
ACT-R Tutorial 7/19/22 Unit One

Unit 1: Introduction to ACT-R

ACT-R is a cognitive architecture. It is a theory of the structure of the brain at a level of
abstraction that explains how it achieves human cognition. That theory is instantiated in the
ACT-R software which allows one to create models which may be used to explain performance
in a task and also to predict performance in other tasks. This tutorial will describe how to use the
ACT-R software for modeling and provide some of the important details about the ACT-R theory.
Detailed information on the ACT-R theory can be found in the paper “An integrated theory of the
mind” and the book “How Can the Human Mind Occur in the Physical Universe?”. More
information on the ACT-R software can be found in the reference manual which is included in
the docs directory of the ACT-R software.

1.1 Knowledge Representations

There are two types of knowledge representation in ACT-R -- declarative knowledge and
procedural knowledge. Declarative knowledge corresponds to things we are aware we know and
can usually describe to others. Examples of declarative knowledge include “George Washington
was the first president of the United States” and “An atom is like the solar system”. Procedural
knowledge is knowledge which we display in our behavior but which we are not conscious of.
For instance, no one can describe the rules by which we speak a language and yet we do. In
ACT-R, declarative knowledge is represented in structures called chunks and procedural
knowledge is represented as rules called productions. Chunks and productions are the basic
building blocks of an ACT-R model.

1.1.1 Chunks in ACT-R

In ACT-R, elements of declarative knowledge are called chunks. Chunks represent knowledge
that a person might be expected to have when they solve a problem. A chunk is a collection of
attributes and values. The attributes of a chunk are called slots. Each slot in a chunk has a single
value. A chunk also has a name which can be used to reference it, but that name is only a
convenience for using the ACT-R software and is not considered to be a part of the chunk itself.
Below are some representations of chunks that encode the facts that the dog chased the cat and
that 4+3=7. The chunks are displayed as a name followed by the slot and value pairs. The name
of the first chunk is action023 and its slots are verb, agent, and object, which have values of
chase, dog, and cat respectively. The second chunk is named fact3+4 and its slots are addend1,
addend2, and sum, with values three, four, and seven.

Action023
 verb chase
 agent dog
 object cat

Fact3+4
 addend1 three
 addend2 four
 sum seven

1

http://act-r.psy.cmu.edu/?post_type=publications&p=13623
http://act-r.psy.cmu.edu/?post_type=publications&p=13623
http://act-r.psy.cmu.edu/software/

ACT-R Tutorial 7/19/22 Unit One

1.1.2 Productions in ACT-R

A production is a statement of a particular contingency that controls behavior. They can be
represented as if-then rules and some examples might be:

IF the goal is to classify a person

 and he is unmarried

THEN classify him as a bachelor

IF the goal is to add two digits d1 and d2 in a column

 and d1 + d2 = d3

THEN create a goal to write d3 in the column

The condition of a production (the IF part) consists of a conjunction of features which must be
true for the production to apply. The action of a production (the THEN part) consists of the
actions the model should perform when the production is selected and used. The above are
informal English specifications of productions. They give an overview of when the productions
apply and what actions they should perform, but do not specify sufficient detail to actually
implement a production in ACT-R.

1.2 The ACT-R Architecture

The ACT-R architecture consists of a set of modules. Each module performs a particular
cognitive function and operates independently of other modules. We will introduce three
modules in this unit and describe their basic operations. Later units will provide more details on
the operations of these modules and also introduce other modules.

The modules communicate through an interface we call a buffer. Each module may have any
number of buffers for communicating with other modules. A buffer relays requests to its module
to perform actions, it responds to queries about the status of the module and the buffer itself, and
it can hold one chunk at a time which is usually placed into the buffer as the result of an action
which was requested. The chunk in a buffer is available for all modules to see and modify, and
the set of chunks in all of the buffers is the information that is immediately available to the
model.

1.2.1 Goal Module

The goal module is the simplest of the modules in ACT-R. It has one buffer named goal which is
used to hold a chunk which contains the current control information the model needs for
performing its current task. The only request to which the module responds is for the creation of

2

ACT-R Tutorial 7/19/22 Unit One

a new goal chunk. It responds to the request by immediately creating a chunk with the
information contained in the request and placing it into the goal buffer.

