be features of decay (Altmann & Gray, 
2002; Lemaire & Portrat, 2018). Note that, separately from 
the time-based decay captured by the mechanism described 
in this section, interference from similar memories is also 
reflected through other mechanisms such as partial matching 
and blending described in following sections.

The need odds of m increase linearly with the number of 
associated traces. Specifically, because activation is expressed 
in the form of log odds, the value of B(m, t) at time t is the log 
of the sum of decaying traces associated with m:

 in which t represents the current time, t(i) represents the 
time at which the i-th trace has been encoded, the difference 
t − t(i) is the age of the trace, and the quantity (t − t(i))−d 
represents the declining availability of the i-th trace at time 
t (Anderson & Schooler, 1991).

Figure 1 provides a visual illustration of this mechanism, 
assuming the same memory has four traces associated with 
it, generated at times t(1) = 0 (memory creation), t(2) = 5 s, 
and t(3) = 12 s. Specifically, the colored lines represent the 
odds of retrieving each trace. Notice the odds of retrieving a 
specific trace i at the time of its creation (that is, when t = t(i)) 
tend to positive infinity because, at that moment, the probabil-
ity of i being retrieved is exactly 1. Thus, the y-scale of the top 
panel is capped at an arbitrary value of 4. The grey line, on 
the other hand, represents the memory’s base-level activation 
B(m), that is, the log of the sum of each trace’s odds. When 
B(m) = 0, the odds of retrieving m are exactly 1, implying that 
m is equally likely to be retrieved or not.

Recency, Frequency, and the Spacing Effect

Any good memory model should be able to correctly explain 
the fundamental effects reported in the literature. In addi-
tion to the power law of forgetting (Newell & Rosenbloom, 

(3)B(m, t) = log
∑

i

(t − t(i))−d
1981), other important memory effects include the recency, 
frequency, and spacing effect.

Equation 3 captures the basic effects of recency and fre-
quency. Recency arises as a consequence of the power law of 
forgetting, which makes the activation of a memory decline 
as a power function of its age (Fig. 2). Frequency, on the 
other hand, depends on the summed effect of the accumu-
lation of traces, by which a memory with more associated 
traces retains greater activation than a memory with the 
same age but fewer associated traces (Fig. 2).

In addition to recency and frequency, another funda-
mental law of memory is the spacing effect (Cepeda et al., 
2008), that is, the phenomenon by which the probability of 
retrieving a memory is higher when, all other things being 
equal, the interval between the encodings of its traces (the 
“spacing”) is larger. The spacing effect is typically studied 
in experiments in which a particular item is presented twice, 
with different intervals between the two presentations; each 
presentation is assumed to result in an independent trace. 
The time between the second presentation and the final test 
is maintained constant, and the interval between the two 
traces is varied.

It is easy to see that Eq. (3) cannot account for the spacing 
effect, as the combined effects of each trace are simply addi-
tive. If anything, a larger gap implies that the first trace was 
created earlier than in the case of a shorter gap. Thus, in the 
case of a larger gap, the activity of the first trace would have 
decayed more, resulting in lesser activation for the mem-
ory—exactly the opposite of what is experimentally found.

To account for the spacing effect, Pavlik and Anderson 
(2005) introduced a modification to the decay term d. Spe-
cifically, they relaxed the constraint that d is constant across 

Fig. 1   The relationship between a memory m’s activation (grey) and 
the need odds of its constituent traces encoded at times t1 = 0, t2 = 5 
s, and t3 = 12 s: blue, orange, and green lines

2  Note that this term does not capture, however, the more “active” 
forms forgetting due control processes, such as motivated forgetting 
(Anderson et  al., 2008) or retrieval-induced forgetting (Anderson & 
Bjork, 1994).
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all traces, and allow for every trace to have its own specific 
decay term d(i):

Specifically, the trace-specific term d(i) depends on the 
current value of the base level activation B(m) at the moment 
at which the trace was created. Thus, when the i-th trace is 
created, it is given a decay rate d(i) calculated as follows:

 where B(m, t = t(i)) represents the value of B(m) at time 
t(i). The spacing effect is made possible by the fact that the 
term c eB(m, t= t(i)) makes a trace’s decay rate dependent on 
the activation of the corresponding memory at the time of 
creation. When two traces are temporally close together, the 
corresponding memory’s activation at the moment the sec-
ond trace is encoded is higher, resulting in a larger value of 
c eB(m, t= t(i)) and, therefore, a larger decay rate.

The complete model of Eqs. (4) and (5) is noteworthy 
for its reliability, having been used to successfully model 
a variety of memory results (Anderson et al., 1999; Pavlik 
& Anderson, 2005) and having been used to successfully 
derive optimal schedules for learning practice (Pavlik & 
Anderson, 2008). The rate of forgetting α in Eq. (5) has been 
also used as an idiographic (i.e., person-specific) parameter 
(Sense et al., 2016), with α being a stable and reliable trait 

(4)B(m, t) = log
∑

i
(t − t(i))−d(i)

(5)
d(i) = ceB(m,t=t(i)) + 𝛼

= c
∑

j<i(t − t(j))−d(j) + 𝛼

within the same individual across sessions and materials, 
and to assess individual differences in real-life outcomes, 
such as a student’s success at answering test questions after 
studying (Sense et al., 2016).

Spreading Activation and Attention

The spreading activation component S(m) can best be under-
stood by considering a classic representation format for 
memories, namely, semantic networks (Collins & Loftus, 
1975; Roelofs, 1992). In semantic networks, each memory 
represents a node, and its components are connected by 
directional links.

The terminal leafs of this network represent basic, atomic 
representations, such as the sensory information correspond-
ing to “Yellow” or the abstract concept of “Two”. Figure 3 
provides a visual representation of how the concept of “A 
canary is a yellow bird” is represented in such a network and 
how its representation partially overlaps with the concept of 
“The lemon is a yellow fruit”.

In this network, spreading activation is implemented as an 
additional amount of activation that flows from the memory 
nodes that are part of the context Q = q1, q2, …, qN. Thus, each 
element q represents a specific active node in the current con-
text. Specifically, when a particular fact or memory becomes 
part of the current context, its constituent features become 
contextual cues q1, q2, …, qN and receive a certain amount of 
activation that spreads to the immediately connected nodes.

For example, if the context contains the fact that “Lemon 
is a yellow fruit”, then its features “Lemon”, “yellow”, and 
“fruit” would receive activation that would spread to all of 
the nodes that are associated with them. In the case of Fig. 3, 
only the feature “yellow” is associated with another node 
(“The canary is a yellow bird”). This node’s base level acti-
vation B(m) will then be increased by the amount of spread-
ing activation S(m) flowing from the feature “yellow”.