1.2.2 Declarative Module

The declarative module stores all of the chunks which represent the declarative knowledge the
model has which is often referred to as the model’s declarative memory. It has one buffer named
retrieval. The declarative module responds to requests by searching through declarative
memory to find the chunk which best matches the information specified in the request and then
placing that chunk into the retrieval buffer. In later units we will cover that process in more
detail to describe how it determines the best match and how long the process takes. For the
models in this unit, there will never be more than one chunk which matches the request and the
time cost will be fixed in the models at 50 milliseconds per request.

The declarative memory in a model consists of the chunks which are placed there initially by the
modeler when defining the model and the knowledge which it learns as it runs. The learned
knowledge is collected from the buffers of all of the modules. The declarative module monitors
all of the buffers, and whenever a chunk is cleared from one of them the declarative module
stores that chunk for possible later use.

1.2.3 Procedural Module

The procedural module holds all of the productions which represent the model’s procedural
knowledge. It does not have a buffer of its own1, and unlike other modules the procedural
module does not take requests for actions. Instead, it is constantly monitoring the activity of all
the buffers looking for patterns which satisfy the condition of some production. When it finds a
production which has its condition met then it will execute the actions of that production, which
we refer to as “firing” the production. Only one production can fire at a time and it takes 50
milliseconds from the time the production was matched to the current state until the actions
happen. In later units we will look at what happens if more than one production matches at the
same time, but for this unit all of the productions in the models will have their conditions
specified so that at most one will match at any point in time.

1.2.4 Overview

These three modules are used in almost every model which is written in ACT-R, and early
versions of ACT-R consisted entirely of just these three components. Here is a diagram showing
how they fit together in the architecture with the rectangles representing the modules and the
ovals representing the buffers:

1Technically, there is a buffer associated with the module in the software which is useful for tracking the activities of
the module, but that is only there as a convenience for the user and not a component of the ACT-R architecture itself.

3

ACT-R Tutorial 7/19/22 Unit One

The blue arrows show which modules read the information from another module’s buffer, and
the red arrows show which modules make requests to another module’s buffer or directly modify
the chunk it contains. As we introduce new modules and buffers in the tutorial, each of the
buffers will have the same interface as shown for the goal buffer – both the procedural and
declarative modules will read the buffer information and the procedural module will modify and
make requests to the buffer.

1.3 ACT-R Software and Models

Now that we have described the basic components in ACT-R, we will step back and describe the
ACT-R software and how one creates and runs a model using it. This tutorial is written for
version 7.26 (or newer) of the ACT-R software. Current versions of the ACT-R software are
distributed primarily as applications and the tutorial instructions will assume that the user is
running one of those applications, but like the previous versions, the source code is available for
those that prefer to run from sources. The main ACT-R software is implemented in the ANSI
Common Lisp programming language, but it is not necessary to know how to program in Lisp to
be able to use ACT-R because it is essentially its own language which will be described in the
tutorial. In prior versions of the software it was necessary to interact with ACT-R through Lisp
code, and one had to write Lisp code to build experiments or other tasks for the model to
perform. However, starting with version 7.6, ACT-R provides a remote interface that can be used
to interact with ACT-R from essentially any programming language, and the tutorial materials
include a Python module (in the Python use of the term module not the ACT-R use as a cognitive
component of the architecture) which provides functions for accessing ACT-R through that
remote interface2. Using that Python module, all of the tasks for the models in the tutorial are

2 The Python module included with the tutorial is sufficient for running the tasks included with the tutorial. It does
not contain functions for accessing all of the commands available through the ACT-R remote interface, and it has
some assumptions about how it will be used based on the needs of the tutorial. For more complex tasks or where
performance is of primary importance, one might be better served by creating a custom interface instead of using the
one that was built for the tutorial.

4

ACT-R Tutorial 7/19/22 Unit One

implemented in Python as well as in Lisp, and either version can be used with the models of the
tutorial (the models do not depend upon which version of the task is being used). There are also
examples of connecting other programming languages included with the ACT-R software, but
only Lisp and Python will be used directly in the tutorial.