The amount of activation that ultimately reaches a given 
memory m from a cue q is scaled by the strength of the 
link between q and m. The strength of this link reflects the 
statistics of co-occurrence between the two events, so that 
greater co-occurrence of q when m is present (i.e., P(q|m)) 
correspond to stronger links. If there is a direct link from 
q to memory m, then m receives an activation boost that is 
proportional to the product between the strength of the link 
connecting q to m (indicated as Sq→m) and the attentional 
weight given that cue. The attentional weight is usually sim-
plified as a single scalar quantity, W, that is divided by the 
number N of features that are present in the context Q. The 
total amount of spreading activation S(m) that m receives is 
the sum of all of the partial effects of each element q:

(6)S(m) = W∕N ×
∑

q∈Q
Sq→m

Fig. 2   Recency and frequency effects in the ACT-R memory frame-
work. In both figures, time flows from left to right, up to the moment 
of retrieval at time t = 0. (Left) In the recency effect, the activation of 
a memory encoded more recently (orange) has declined less than that 
of a memory encoded earlier (blue). (Right) In the frequency effect, a 
memory that has been rehearsed twice after encoding (orange, three 
traces) retains a higher activation than a memory that has never been 
rehearsed (blue, one trace)
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When W/N = 1, this equation can be related to the Bayes-
ian definition of S(m) in Eq. (2) by assuming that each asso-
ciation sq→m approximates the quantity log P(q|m) / P(q). 
Note that the denominator P(q) can be measured by simply 
counting the number n of memories that contain q as a fea-
ture. Thus, the amount of activation spreading from each q 
is proportional to ≈ log(1/n); in other words, it decreases in 
proportion to how common the feature q is across all memo-
ries. This assumption plays an important role in explaining 
some paradoxical phenomena of memory retrieval, most 
notably the fan effect (Anderson, 1974, 1983b; Anderson & 
Reder, 1999). In the fan effect, memories that contain more 
common features (that is, features that show up in many 
other memories) are less likely to be retrieved than memo-
ries that have unique features; this is caused by the denomi-
nator n being larger for commonly occurring features. The 

reduction in spreading activation for high-fan memories 
serves as a form of cue interference-based decay.

When W/N ≠ 1, the parameter W can be interpreted as a 
different weight assigned to contextual vs. base-level infor-
mation or, in Bayesian terms, to likelihood vs. prior infor-
mation. In cognitive terms, W can thus be interpreted as the 
amount of attention that is allocated to the current context 
during retrieval. This form of attentional control can also be 
interpreted in terms of working memory, that is, an individual 
capacity to maintain, process, and update short-term infor-
mation (Baddeley, 1992, 2010; Baddeley & Logie, 1999). 
Specifically, controlled activation of long-term memory ele-
ments through attention can explain the relationship between 
performance in complex span tasks and the ability to control 
interference (Burgess et al., 2011; Kane et al., 2001). In fact, 
Daily et al. (2001) were able to show that individual varia-
tions in W values capture idiographic differences in work-
ing memory performances, and that individual differences in 
W values, when estimated independently through a working 
memory task, successfully predicted performance on other 
tasks that demand cognitive control.

Although a skilled modeler might find clever worka-
rounds, ACT-R does not possess a mechanism for separately 
weighting different cues. The differential weighting might 
be crucial to capture certain effects in fast memory retrieval 
(Engelmann et al., 2019). Thomson, Bennati, and Lebiere 
(Thomson et al., 2014; see also Thomson et al., 2015) inte-
grated a working memory mechanism into ACT-R which 
adds a short-term decay to memory traces (i.e., chunks 
cleared from buffers) to provide separately weighted cues 
based on a degree of residual activation. Models integrating 
buffer decay have developed a unified account of free and 
serial recall effects and have been used to study interference 
effects in memory.

Retrieval Control, Similarity, and Partial Matching

According to the ACT-R theory, memories are retrieved 
probabilistically based on the summed effects of their B(m) 
and S(m) components, with memories with higher activa-
tion being more likely to be retrieved. In principle, all of 
the existing memories can compete for retrieval. The set 
of memories competing for retrieval, however, can also be 
voluntarily restricted by imposing selection criteria during 
the retrieval process. These selection criteria are expressed 
in the form of requirements on the specific features that a 
memory must have. For example, one could retrieve the 
common name “canary” by restricting the retrieval set only 
to those memories that contain the features (Type: Bird) and 
(Color: Yellow). By specifying appropriate features, one 
can properly filter out highly active but otherwise irrelevant 
memories. This form of control over the retrieval process 

Fig. 3   Semantic network representation of the four ACT-R memories 
“The canary is a yellow bird”, “The canary is a bird that sings”, “Tay-
lor Swift is an artist who sings”, and “The lemon is a yellow fruit”. 
Gray boxes represent atomic feature values (i.e., terminal nodes in the 
network), and white boxes represent the memories built upon them
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can be understood as a form of executive function (Diamond, 
2013; Van der Linden et al., 2000). Unlike spreading activa-
tion S(m), the form of control exerted by selection criteria is 
driven by internal, possibly voluntary processes and not by 
learned co-occurrence statistics across memories.

In their simplest form, selection criteria are strictly 
binary: a memory either contains the specified features 
(and is thus included in the retrieval set) or not. This is 
an unrealistic requirement and does not explain errors or 
intrusions that arise due to the similarity and are exten-
sively documented in memory research (e.g., Mandler 
et al., 1969). The ACT-R theory allows for such effects by 
discounting a memory’s activation in inverse proportion 
to its similarity to the selection criteria. Thus, all memo-
ries are included in the retrieval set, independently of the 
selection criteria or not; however, the less a memory fits 
the criteria, the more its activation level is penalized and 
the less likely it is to be retrieved.

Similarity is implemented in the form of a mismatch pen-
alty δ between the value of a feature specified at retrieval 
and the actual feature value; this value is then added to a 
memory’s activation. The mismatch penalty represents the 
dissimilarity between the representation of two values, so 
that the net effect is to penalize a memory’s activation in 
proportion to the dissimilarity of its component. Specifically,

 where δ(fr, fm) is the dissimilarity between the required 
value of feature fr and the value fm of the corresponding 
feature in memory m, the sum is over all features specified 
in the retrieval, and MP is a mismatch penalty scaling factor.

Blending

In classic ACT-R, a memory m is made of identical traces 
and, once formed, it is never modified. Those identical traces 
are identified each time one is encountered and merged 
together, reinforcing the original trace. The retrieval pro-
cess might occasionally fail, but, when it succeeds, it always 
produces an accurate copy of a memory.

Although these assumptions greatly simplify the compu-
tational process, they also contradict several known aspects 
of human memory. First, no two identical traces are made; 
in fact, the MTT assumes that similar traces are aggregated, 
and that this aggregation process eventually produces the 
abstract categories of semantic memory (e.g., the knowledge 
of what a “bird” is). This phenomenon is the key to extract 
general features from examples and to develop prototypes 
(Rosch & Mervis, 1975).

Second, retrieval is a reconstructive process. That is a 
direct consequence of how memories are implemented in the 

(7)A(m) = B(m) + S(m) +
∑

f
MP × �

(
fr, fm

)

brain, with the retrieval of a memory causing a reactivation 
of the original brain state at the moment the memory was 
encoded (Danker & Anderson, 2010).

To overcome these limitations, ACT-R allows for a spe-
cial mechanism known as blending (Lebiere, 1999). Blending 
allows one to retrieve memories that are a mixture of features 
in the pool of relevant memories, while not being exactly 
identical to any of them. Specifically, the newly retrieved 
blended memory will possess a series of features, and the 
blended value f* of each feature will be calculated as to mini-
mize its dissimilarity with the homologous features fm of every 
other memory m that is being considered for retrieval:

 where P(m) is the probability of retrieving a given memory 
m. In turn, P(m) depends on the current activation of m, thus 
scaling the importance of each feature value by the activa-
tion of its memory.

This formulation generalizes at least three distinct cases. 
If the feature values are numerical, then the blended value 
is effectively the average of the memory features, weighted 
by each memory’s probability. The type of average depends 
on the similarity function: if similarities are linear, i.e., 
proportional to the difference between two values, then the 
blended value corresponds to the arithmetic mean, whereas 
if similarities reflect the log ratio of the largest to the small-
est value, then the blended value corresponds to the geo-
metric mean. The second case, which is the opposite con-
dition to the first, corresponds to symbolic values that are 
maximally dissimilar to each other (and maximally similar to 
themselves). In that case, blending corresponds to weighted 
voting, in which the feature chunk with the largest summed 
probability over all memories is selected. The third and most 
general case between these two extremes applies to feature 
chunks that have similarities to each other, which can be 
understood as corresponding to vector embeddings within 
a high-dimensional space. In that case, the blended value 
can be a feature chunk that is not the most common but 
instead represents the best weighted compromise between 
all feature values.