1.3.1 Starting ACT-R

To run the ACT-R software you need to run the startup script named run-act-r that is included
with the standalone version for your operating system (versions are available for Linux, macOS,
and Windows). That will open two windows for the ACT-R software. The one titled “ACT-R” is
an interactive Lisp session which contains the main ACT-R system and can be used to interact
with ACT-R directly. The other window, titled “Control Panel”, contains a set of GUI tools
called the ACT-R Environment3. The ACT-R Environment is an optional set of tools for
interacting with the ACT-R system and the use of some of those tools will be described during
the tutorial. Additional information on running the software can be found in the readme.txt file
and there are short videos on the ACT-R software site showing the typical OS protection
warnings one may need to respond to the first time it is run. More information on the
Environment tools can be found in the Environment’s manual included in the docs directory of
the software. You may close the ACT-R Environment window if you do not wish to use those
tools (note however that the Environment tools are necessary to perform the tutored model
running exercises described in this unit and it should not be closed now). Closing the ACT-R
window will exit the software.

For this unit there are no tasks for the models to interact with, and all of the interaction with the
software can be done through the ACT-R Environment. For that reason, we will not describe
how to use the Python module yet since there is no need for it, but it will be described in the next
unit which includes interactive tasks for the models to perform.

1.3.2 Interacting with Lisp

Although it is not necessary to use the Lisp interface for ACT-R, it can be convenient and some
familiarity with Lisp syntax can be helpful since the syntax for creating ACT-R models is based
on Lisp syntax. Lisp is an interactive language and provides a prompt at which the user can
issue commands and evaluate code. The prompt in the ACT-R software window is the “?”
character. To evaluate (also sometimes referred to as “calling”) a command in Lisp at the prompt
requires placing it between parentheses along with any parameters which it requires separated by
whitespace and then hitting enter or return. As an example, to evaluate the command to add the
numbers 3 and 4 requires calling the command named “+” with those parameters. That means
one would type this at the prompt:

(+ 3 4)

and then hit the enter or return key. The system will then print the result of evaluating that
command and display a new prompt:

3The ACT-R Environment is written in the Tcl/Tk language and connects through the same remote interface as the
Python module.

5

http://act-r.psy.cmu.edu/software/

ACT-R Tutorial 7/19/22 Unit One

? (+ 3 4)
7
?

One minor issue to note is that sometimes the output from the ACT-R system will overwrite the
prompt character and it will not be visible in the ACT-R window. When that happens you can
still evaluate commands by entering them at the bottom of the window and pressing enter or
return.

1.3.3 ACT-R models

An ACT-R model is a simulated cognitive agent. A model is typically written in a text file that
contains the ACT-R commands that specify how the model works, and that model file can be
opened and edited in any application that can operate on text files. Because the ACT-R model
syntax is based on Lisp syntax using an editor which provides additional support for Lisp
formatting, like matching parentheses and automatic indenting, can be useful but is not
necessary. There is a very simple text editor included with the ACT-R Environment which will
do parenthesis matching, but beyond that it is a very limited text editor.

As we progress through the tutorial we will describe the ACT-R commands which one can use to
create models. Later in this unit we will introduce the commands for initializing a model and
creating the knowledge structures described above (chunks and productions).

1.3.4 Loading a model

To use an ACT-R model file it must be “loaded” into ACT-R. There are many ways to do so, but
for this unit we will simply use the button in the ACT-R Environment labeled “Load ACT-R
code”. In the next unit we will show how to load a model using an ACT-R command that can be
called from the Lisp prompt or from an external connection, like the Python module. When the
model file is loaded, the commands it contains are evaluated in order from the top down.

1.3.5 Running a model

Once a model has been loaded, you can run it. Models that do not interact with a task can
typically be run by just calling the ACT-R run command. The run command requires one
parameter, which is the maximum length of simulated time to run the model measured in
seconds. Again, for this unit we will be using the tool in the ACT-R Environment instead of
using the command itself. That tool is the “Run” button in the Environment and the text entry
box to its right is where the time to run the model can be entered. The default time in that box is
10.0 which means pressing the “Run” button will run the model for up to 10 simulated seconds.

In later units, where the models will be interacting with various tasks, just pressing the “Run”
button or calling the run command may not be sufficient because one might also have to run the
task itself. When that is the case the tutorial will describe what is necessary to run the model and
the task, and there is an additional text included with each unit which provides additional
information about how the tasks are implemented and the ACT-R commands involved (those are
the texts with a name that ends with “_code”).

6

ACT-R Tutorial 7/19/22 Unit One

1.4 Creating an ACT-R Model

Creating an ACT-R model requires writing the text file which contains the ACT-R commands to
specify the details of the model and the initial knowledge it contains. Also, in addition to the
model’s details, one often includes commands for controlling the general state of the ACT-R
system itself.

1.4.1 ACT-R control commands

When creating an ACT-R model, there are two ACT-R commands for controlling the system
which will almost always occur in the model file, and we will describe those commands first.

1.4.1.1 clear-all

The clear-all command will usually occur at the top of every model file. This command requires
no parameters and tells ACT-R that it should remove any models which currently exist and return
ACT-R to its initial state. It is not necessary to call clear-all in a model file, but unless one is
planning on running multiple models together it is strongly recommended that it occur as the first
command to make sure that the model starts with the system in a properly initialized state.

1.4.1.2 define-model

The define-model command is how one actually creates an ACT-R model. Within the call to
define-model one specifies a name for the model and then includes all of the calls to ACT-R
commands that will provide the initial conditions and knowledge for that model. When the
model file is loaded, define-model will create the model with the conditions specified, and then
whenever ACT-R is reset that model will be returned to that same initial state.

1.4.2 Chunk-Types

Before describing the commands for creating the model’s initial knowledge with chunks and
productions, we will first describe an additional component of the software which can be useful
when creating a model. There is an optional capability available in the ACT-R software called a
chunk-type. A chunk-type is a way for the modeler to specify categories for the knowledge in
the model by indicating a set of slots which will be used together in the creation and testing of
chunks. A chunk-type consists of a name for the chunk-type and a set of slot names. That
chunk-type name may then be used as a declaration when creating chunks and productions in the
model.

The command for creating a chunk type is called chunk-type. It requires a name for the new
chunk-type to create and then any number of slot names. The general chunk-type specification
looks like this:

(chunk-type type-name slot-name-1 slot-name-2 … slot-name-n)

and here are some examples which could have been used in a model which created the example
chunks shown earlier:

7

ACT-R Tutorial 7/19/22 Unit One

(chunk-type action verb agent object)
(chunk-type addition-fact addend1 addend2 sum)

The first creates a chunk-type named action which includes the slots verb, agent, and object. The
other creates a chunk-type named addition-fact with slots addend1, addend2, and sum.

It is important to note that using a chunk-type declaration does not directly affect the operation of
the model itself – the chunk-type is not a component of the ACT-R architecture. They exist in
the software to help the modeler specify the model components. Creating and using meaningful
chunk-types can make a model easier to read and understand. They also allow the ACT-R
software to verify that the specification of chunks and productions in a model is consistent with
the chunk-types that were created for that model which allows it to provide warnings when
inconsistencies or problems are found relative to the chunk-types which are specified.

Although chunk-types are not required when writing an ACT-R model, most of the models in the
tutorial will be written with chunk-type declarations included, and using chunk-types is strongly
recommended.

1.4.3 Creating Chunks

The command to create a set of chunks and place those chunks into the model’s declarative
memory is called add-dm. It takes any number of chunk specifications as its arguments. As an
example, we will show the chunks from the count model included with the tutorial that will be
described in greater detail later in this unit. First, here are the chunk-type specifications used in
that model:
(chunk-type number number next)
(chunk-type count-from start end count)

and here is the specification of the initial chunks which are placed into that model’s declarative
memory:

(add-dm
 (one ISA number number one next two)
 (two ISA number number two next three)
 (three ISA number number three next four)
 (four ISA number number four next five)
 (five ISA number number five)
 (first-goal ISA count-from start two end four))

Each chunk for add-dm is specified in a list – a sequence of items enclosed in parentheses. The
first element of the list is the name of the chunk. The name may be anything which is not
already used as the name of a chunk as long as it starts with an alphanumeric character and is a
valid Lisp symbol (essentially a continuous sequence of characters which does not contain any of
the symbols: period, comma, single quote, double quote, back quote, left or right parenthesis,
backslash, or semicolon). In the example above the names are one, two, three, four, five, and
first-goal. The purpose of the name is to provide a way for the modeler to refer to the chunk.