Note that, in theory, blending produces new memories 
that average across different memories each of which, how-
ever, is still made of identical traces. However, it is pos-
sible to create “episodic” chunks that have only one trace 
associated with them; in this case, the blending mechanism 
becomes equivalent to the averaging over traces that occurs 
in the multiple-trace theory, and constitutes the general case 
to the merging of identical memories.

Blending has been successfully used in Instance-Based 
Learning (IBL: Gonzalez et al., 2003), a theory of experi-
ential decision making that posits that decisions are made 
by sampling from memories of past outcomes in similar 

(8)f ∗ = argminf

∑
m
P(m) ×

[
1 − sim

(
f , fm

)2]
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situations. Unlike other decision-by-sampling approaches, 
which posit that multiple retrievals are made (Stewart 
et al., 2006), IBL relies on blending to retrieve a single 
memory that is prototypical of the previous outcomes of 
a decision.

Neurobiology of Long‑term Declarative 
Memory

Before attempting to map the different facets of the ACT-R 
memory system to their putative neural substrate, it is impor-
tant to outline what is the general consensus view on the 
neuroscience of memory. For simplicity, we will articulate 
this consensus view according to the life cycle phases of a 
memory, that is, encoding, consolidation, and retrieval.

Memory Encoding

The lifetime of a memory begins with the process by which 
it is encoded as a representation in the neural tissue. Such 
a representation, which is often referred to as the “engram” 
(Josselyn et al., 2015), represents the biological equivalent 
of a “trace” in ACT-R and in the Multiple Trace Theory—
namely, the earliest possible stage at which a memory exists.

A series of landmark studies of amnesic patients have 
provided conclusive evidence that the medial temporal lobe, 
and, specifically, the hippocampus, plays a critical role in the 
creation of declarative memories. Patients suffering from 
bilateral damage to the hippocampus invariably present a 
deep form of amnesia, which provides a connection between 
this particular brain region and long-term memory (Corkin, 
2002; Gabrieli et al., 1988; Scoville & Milner, 1957).

Note that non-declarative memories are spared by hip-
pocampal damage. Multiple studies have shown that, even 
in deep forms of amnesia, memories for habits and skills 
(Knowlton et al., 1996) and implicit memories (Schacter 
et al., 1993) remain intact. The scope of memory impair-
ment following hippocampal damage amnesia, however, per-
fectly overlaps with the scope of the ACT-R’s declarative 
framework, which encompasses both semantic and episodic 
memories.

The physiological organization of the hippocampus pro-
vides a clue about the nature of its representations. The hip-
pocampus receives a topologically organized projection from 
the cortical mantle. Internally, the hippocampus consists of 
massively interconnected projection neurons. This organi-
zation is remarkably similar to that used in artificial neural 
networks known as auto-associators (Hopfield, 1982; Treves 
& Rolls, 1994), which are capable of quickly learning new 
patterns of inputs that can be internally stored in the different 
strengths of synapses. Indeed, the original Hopfield model, 

which is capable of one-shot learning through the simple 
and biologically plausible Hebbian rule, remains to this day 
an effective and useful model for hippocampus learning and 
deterioration (Weber et al., 2017).

Storage and Consolidation

Although patients who suffer from bilateral medial temporal 
lobe damage are unable to form new memories, they typi-
cally retain memories of past events, a characteristic pattern 
known as anterograde amnesia. This suggests that although 
the hippocampus is required for creating new memories, it 
is not the ultimate repository of memories—otherwise, all 
memories would be lost following bilateral hippocampal 
damage. In turn, this suggests that a memory’s representa-
tion (its engram) changes over time.

But how and where are memories ultimately stored? 
Multiple lines of evidence suggest that memories might 
be ultimately represented as massively distributed patterns 
of synapses between neurons located in different areas of 
the neocortex. This distributed organization explains why 
retrograde amnesia (that is, the loss of previous memories 
accompanied by the ability to form new ones) is exceed-
ingly rare, and no known focal brain lesions give rise to it 
(Hardt & Sossin, 2020). If the cortex is the ultimate seat of 
long-term memory and the hippocampus is the first, then a 
transfer process must occur that moves information from the 
hippocampus to the cortex over time. This transfer process 
is known as systems consolidation.

The existence of systems consolidation is also suggested 
by the fading pattern of memory loss in amnesic patients. 
In these patients, anterograde amnesia is typically accom-
panied by a gradient of retrograde amnesia, with the depth 
of memory loss being larger in proximity of the time at 
which the hippocampal lesion has occurred and extending, 
in increasingly small degree, as far as a couple of years in 
the past. This pattern has been taken to imply that systems 
consolidation takes place over multiple months or years, dur-
ing which the hippocampus and the neocortex balance the 
load. An influential model analysis (McClelland et al., 1995) 
proposes that this is due to the difference in the durations 
of learning in the two structures, with the neocortex being 
specialized for long-term, slow learning and the hippocam-
pus for fast, one-shot, quick learning. The difference in size 
between the hippocampus and the cortex also suggests dif-
ferent limitations in capacity, with the smaller hippocampus 
better suited to providing a fast way to store memories for a 
limited amount of time. Alvarez and Squire (1994) proposed 
an early influential model of how such transfer happens. In 
the model, the encoding of memory happens in parallel at 
two levels, the cortex and the hippocampus, following two 
different time courses. The hippocampus forms fast asso-
ciations between local populations of neurons activated by 



Computational Brain & Behavior	

1 3

corresponding cortical projections. When a partial pattern 
of a previously encoded memory is present in the cortex, the 
hippocampus is thus capable of re-activating all of the previ-
ously active neurons, which in turn re-activate the original 
cortical sources through the ascending fibers that proceed 
from the hippocampus to the cortex. Thus, the fast associa-
tions learned by the hippocampus act as a bridge, allow-
ing the re-activation of a large ensemble of cortical neurons 
given a partial representation. This process is analogous to 
the retrieval of a memory given a cue. Over multiple retriev-
als, co-activated neurons in the cortex form stable synaptic 
bonds with each other and, as a result, can recreate full pat-
terns from partial cues without the help of the hippocampus. 
In fact, it has been speculated that the cortex and the hip-
pocampus have complementary roles and learning mecha-
nisms (McClelland et al., 1995). In recent years, imaging 
experiments have provided detailed evidence that semantic 
memory is distributed across all cortical regions, forming a 
continuous, multidimensional semantic space (Huth et al., 
2012; Mitchell et al., 2008).

Although the general theory of systems consolidation is 
universally accepted, two different variants exist. The differ-
ence between these two frameworks concerns the different 
involvement of the hippocampus in semantic vs. episodic 
memories, that is, first-person, autobiographical memories 
of real-life events (Tulving, 1993; Tulving et al., 2002). In 
the so-called Standard Model of Consolidation, both seman-
tic and episodic memories are ultimately transferred from 
the hippocampus to the cortex. According to the Multiple 
Trace Theory (MTT), however, episodic memory traces 
remain in the hippocampus, while semantic memories are 
slowly transferred to the cortex (Moscovitch et al., 2005; 
Nadel et al., 2000). Evidence for the MTT comes from 
many neuroimaging studies that show that the retrieval of 
episodic memories, but not of semantic ones, is associated 
with surges of activity in the hippocampus (Cabeza et al., 
1997; Moscovitch et al., 2005).

In fact, the retrieval of episodic memories involves the 
hippocampus and a number of additional brain regions that 
are connected to it. These regions form a functionally inter-
connected network known as the Default Mode Network 
(DMN: Raichle, 2015). The DMN has been the focus of 
much research in the past decade, since it was discovered 
that it is active during spontaneous thought and inhibited 
during task-related and goal-directed activity—one of the 
reasons why it had been originally overlooked in neuro-
imaging (Raichle et al., 2001). Although the exact nature 
of this spontaneous brain activity is unknown, a dominant 
hypothesis is that it serves to maintain stable patterns of con-
nectivity that encode Bayesian priors, shaped by previous 
experiences, about the type of information that the brain is 
likely to encounter in the future (Pezzulo et al., 2021).

Note that, although the distinction between episodic and 
semantic memory is critical in the neurosciences, it is not mir-
rored in ACT-R, which currently does not distinguish between 
the two. Because of this, different researchers have used ACT 
R’s mechanisms and representations for either purely semantic 
memories (e.g., the multiplication tables in arithmetic: Rosen-
berg-Lee et al., 2009) or purely episodic memories (e.g., intru-
sive memories of traumatic events; Smith et al., 2021), as well 
as complex mixtures of knowledge (e.g., syntactic and semantic 
information in the mental lexicon; Lewis & Vasishth, 2005). 
Suggested mechanisms to formalize this distinction into ACT-R 
are reviewed in the “Episodic and Semantic Memory” section.

Forgetting

Forgetting is the name given to a variety of processes that 
counter the effects of consolidation and weaken memories 
over time. Like memory itself, forgetting is a complex pro-
cess that involves a variety of mechanisms at different levels 
(Davis & Zhong, 2017). At the molecular level, forgetting 
has been found to be associated with at least one specific 
protein RAC1, the expression of which at the synaptic level 
induces memory forgetting in animal models (Shuai et al., 
2010). Because the expression of RAC1 is triggered by 
learning itself, it has been speculated that it is selectively 
involved in weakening existing engrams to facilitate the 
encoding of new ones (Davis & Zhong, 2017).

If the loss of synapses (as that induced by RAC1) dam-
ages a memory’s engram, so does the loss of pre- and post-
synaptic cells. Thus, unsurprisingly, forgetting might also 
happen at the cellular level because of neuronal death (tech-
nically known as apoptosis). This is perhaps most dramati-
cally apparent in neuropathologies such as Alzheimer’s dis-
ease and other dementias that affect the temporal lobe, and 
in which the loss of temporal gray matter parallels the depth 
and severity of amnesia.

Loss of cells and synapses can be seen as specific exam-
ples of the general process of biological decay. Other mani-
festations of biological decay processes include, at the 
molecular level, the loss of protein kinase C isoform M-zeta 
(PKMζ), which is necessary to support existing synapses and 
long-term potentiation. To a certain extent, decay of existing 
engrams is a necessary part of the process of systems consoli-
dation, since the “transfer” of memories from the hippocam-
pus to the neocortex necessarily implies that hippocampal 
representations can be erased (Hardt et al., 2013).

Finally, and at a different end of the spectrum, forget-
ting could be viewed not as the result of a weakening of 
a memory’s engram, but as the result of interference due 
to the accumulation of memories since the first trace was 
encoded (Anderson & Neely, 1996). According to this view, 
engrams are not lost, but they become progressively inac-
cessible, and forgetting is the manifestation of a retrieval 
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problem. Dramatic evidence in this sense comes from stud-
ies that have shown that chemical or electrical stimulation of 
the brain often results in vivid flashbacks of long-forgotten 
memories (Penfield & Perot, 1963), although the reliabil-
ity of such accounts has been called into question (Loftus 
& Loftus, 1980), and from rare reports of sudden retrieval 
of long-lost memories in amnesic patients (Lucchelli et al., 
1995).

Retrieval

In most cases, forgetting can only be inferred as the comple-
ment to the process of successfully retrieving memories. In 
the case of declarative memory, retrieval is accompanied by 
the conscious re-experience of the event and, at the neural 
level, by the re-activation of the original patterns of sensory 
information in the cortex (Danker & Anderson, 2010).

The retrieval of declarative information can happen spon-
taneously, with minimal attention and effort. However, under 
many circumstances and especially in laboratory conditions, 
the retrieval of memories is a controlled and effortful pro-
cess. A specific portion of the ventrolateral prefrontal cortex is 
associated with controlled memory retrievals (Badre & Wag-
ner, 2007). In neuroimaging studies, experiments that manipu-
late the difficulty of retrieval also produce a corresponding 
increase in the metabolic activity of the VLPFC. The diffi-
culty of retrieval can be manipulated either by increasing the 
competition between possible retrieval targets (Thompson-
Schill et al., 1997), by decreasing the frequency of the target 
items (Danker et al., 2008) or by increasing the fan between 
the retrieval cue and the target memory (Danker et al., 2008).

Interestingly, lesions in this region are also associated 
with confabulation, a neuropsychological disorder character-
ized by incoherent memories. Patients who confabulate tend 
to provide fictional and often imaginative answers to autobi-
ographical questions, and are apparently unable to realize the 
erroneous nature of their recollections. Studies have shown 
that confabulation is associated with specific deficits in the 
strategic control of retrieval. Specifically, confabulations are 
associated with specific failures in monitoring the content of 
retrievals, and are thus associated with greater false alarms 
in memory judgements as well as inflated confidence in their 
own accuracy (Gilboa et al., 2006).

Neurobiological Mapping of the ACT‑R 
Declarative Memory Model

ACT-R’s declarative memory system exists within the larger 
ecosystem of the ACT-R architecture (Anderson et  al., 
2004), a comprehensive formal theory of cognition whose 
development has also been guided by neuroscientific findings 

(Anderson, 2007; Anderson et al., 2008). Therefore, before 
outlining the mapping between the different facets of ACT-
R’s declarative memory and the neurobiological circuits that 
support long-term memory, it is useful to first summarize the 
work that has already been done to map individual modules 
of the ACT-R architecture onto brain circuits.

Existing Mapping of the ACT‑R Architecture to Brain 
Regions

The ACT-R architecture contains several modules, that is, 
specialized components that carry our specific, fundamental 
cognitive functions. The declarative memory system is one 
such module; others include a procedural module for long-
term procedural memory, an imaginal module to manipulate 
internal representations, a goal module to hold internal rep-
resentation that solve potential conflict between responses, 
and a variety of modality-specific perceptual and motor 
modules. Each module contains one or more buffers, i.e., 
locations where feature-based representations are placed in 
order to be operated upon. Each buffer can hold only one 
representation (that is, only one collection of features or one 
“memory”); the operations that occur on that representation 
are module-dependent. Figure 4 illustrates the putative loca-
tion of the regions corresponding to ACT-R’s main buffers.

Buffers are important to ACT-R’s memory system because 
representations enter (or re-enter) long-term memory only 
through a buffer. For example, upon seeing a canary, the con-
tents of visual perception first enter the system in the form of 
the feature-based representations [(Name: Canary) (Type: Bird) 
(Color: Yellow)]. It is only after this representation is no longer 
used by the visual buffer (for example, because a new object 
enters the visual field, or because attention shifts to a different 
modality) that it is added to long-term memory. If no previous 
memory existed with these features, a new memory is created. 
If an identical memory already existed, a new trace is added to 
the existing memory, thus increasing its activation (per Eq. (3)).

Fig. 4   Locations of the ACT-R’s buffers on the outline of the MNI 
template brain
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Buffers are the only structures of ACT-R that have been 
spatially connected to specific portions of the cortex. Memo-
ries and their features do not have a natural interpretation 
in terms of different populations of neurons, but buffers do. 
The interpretation of buffers as localized cortical areas was 
also assumed in the Conditional Routing model (Stocco 
et al., 2010), a large-scale neural-network implementation 
of the basal ganglia system that was shown to be compatible 
with ACT-R’s procedural module.