8

ACT-R Tutorial 7/19/22 Unit One

The name is not considered to be a part of the chunk, and it can in fact be omitted, which will
result in the system automatically generating a unique name for the chunk.

The next component of the chunk specification is the optional declaration of a chunk-type to
describe the chunk being created. That consists of the symbol isa followed by the name of a
chunk-type. Note that here we have capitalized the isa symbol to help distinguish it from the
actual slots of the chunk, but that is not necessary and in most cases the symbols and names used
in ACT-R commands are not case sensitive.

The rest of the chunk specification is pairs of a slot name and a value for that slot. The slot-value
pairs can be specified in any order and the order does not matter. When a chunk-type declaration
is provided, it is not necessary to specify a value for every slot indicated in that chunk-type, but
if a slot which is not specified in that chunk-type is provided ACT-R will generate a warning to
indicate the potential problem to the modeler.

1.4.4 Creating Productions

As indicated above, each production is a condition-action rule. Those rules are used by the
procedural module to monitor the buffers of all the other modules to determine when to perform
actions. The condition specifies tests for the contents of the buffers as well as the general state of
the buffers and their modules. The action of a production specifies the set of operations to
perform when the production is fired, and will consist of changes to be made to the chunks in
buffers along with new requests to be sent to the modules.

The command for creating a production in ACT-R is called p, and the general format for creating
a production is:

(p Name "optional documentation string"
 buffer tests
==>
 buffer changes and requests
)

Each production must have a unique name and may also have an optional documentation string
to describe it. That is followed by the condition for the production. The buffer tests in the
condition of the production are patterns to match against the current buffers’ contents and queries
of the buffers for buffer and module state information. The condition of the production is
separated from the action of the production by the three character sequence ==>. The
production’s action consists of any buffer changes and requests which the production will make.

In separate subsections to follow we will describe the syntax involved in specifying the condition
and the action of a production. In doing so we will use an example production that counts from
one number to the next based on a chunk which has been retrieved from the model’s declarative
memory. It is similar to those used in the example models for this unit, but is slightly simpler
than they are for example purposes. Here is the specification of the chunk-types used in the
example production:

9

ACT-R Tutorial 7/19/22 Unit One

(chunk-type number number next)
(chunk-type count state current)

Here is the example production, which is named counting-example:

(P counting-example
 "example production for counting in tutorial unit 1 text"
 =goal>
 ISA count
 state incrementing
 current =num1
 =retrieval>
 number =num1
 next =num2
==>
 =goal>
 ISA count
 current =num2
 +retrieval>
 ISA number
 number =num2
)

It is not necessary to space the production definition out over multiple lines or indent the
components as shown above. It could be written on one line with only a single space between
each symbol and still be a valid production for ACT-R. Because of that, the condition of the
production is also often referred to as the left-hand side (or LHS) and the action as the right-hand
side (or RHS), because of their positions relative to the ==> separator. However, since adding
additional white space characters between the items does not affect the definition of a
production, they are typically written spaced out over several lines to make them easier to read.

The symbols used in the production definition are also not case sensitive. The symbol ISA is
only capitalized for emphasis in the example and it could have been written as isa, Isa, or any
other combination of capital and lowercase letters with the same result.

1.4.4.1 Production Condition: Buffer Pattern Matching

The condition of the counting-example production specifies a pattern to match to the goal buffer
and a pattern to match to the retrieval buffer. A buffer pattern begins with a symbol that starts
with the character “=” and ends with the character “>”. Between those characters is the name of
the buffer to which the pattern is applied. Thus, the symbol =goal> indicates a pattern used to
test the chunk in the goal buffer and the symbol =retrieval> indicates a pattern to test the chunk
in the retrieval buffer. For a production’s condition to match, the first thing that must be true is
that there be a chunk in each of the buffers being tested. Thus, if there is no chunk in either the

10

ACT-R Tutorial 7/19/22 Unit One

goal or retrieval buffer, often referred to as the buffer being empty or cleared, this example
production cannot match.