All of the existing buffers in ACT-R are associated with 
neocortical regions in the parietal (imaginal buffer), tempo-
ral (visual buffer, auditory buffer), and frontal lobe (retrieval 
buffer, manual buffer, goal buffer). These buffers cover only 
a small portion of the cortex; other cortical regions could 
be interpreted as belonging to the modules (rather than the 
buffers), or to other components that are either hypothesized 
or not included in the architecture (as the Emotional Mod-
ule; Juvina et al., 2018) or as providing specialized com-
munication pathways between two other areas (a form of 
procedural knowledge not dependent on the basal ganglia; 
Rice & Stocco, 2019).

Although their functional roles are different and dictated 
by the specific computations of their modules, all buffers 
share the common characteristic of temporarily holding 
memories. In the most general terms, a buffer thus contains 
a collection of features, which are specific to the functions of 
the underlying module. Thus, buffers in sensory and percep-
tual modules will typically contain sensory and perceptual 
features (that is, memories of sensory and perceptual events), 
and motor modules will contain motor features (that is, mem-
ories of motor commands). Thus, the distributed nature of 
semantic information (Huth et al., 2012; Mitchell et al., 2008) 
is reflected in the spatial distribution of ACT-R buffers.

Of the existing buffers, the retrieval buffer is the only 
buffer associated with declarative long-term memory and 
also the only aspect of declarative memory that has a local-
ized, agreed-upon component in the lateral PFC (Anderson, 
2007). The goal of this paper is to provide a finer-resolution 
mapping of the individual components of ACT-R’s declara-
tive memory module. Figure 5 provides an overview of this 
mapping, while the following sections will further clarify 
its rationale.

Memory Encoding, Feature Binding, 
and the Hippocampus

In the brain, memories are created when incoming informa-
tion from cortical regions excites cells in the hippocampus, 
in turn triggering associative learning between the active 
hippocampal cells. This mechanism is reflected in ACT-R, 
whose only way to add memories to the long-term memory 
store is through the contents of buffers, which are them-
selves associated with cortical regions (see Fig. 5). In fact, a 

Hopfield-like model of the hippocampus was incorporated in 
an neural network implementation of ACT-R to store declar-
ative memories from incoming cortical patterns (Lebiere & 
Anderson, 1993).

It has been already noted that the ACT-R’s concept of 
memory implies multiple forms of binding, not only between 
each feature and its value but also between different fea-
tures. This binding is the characteristic of autoassociators 
and, indeed, their main function. Similarly associated with 
the hippocampus is the way in which ACT-R maintains the 
count of multiple traces.

As noted in the “Memory Representation” section, in ACT-
R, the internal structure of a memory (that is, the number and 
types of its features) does not affect its basal-level activation 
B(m) and its temporal decay d. In other words, all memories 
take up the same biological resources. In reality, however, the 
internal representation of a memory plays an important role 
in shaping its future life. For example, items encoded in the 
same list are often recalled out of place (Lee & Estes, 1977), 
and target words in a list are if similar-sounding words are 
read aloud before testing (Oberauer & Lange, 2008). This fact 
suggests that similar features tend to overwrite each other dur-
ing encoding, a process that has been likened to the interfer-
ence that occurs when training neural networks (McCloskey & 
Cohen, 1989). Furthermore, low-frequency words tend to be 
remembered less than high-frequency words (Diana & Reder, 
2006), suggesting that experience affects the encoding process, 
Similarly, Alvarez and Cavanagh (2004) showed that items 
made of either very complex features (i.e., Japanese characters) 
or containing overlapping features (e.g., identical cubes with 
different shadings) take up more cognitive resources than sim-
pler items (e.g., color patches). Specifically, items with more 
complex or overlapping features took longer to find in a visual 
search task and fewer of them can be held in visual work-
ing memory, implying greater representational or processing 
demands.

Note, although ACT-R has no agreed-upon mechanisms 
to capture interference during encoding, it does allow for 
modeling interference at the time of retrieval through the 
mechanisms of partial matching (see “Retrieval Control, 
Similarity, and Partial Matching”) and blending (see “Blend-
ing”). In both cases, a memory becomes less likely to be 
retrieved because of the competition of similar memories.

Base‑Level Activation and Forgetting

In a model autoassociator like a Hopfield network, identical 
states that are memorized result in a linear increase of the 
strength of the corresponding synapses (Hopfield, 1982; E. 
Rolls & Treves, 1997), thus increasing the likelihood of their 
retrieval. This is because, when using the Hebbian learning 
rule, each time the same pair of neurons is active, the weight 
of the synapse between them grows by a fixed amount. This 
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behavior is consistent with ACT-R’s mechanism of consid-
ering identical copies of a memory as identical traces, and 
summing the contribution of each trace.

However, unlike traditional associators, ACT-R includes 
a trace-specific decay parameter d(i) to the base-level term 
B(m), which in turns depends on the rate of forgetting term 
α in Eq. (5).

The trace-specific decay parameter captures the observed 
regularity in testing data known as the power law of practice 
and forgetting (Anderson & Schooler, 1991; Newell & Rosen-
bloom, 1981): namely, memory performance worsens as a 
power function of the time elapsed. This regularity was first 
observed by Ebbinghaus himself (Ebbinghaus, 1885/2013), in 
the very first experimental study of long-term memory. Decay 
parameters have been included in multiple memory models; 
notably, one such parameter explicitly included in Alvarez and 
Squire (1994)’s foundational neural model of the hippocampus 
and and in Loftus’ (1978) seminal re-analysis of recall accu-
racy data. An open debate, which has gone on for decades, 
is whether the power law of forgetting reflects some form of 
biological decay or is simply the reflection of interference 
due to the accumulation and prioritization of traces (Farrell 
et al., 2016; Hardt et al., 2013; Ricker et al., 2020). Depend-
ing on the particular task, evidence has been found for both 
theories, with neither theory definitively explaining all extant 

data. Trace decay can result in simple autoassociators due the 
fact that other memories sharing the same synapse might take 
over the retrieval process, and this has been found in spiking 
models of neural populations, which mimic both temporal and 
interference-based trace decay based on a tradeoff in memory 
precision (Bays, 2014; Oberauer et al., 2016).

The α Parameter and Forgetting

In general, it is possible to see the rate of forgetting α as 
a computational term that encompasses multiple biologi-
cal processes involved in forgetting (Davis & Zhong, 2017). 
These processes include molecular mechanisms, cell death, 
decay, and interference. These mechanisms do not include, 
however, some of the “active” mechanisms of forgetting, 
such as retrieval-directed forgetting and motivated forget-
ting. To the best of our knowledge, these phenomena are 
outside the scope of the ACT-R theory of memory.

This biological interpretation of α entails that individual 
differences in the rate of forgetting would also be reflected in 
individual differences in neural activity. Experimental evidence 
for this prediction comes from a recent study by Zhou and col-
leagues (Zhou et al., 2021). Using an adaptive fact learning para-
digm developed by van Rijn and colleagues (Sense et al., 2016), 
the authors measured the specific value of the α parameter for 

Fig. 5   Overview of the mapping between brain architecture and the 
ACT-R model of long-term memory. During encoding (red arrow), 
individual features f1, f2, … , fN from different cortical regions (grey) 
are bound together into a new memory in the hippocampus (yel-
low). During retrieval (blue arrow), the joined forces of constraints 
held in the lateral PFC (blue), similarity across memories (purple) 

and spreading activation from contextual cues q1, q2, …, qN , and 
the degree of activation of competing memories (yellow) lead to the 
selection of a recalled memory. The retrieval of information allows 
the remembered features, potentially blended with attributes from the 
competing memories, to be transferred back to the corresponding cor-
tical regions (light blue)
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fifty healthy participants, and correlated individual differences 
in this parameter with individual differences in the resting state 
EEG power spectrum, which is known to capture stable indi-
vidual differences in neural activity. Consistent with the inter-
pretation of the decay rate as a distributed parameter, the authors 
found that the rate of forgetting α was not singularly localized 
and was reflected in the power value of multiple scalp locations 
and frequency bands, implying that the rate of forgetting was 
related to spontaneous activity of cortical circuits.

Conversely, if the α parameter captures the biological 
mechanisms of forgetting, then it should be abnormally high 
in populations that suffer from abnormal memory processes. 
In fact, a recent paper showed that individuals suffering from 
amnestic cognitive impairments do exhibit significantly 
higher values of α than healthy control when their data is 
modeled using Eqs. (4) and (5); in fact, the value of the 
α parameter alone was sufficient to separate patients from 
controls with > 80% accuracy (Hake et al., 2023).

Spreading Activation and Cortical Projections 
to the Hippocampus

ACT-R’s spreading activation term S(m) reflects the effect 
of distributed representation of the current context Q; in 
ACT-R, the spreading activation component of a memory 
m’s activation is sourced from the contextual features q1, q2, 
…, qN represented by each buffer in the system (Fig. 5). An 
individual buffer is capable of providing a scalar amount 
of activation W, divided across N features in the buffer, so 
that a memory receives a portion of this activation for each 
feature it shares with the buffer’s representation. The alloca-
tion of attention W contributes to the strength of contextual 
retrievals. In this manner, ACT-R allows for context to have 
an effect on memory activation, and subsequently likelihood 
of retrieval.

The conceptualization of buffers as localized cortical 
areas carries the implication that a buffer, in neurobio-
logical terms, consists of a limited population of neurons. 
Representation of multiple features within a limited pool 
is supported by the formation of representational ensem-
bles, through co-activation of subsets of neurons within 
the population (Miller et al., 2014). Individual neurons can 
participate in multiple ensembles, and top-down influences 
such as attention result in greater recruitment of neurons into 
representational ensembles (Murray & Wojciulik, 2004; Xin 
et al., 2019). The set of neurons contributing to a representa-
tional ensemble defines the amount of spreading activation 
W that is able to be supplied by that representation; however, 
as the number N of features represented by the population 
increases, the fidelity of representation of any given feature 
is degraded (Bays, 2014). This degradation corresponds to a 
reduction in the activation that can be spread from the corti-
cal population to hippocampal networks sensitive to a given 

feature, as less cortical activity is dedicated to representation 
of this feature.

While the amount of “source” activation W that is avail-
able to be spread is dependent on the extent of cortical 
representation, connectivity between these cortical popu-
lations and downstream hippocampal regions can filter 
how much of this activation is spread to a given memory. 
In ACT-R, the amount of spreading activation that a mem-
ory m receives from a given feature q is modulated by the 
strength of association between q and m; as stated previ-
ously, this associative strength Sq→m reflects the statistics 
of co-occurrence between the feature and the memory. Per 
the Hebbian learning rule, this perspective is identifiable 
with the extent of synaptic connectivity between individual 
neurons in neocortical and parahippocampal populations. 
The dual stream model of cortico-hippocampal connectivity 
proposes that “what” representations originating from tem-
poral cortex are routed to the hippocampus through the per-
irhinal cortex and lateral entorhinal cortex, while “where” 
representations formed in the parietal cortex project to the 
parahippocampal gyrus and then medial entorhinal cortex 
before encoding in the hippocampus itself (Burwell, 2000). 
Under this schema, projections from the hippocampus back 
to the entorhinal cortex implement memory retrieval into 
the neocortex (Rolls, 2018). However, recent evidence dem-
onstrates direct cortico-hippocampal connections, including 
connectivity between hippocampus and temporal, parietal 
and early visual cortices (Huang et al., 2021); it has been 
proposed that these direct connections could aid in recollec-
tion of information from the hippocampus via backprojec-
tion to superficial layers of neocortical areas (Huang et al., 
2021; Rolls, 2021).

Due to the complexity of connections between neocorti-
cal areas and the hippocampal system, ACT-R is ambivalent 
as to the exact synaptic sites that are modeled by Sq→m. Cor-
tical populations involved in representation of commonly-
encountered features that are prevalent in memory would 
be expected to have stronger synaptic connections with 
hippocampal circuits which encode memory of the same 
features, compared to less common stimulus features. How-
ever, as these common features are overlearned, the extent 
of the cortical ensemble necessary for representation may be 
reduced (Dudai et al., 2015); while this would result in less 
source activation W, greater associative strength Sq→m with 
hippocampal populations would counterbalance this effect.

Ventro‑Lateral Prefrontal Cortex, Retrieval Control, 
and Retrieval Cues

As noted above, access to declarative knowledge can be 
spontaneous or controlled, and controlled access to long-
term memories is believed to be mediated by the VLPFC 
(Badre & Wagner, 2007; see Fig. 5). Not coincidentally, in 
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the conventional mapping of ACT-R modules (Anderson 
et al., 2008) to the brain, the VLPFC is put into correspond-
ence with the retrieval buffer. As noted in the “Retrieval 
Control, Similarity, and Partial Matching” section, the 
retrieval buffer functions by holding a specific subset of 
features that aid in the selection of memories to be retrieved.

A plausible interpretation is that, at the biological level, 
the VLPFC supports retrieval by holding temporary rep-
resentations of these features (Danker et al., 2008). In the 
canonical interpretation (Anderson et al., 2008), a corti-
cal region’s BOLD response is proportional to the amount 
of time the corresponding buffer is busy holding a set of 
features. In the case of the retrieval buffer, this provides 
an elegant explanation for the observed responses of the 
VLPFC: its BOLD activity in fMRI studies would be 
driven by any factor that slows down retrieval times, which 
includes competition between responses (Thompson-Schill 
et al., 1997) but also the frequency of the study item (Danker 
et al., 2008). There are at least two possible pathways by 
which retrieval features could be delivered to VLPFC. One 
is through the large series of cortico-cortical connections 
that project to it from other cortical regions, shown in white 
in Fig. 5. The second is through thalamic inputs gated by 
the basal ganglia (Scimeca & Badre, 2012; not shown in 
Fig. 5). The theory does not distinguish between the two, 
although the latter pathway is compatible, within the larger 
architecture, with the necessary role played by procedural 
knowledge in transferring information between buffers.

Within ACT-R, the type of control exerted by retrieval 
cues is different than that achieved through spreading acti-
vation. Specifically, while spreading activation changes 
the landscape of retrievable memories, retrieval cues 
systematically restrict the set of potentially retrievable 
memories, thus reducing competition. This difference in 
computation is mirrored, to an extent, in the different role 
played by their putative biological substrates. For example, 
while the pathways that connect the neocortex to the hip-
pocampus facilitate the retrieval of contextually relevant 
memories (as outlined in the “Spreading Activation and 
Cortical Projections to the Hippocampus” section), the 
VLPFC seems to be involved in reducing the competi-
tion between possible retrieved options (Badre & Wagner, 
2007; Thompson-Schill et al., 1997). This hypothetical 
function of the VLPFC as a mechanism to restrict the pos-
sible memories competing for retrieval is also consistent 
with the role of VLPFC in confabulation (Johnson & Raye, 
1998). Confabulating patients often make up stories. This 
could be explained by the lack of retrieval cues (which 
would restrict the possible set to relevant personal informa-
tion) combined with the presence of contextual activation. 
One prediction of this hypothesis is that false memories 
and confabulations should be induced by any damage that 
selectively impairs the use of features as retrieval cues. 