After indicating which buffer to test, an optional declaration may be made using the symbol isa
and the name of a chunk-type to provide a declaration of the set of slots which are being used in
the test. In the example production, the goal buffer pattern includes a declaration that the slots
being tested are from the count chunk-type, but the retrieval buffer pattern does not declare a
type for the set of slots specified. It is recommended that one create chunk-types and use the isa
declarations when writing productions, but this one has been omitted for demonstration purposes.
The important thing to remember is that the isa declaration is not a part of the pattern to be tested
– it is only a declaration to allow the ACT-R software to verify that the slots used in the pattern
are consistent with the chunk-type indicated.

The remainder of the pattern consists of slot tests for the chunk in the specified buffer. A slot test
consists of an optional modifier (which is not used in any of the tests in this example
production), the name of a slot for the chunk in the buffer, and a specification of the value that
slot of the chunk in the buffer must have. The value may be specific as a constant value, a
variable, or the Lisp symbol nil.

Here is the goal buffer pattern from the example production again for reference:

=goal>
 ISA count
 state incrementing
 current =num1

The first slot test in the pattern is for a slot named state with a constant value of incrementing.
Therefore for this production to match, the chunk in the goal buffer must have a slot named state
which has the value incrementing. The next slot test in the pattern involves the slot named
current and a variable value.

The “=” prefix on a symbol in a production is used to indicate a variable. The name of the
variable can be any symbol, and it is recommended that the variable names be chosen to help
make the production easier for a person reading it to understand. Variables are used in a
production to generalize the condition and action, and they have two basic purposes. In the
condition, variables can be used to compare the values in different slots, for instance that they
have the same value or different values, without needing to know all of the possible values those
slots could have. The other purpose for a variable is to copy a value from a slot specified in the
condition to another slot specified in the action of the production.

There are two properties of variables used in productions which are important. Every slot tested
with a variable in the condition must exist in the chunk in the buffer for the pattern to match.
Also, a variable is only meaningful within a specific production—using the same variable name
in different productions does not create any relation between those productions.

Given that, we could describe this production’s test for the goal buffer like this:

11

ACT-R Tutorial 7/19/22 Unit One

There must be a chunk in the goal buffer. It must have a slot named state with the value
incrementing, and it must have a slot named current whose value we will refer to using the
variable =num1.

Now, we will look at the retrieval buffer’s pattern in detail:

 =retrieval>
 number =num1
 next =num2

The first slot test it has tests the slot named number with the variable =num1. Since the
variable =num1 was also used in the goal buffer test, this is testing that the number slot of the
chunk in the retrieval buffer has the same value as the current slot of the chunk in the goal
buffer. The other slot test for the retrieval buffer is for the slot named next using a variable
named =num2.

Therefore, the test for the retrieval buffer can be described as:

There must be a chunk in the retrieval buffer. It must have a slot named number which has the
same value as the slot named current of the chunk in the goal buffer, and it must have a slot
named next whose value we will refer to using the variable =num2.

This example production did not include all of the possible items which one may need in writing
the condition for a production, but it does cover the basics of the pattern matching applied to
chunks in buffers. We will describe how one queries the buffer and module state later in this
unit, and additional production condition details will be introduced in future units.

1.4.4.2 Production Action

The action of a production consists of a set of operations which affect the buffers. Here is the
RHS from the example production again:

 =goal>
 ISA count
 current =num2
 +retrieval>
 ISA number
 number =num2

The RHS of a production is specified much like the LHS with actions to perform on particular
buffers. An action for a buffer is specified by a symbol which starts with a character that
indicates the action to take, followed by the name of the buffer, and then the character ">". That
is followed by an optional chunk-type declaration using isa and a chunk-type name and then the
specification of slots and values to detail the action to perform. There are five different

12

ACT-R Tutorial 7/19/22 Unit One

operations that can be performed with a buffer. The three most common will be described in this
unit. The other operations will be described later in the tutorial.

1.4.4.2.a Buffer Modifications, the = action

If the buffer name is prefixed with the character "=" then the action is for the production to
immediately modify the chunk currently in that buffer. Each slot specified in a buffer
modification action indicates a change to make to the chunk in the buffer. If the chunk already
has such a slot its value is changed to the one specified. If the chunk does not currently have that
slot then that slot is added to the chunk with the value specified.