This seems to be the case. For example, while lesions to 
the ventral prefrontal cortex do induce confabulations, so 
do lesions along the pathways that connect this region to 
the hippocampus (including thalamic regions). Another 
mechanism that can make retrieval cues ineffective is the 
loss of the specific features used as cues across memories. 
For example, a retrieval cue of the form (Color: Yellow) 
would have no effect if there are no memories containing 
the feature “Color” or its specific value “Yellow”. Indeed, 
false memories and confabulations increase in individu-
als with significant temporal lobe and hippocampal neu-
rodegeneration, which would be modeled as a reduction 
in the number of memories and in the richness of features 
encoded in each memory (this is consistent, for example, 
with how Rogers and colleagues model semantic dementia: 
Rogers et al., 2004).

As noted in the “Retrieval Control, Similarity, and Partial 
Matching” section, the degree to which features constraints 
are respected during the retrieval process in ACT-R is modu-
lated by partial matching (Eq. (7)). If the VLPFC control of 
retrieval occurs through its connection to the hippocampus, 
then partial matching can be understood as arising from the 
noisy, distributed activity of these projections (see Fig. 5), 
allowing for a greater realism in the retrieval process.

Partial matching adds a continuous (dis)similarity dimen-
sion to memories, which would otherwise be discrete and 
separate entities. This allows for semantic memories to be 
placed within a continuous representational space, as it is, 
indeed, the case of semantic representations in the human 
brain (Huth et al., 2012). Most importantly, it allows for 
memories and their features to be confused and, therefore, 
to cause retrieval errors even when the retrieval cues would 
identify a single memory (see Fig. 5). This type of content-
based mistakes is an interesting property of autoassociative 
networks and content-addressable memories Hopfield (1982) 
that would be otherwise missing in symbolic systems.

Extensions to ACT‑R and Their Relationship 
to the Neurobiology of Memory

In this section, we will review a number of common exten-
sions to ACT-R and their relationship to the neurobiological 
mappings discussed above and illustrated in Fig. 5.

Episodic and Semantic Memory

As noted above, human declarative memory is typically 
divided into episodic and semantic subsystems (Squire, 
2004), but such a distinction is not present in ACT-R. ACT-
R’s declarative memory is generally explained as a seman-
tic memory system, although the architecture is agnostic as 
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to whether the information contained in a chunk’s slots is 
semantic or episodic.

Episodic memory is a person’s spatio-temporal aware-
ness of the events of their own history. As such, it stands to 
reason that episodic memory utilizes similar neural mecha-
nisms to spatial memory. Ekstrom and Bookheimer (2007) 
demonstrated that the hippocampus and parahippocampal 
cortex are preferentially recruited for temporal and spatial-
associative retrievals; both key components of episodic 
memory. Furthermore, Cognitive Map Theory (Burgess 
et al., 2002) argues for a broader function of the hippocam-
pus including lateralization with the left hippocampus 
encoding narrative-like linguistic spatial representations 
and the right hippocampus storing spatial relationships. This 
information is integrated with temporal information from the 
frontal lobes to create an analogous “time-stamp” to certain 
episodic information, which provides the basis for a contex-
tual spatio-temporal episodic memory system.

Functionally, episodic memory provides essential con-
textual information to prime memory retrieval above and 
beyond semantic memory alone. For instance, when the 
episodic context changes between encoding and retrieval, 
subsequent recall is relatively reduced compared to when 
retrievals occur in a similar context (Godden & Baddeley, 
1975). This episodic context can be both internal (e.g., 
physiological or mood related: Eich et al., 1994) or external 
(e.g., environmental: Smith & Vela, 2001). Similar context-
dependence has been found for language-dependence (Mar-
ian & Neisser, 2000) and motivation-dependence (Delgado 
et al., 2004) as well.

Some of the present authors’ prior research has shown 
that without a computational implementation of episodic 
memory in ACT-R, it was challenging for a model to recall 
sequences of semantic information in a plausible manner 
(Thomson et al., 2014). By introducing a richer temporal 
context from buffer decay, the authors have been able to 
unify models of free and serial recall (Thomson et al., 2015) 
as well explain the role of interference in memory effects in 
memory consolidation (Thomson et al., 2017). Other exam-
ples integrating temporal contextual information includes a 
model of how batters predict baseball pitch speed (Lebiere 
et al., 2003), and a model of sequence learning (Lebiere & 
Wallach, 2000).

Recollection and Familiarity

The ACT-R theory does not distinguish between familiar-
ity and recollection in making memory judgements; these 
alternative routes are, instead, incorporated in multiple 
alternative models (Diana et al., 2007). Extensive imaging 
evidence suggests that these two alternative mechanisms 
rely on different neural circuits, with recollection relying 
on the hippocampus and prefrontal cortex and familiarity 

relying on regions surrounding the hippocampus (Yonelinas, 
2002). Based on these findings, it seems that the neurobio-
logical interpretation presented herein and summarized in 
Fig. 5 strictly reflects the process of recollection, and does 
not reflect the memory effects of familiarity. An extension 
of the ACT-R theory (the Source of Activation Confusion 
model, proposed by Schunn et al., 1997) allows for familiar-
ity judgment based on the internal perception of the activa-
tion of chunks competing for retrieval. In this case, famili-
arity judgments can be made before or even in absence of 
successful retrievals, based solely on the activation of avail-
able responses.

Memory and Emotion

Although central to the memory encoding and retrieval 
system, the hippocampus is also part of a network of ana-
tomical regions collectively known as the limbic system 
(Rajmohan & Mohandas, 2007), many of which have a 
prominent role in processing rewards, punishment, and emo-
tion. Among those, the amygdala, a small nucleus located 
in front of the hippocampus, is perhaps the most prominent. 
It plays a fundamental role in processing fear and stress 
(LeDoux, 1998) and, like the hippocampus, it receives wide-
spread cortical projections. The amygdala projects directly 
to the hippocampus, but does not receive projections from 
it. Recordings of spontaneous activity at rest suggest that 
the amygdala is strongly correlated with a number of other 
regions (including the anterior cingulate cortex) collectively 
known as the salience network and believed to be responsi-
ble for detecting behaviorally important stimuli.

Critically, the amygdala plays an oversized role in modu-
lating memory consolidation in the hippocampus, so that 
events that trigger amygdala activation are remembered bet-
ter (McGaugh, 2002; Phelps, 2004). In behavioral experi-
ments in humans, memory for emotional stimuli is typically 
better than for neutral ones, and their superiority is corre-
lated to the degree to which emotional stimuli activate the 
amygdala (Dolcos et al., 2004).

The ACT-R theory of memory does not include specific 
mechanisms to capture these effects. However, several pro-
posals have been made in this direction. Juvina et al. (2018) 
have proposed an emotion module in which several dimen-
sions of emotion (such as valence and arousal) are added as 
separate terms to the ACT R equations. These emotional val-
ues are learned over time using a reinforcement learning-like 
rule, in which emotional values associated with a memory 
are used as predictions and, if the emotional value associated 
with the re-encoding of the same memory is different, the 
difference is used to correct the previous estimates.

Smith et al. (2021) have proposed a similar but simpler 
mechanism. In Smith’s characterization, all dimensions of 
an emotion are reduced to a single value, the memory’s 
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emotional intensity I(m), which is similarly modeled as an 
additive term to the activation equation. Smith et al. (2021) 
justify this additive term on the basis of the same Bayes-
ian analysis that had originally inspired ACT-R (Anderson, 
1990) and is captured in Eq. (1). Specifically, they argued 
that, from an adaptive decision-making perspective, the 
baseline probability of retrieving a memory should be the 
product of its prior probability history and its perceived 
value, so that the base-level activation of a memory becomes 
analogous to its overall utility. The additive term, then, 
comes from the memory activation as an expression of the 
logarithm of the product of these two terms.

Discussion

In this paper, we have provided an overview of how the dif-
ferent subcomponents and processes of the ACT-R theory 
of memory correspond to the known neuroanatomy of mem-
ory circuits. This mapping is based on the experience of 
the authors on various facets of memory. It had never been 
attempted before to this level of detail.

Limitations

We recognize that there is a limit to the consistency of the 
proposed neurobiological mapping. Although ACT-R has 
incorporated neuroscientific findings in the past two decades 
of development, both its origins and a large part of its early 
developments were independent of it. Thus, a number of 
limitations must be acknowledged.

The first is the semantic network structure of the chunk 
representations. At the core, this interconnected represen-
tation is made possible by the existence of pointer-like 
structures within a memory, which makes it possible for a 
memory to directly refer to another one. Nonetheless, this 
recursive pointing system allows the creation of potentially 
infinite nested memories. Although some prominent neural 
architectures (Eliasmith et al., 2012; Rougier et al., 2005) 
have proposed possible mechanisms by which these sym-
bolic references could be achieved, there is currently no 
known brain mechanism that allows for their existence.

Another limitation comes from the nature of cortical buff-
ers. In contrast to the widely held assumption that memories 
are massively distributed representations, in ACT-R, this is 
not a necessary consequence of retrieval: upon retrieval, a 
memory is placed in a dedicated, localized buffer where its 
presence might not affect the contents of any other cortical 
region. A related issue is that, while memories are believed 
to be distributed, a single memory in ACT-R can possibly 
be loaded into a single buffer, therefore assuming a local, 
cortical representation.

A related limitation is that, in the larger ACT-R archi-
tecture, both the delivery of retrieval constraints and the re-
instantiation of memory features in the original cortical areas 
(the “Ghost of brain states past”; Danker et al., 2008) must 
be mediated by procedural knowledge, which is identified 
with the basal ganglia (Anderson et al., 2008). The constraint 
that all forms of voluntary retrieval control and memory re-
instantiation must be mediated by the basal ganglia is per-
haps one of ACT-R’s most radical departures from the known 
neurobiology of memory. One possible way to reconcile the 
two is to relax the bidirectional identification of the architec-
ture’s procedural knowledge with the basal ganglia. In fact, 
at least one previous study has argued, based on the ACT-R 
modeling of a neurostimulation experiment, that procedural 
knowledge incorporates the functional properties of certain 
cortico-cortical pathways (Rice & Stocco, 2019).

Predictions

These limitations notwithstanding, both the framework outlined 
here and the ACT-R theory are specific enough to allow for a 
number of hitherto untested predictions. In fact, it is somewhat 
surprising that these predictions have not been tested before.

The first prediction concerns the nature of chunk repre-
sentation. As noted above, chunks can be thought of as vec-
tor representations. If so, chunks that share similar values 
should have more similar representations than chunks that 
share different values. That means, it should be possible for 
a researcher to use multi-voxel pattern analysis (MVPA; 
Haxby et al., 2001; Mitchell et al., 2008) to decode spe-
cific representations from the dedicated regions that are 
associated with ACT-R buffers (Fig. 4). An MVPA classi-
fier could be trained on a subset of representations, and its 
performance should degrade in proportion to the predicted 
number of slots that are shared between the training and the 
testing items. Alternatively, representational similarity anal-
ysis (RSA; Kriegeskorte et al., 2008) could be used to com-
pare the representation between that region’s voxels in two 
conditions predicted to be associated with different chunks: 
the degree of similarity between the two representations 
should vary as a function of different features. Finally, RSA 
between two regions could be used to provide a ground truth 
for ACT-R parameters that explicitly describe the similarity 
metrics between chunks, such as the mismatch penalty MP 
or the dissimilarity metric δ in Eq. (7). Two specific buffers 
seem particularly well qualified for this experiment: one is 
the “retrieval” buffer and the other one is the “imaginal” 
problem-state buffer (Borst et al., 2010).

As Fig. 5 shows, some of the computations of the ACT-R 
theory are tentatively mapped onto the pathways that con-
nect cortical regions to other cortical and subcortical areas. 
This allows for testing potential causal interventions. For 
example, applying Transcranial Magnetic Stimulation 
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(TMS) of cortical regions should have different effects dur-
ing retrieval of information. Specifically, TMS of the pari-
etal regions should disrupt spreading activation, making 
the retrieval of contextually-relevant information harder. 
TMS of the lateral prefrontal region (the retrieval buffer) 
should systematically affect the constraints of the retrieval. 
To the best of our knowledge, only one study so far (Rice & 
Stocco, 2019) has ever used TMS to investigate the nature of 
memory representations in ACT-R and, although that study 
focused on procedural rather than declarative knowledge, its 
encouraging results show that the approach is viable.

The role of cortical and subcortical connectivity may also 
be examined using functional connectivity of neuroimag-
ing data. In this type of analysis, correlations between the 
time series of the BOLD signals in two different regions are 
taken as a measure of the degree of information that is being 
exchanged between the two. In ACT-R terms, the degree of 
correlation could be related to either the amount of spreading 
activation or, in the specific case of the lateral prefrontal cor-
tex, the degree of influence affected by the retrieval specifica-
tion and constraints or the mismatch penalty MP in Eq. (7).

Finally, a tantalizing possibility is that stable individual 
differences in behavior (that is, psychometric  traits) can 
be related to individual differences in parameters, as first 
proposed by Gobet and Ritter (2000). Evidence in this 
sense comes from a few studies. For example, Daily et al. 
(2001) found that individual differences in the W parameter 
of Eq. (6) were related to individual differences in working 
memory capacity. Recently, Sense et al. (2016) and Hake 
et al. (2023) found that individual differences in the α param-
eter of Eq. (5) are stable across sessions and materials and 
are associated with performance in neuropsychological tests 
of long-term memory function. It is possible, therefore, that 
individual differences in the parameters of ACT-R’s memory 
equations are related to measurable differences in the func-
tion of these circuits. For example, individual differences in 
the W parameter should be related to individual differences 
in the connectivity between parietal cortices and the hip-
pocampus. Connectivity could be measured directly using 
water diffusion tractography techniques or, as it is more 
common, using resting state functional connectivity, i.e., 
the degree of correlation between the spontaneous activity 
of two regions at rest.

Concluding Remarks

It is our hope that this mapping would provide a useful 
bridge between two communities: cognitive neuroscientists 
studying memory and cognitive and computational scientists 
using and developing cognitive models. Because it provides 
a mapping between concepts used within these communi-
ties, we think of this paper as a dictionary that can be used 
in two ways. First, it provides a tool for neuroscientists to 

understand how relevant processes can be formalized and 
approximated in an existing and popular computational 
framework. Second, it provides a way to interpret computa-
tional mechanisms and parameters in a biological way. This 
latter use could be helpful in guiding model development, 
deciding, for instance, whether a particular extension of the 
theory is biologically plausible or warranted, or how changes 
in parameter values could be interpreted.

We should stress that this proposed mapping is specu-
lative and largely driven by the knowledge and research 
experience of the authors; as we have acknowledged above, 
the mapping is certainly limited and approximate in many 
aspects. Nonetheless, the suggested biological interpretation 
of ACT-R’s memory framework is sufficiently precise that 
a number of experimental predictions can be derived, and 
further experimental work could either confirm or refine the 
proposed mappings and biological substrates. In fact, the 
opportunity to provide a roadmap for such future experimen-
tal work constitutes a third, and notable, goal of this paper.
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