Here is the action for the goal buffer from the example production:

 =goal>
 ISA count
 current =num2

It starts with the character "=" therefore this is a modification to the buffer. It will change the
value of the current slot of the chunk in the goal buffer (since we know that it has such a slot
because it was tested in the condition of the production) to the value referred to by the variable
=num2 (which is the value that the next slot of the chunk in the retrieval buffer had in the
condition). This is an instance of a variable being used to copy a value from one slot to another.

An important constraint on the use of the modification action is that a production can only use it
for buffers that were matched to a pattern in the condition of the production – the production
must test that there is a chunk in the buffer before it can modify it.

1.4.4.2.b Buffer Requests, the + action

If the buffer name is prefixed with the character "+", then the action is a request to that buffer’s
module, and we will often refer to such an action as a “buffer request” where buffer is the name
of the buffer indicated e.g. a retrieval request or a goal request. Typically a request results in the
module replacing the chunk in the buffer with a different one, but not all modules handle
requests the same way. As was noted above, the goal module handles requests by creating new
chunks and the declarative module uses the request to find a matching chunk in the model’s
declarative memory to place into the buffer. In later units of the tutorial we will also describe
modules that perform perceptual and motor actions in response to requests.

Here is the retrieval request from the example production:

 +retrieval>
 ISA number
 number =num2

13

ACT-R Tutorial 7/19/22 Unit One

It is asking the declarative module to find a chunk that has a slot named number that has the
same value as =num2. If such a chunk exists in the model’s declarative memory it will be
placed into the retrieval buffer.

1.4.4.2.c Buffer Clearing, the - action

A third type of action that can be performed with a buffer is to explicitly clear the chunk from the
buffer. This is done by placing the "-" character before the buffer name in the action. Thus, this
action on the RHS of a production would clear the chunk from the retrieval buffer:

 -retrieval>

Clearing a buffer occurs immediately and results in the buffer being empty and the declarative
module storing the chunk which was in the buffer in the model’s declarative memory.

1.4.4.2.d Implicit Clearing

In addition to the explicit clearing action one can make, there are situations which will implicitly
clear a buffer. Any buffer request with a “+” action will also cause that buffer to be cleared.
Therefore, the retrieval request from the example production will also result in the retrieval
buffer being automatically cleared at the time the request is made. We will see another situation
where implicit clearing occurs later in the unit.

1.5 The Count Model

The first model we will run is a simple one that counts up from one number to another, for
example it will count up from 2 to 4 – 2,3,4. It is included with the tutorial files for unit 1 in the
file named “count.lisp”. You should now start the ACT-R software if you have not done so
already, and then load the count model by pressing the “Load ACT-R code” button on the ACT-R
Environment Control Panel and selecting the “count.lisp” file.

When you do that, you should see a window open up which says “Successful Load”, with no
other text in the window. You should press the “Ok” button on that window to continue. If there
had been any problems when loading the file then details about those issues would have been
shown in that window.

Now you should run the model by pressing the “Run” button in the ACT-R Environment Control
Panel. That will run the model for up to 10 seconds, since the default time shown next to the
button is 10.0. When you do that, you should see the following output in the ACT-R window:

 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED START
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED START
 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL

14

ACT-R Tutorial 7/19/22 Unit One

 0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK TWO
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TWO
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.100 PROCEDURAL PRODUCTION-SELECTED INCREMENT
 0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
 0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT
TWO
 0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.150 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE start-retrieval
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK THREE
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL THREE
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.200 PROCEDURAL PRODUCTION-SELECTED INCREMENT
 0.200 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.200 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
 0.250 PROCEDURAL PRODUCTION-FIRED INCREMENT
THREE
 0.250 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.250 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 DECLARATIVE start-retrieval
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.300 DECLARATIVE RETRIEVED-CHUNK FOUR
 0.300 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FOUR
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.300 PROCEDURAL PRODUCTION-SELECTED STOP
 0.300 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.300 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL
 0.350 PROCEDURAL PRODUCTION-FIRED STOP
FOUR
 0.350 PROCEDURAL CLEAR-BUFFER GOAL
 0.350 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.350 PROCEDURAL CONFLICT-RESOLUTION
 0.350 ------ Stopped because no events left to process

This output is called the trace of the model. Each line of the trace represents one event that
occurred during the running of the model. Each event shows the time in seconds at which it
happened, the ACT-R mechanism that generated the event (typically the name of a module), and
some details describing the event. Any output generated by the model is also shown in the trace.
The level of detail provided in the trace can be changed to see more or less information as
needed4, and this model is set to show the most information possible. That is more information
than is typically needed, but some of the steps that will help to understand how the system works
are only shown at this level of detail.

You should now open the count model in a text editor (if you have not already) to begin looking
at how the model is specified. Since we will not be editing the file, the simple editor provided by
the ACT-R Environment is sufficient to see the model definition, and you can use that by
pressing the “Open File” button on the Control Panel.

4 How to change the amount of detail shown in the trace is described in the unit 1 code description document (the
“unit1_code” text).

15

ACT-R Tutorial 7/19/22 Unit One

The first two commands used in the model file are clear-all and define-model as described
above, and the rest of the file contains the model definition within the define-model call.

The first item in the model definition is a call to the sgp command which is used to set
parameters for the model. We will not describe that here, but it is covered in the code description
document. The rest of the model definition contains the chunks and productions for performing
this task, and we will look at those in detail.

1.5.1 Chunk-types for the Count model

The model definition has two specifications for chunk-types used by this model:

(chunk-type number number next)
(chunk-type count-from start end count)

The number chunk-type specifies the slots that will be used to encode the ordering of numbers.
It contains a slot named number which indicates the current number and a slot named next which
indicates the next number in order.5 The count-from chunk type specifies the slots that will be
used for the goal buffer chunk of the model, and it has slots to hold the starting number, the
ending number, and the current count.

1.5.2 Declarative Memory for the Count model

After the chunk-types we find the initial chunks placed into the declarative memory of the model
using the add-dm command:

(add-dm
 (one ISA number number one next two)
 (two ISA number number two next three)
 (three ISA number number three next four)
 (four ISA number number four next five)
 (five ISA number number five)
 (first-goal ISA count-from start two end four))

Each of the lists in the add-dm command specifies one chunk. The first five define chunks
named one, two, three, four, and five. Each chunk represents a number, and contains slots
indicating the number it represents and the next number in order. This is the knowledge that
enables the model to count.

The last chunk created, first-goal, encodes the goal of counting from two (in slot start) to four
(in slot end). Note that the chunk-type count-from has another slot called count which is not
used when creating the chunk first-goal. Because the count slot is not included in the definition
of the chunk first-goal that chunk does not have a slot named count.

5 There are many ways which one could represent that information using either a single chunk or spread across
multiple chunks. We have chosen a single chunk representation of numbers for the tutorial to keep things simple,
and we will use that same representation throughout the tutorial (except for the final model used in this unit which
does not represent numbers as chunks and instead just uses digits), extending it when necessary to include more
information.

16

ACT-R Tutorial 7/19/22 Unit One

1.5.3 Setting the Initial Goal

The next thing we see is a call to the command goal-focus with the chunk name first-goal:

(goal-focus first-goal)

The goal-focus command is provided by the goal module to allow the modeler to specify a
chunk to place into the goal buffer when the model starts to run. Therefore, in this model the
chunk named first-goal will be placed into the goal buffer when the model starts to run, and the
results of that command can be seen in the first line of the trace shown above and copied here
with color coding for reference:

 0.000 GOAL SET-BUFFER-CHUNK GOAL FIRST-GOAL NIL

It shows that at time 0.000 the goal module performed the set-buffer-chunk action (the ACT-R
command for placing a chunk into a buffer) for the goal buffer with the chunk named first-goal.
It also indicates that this action was not requested by a production (the “nil” at the end of the
event details).

1.5.4 The Productions

The rest of the model definition is the productions which can use the chunks from declarative
memory to count, and we will look at each of the production specifications in detail along with
the selection and firing of those productions as shown in the trace of the model run above.

1.5.4.1 The Start Production

(p start
 =goal>
 ISA count-from
 start =num1
 count nil
 ==>
 =goal>
 ISA count-from
 count =num1
 +retrieval>
 ISA number
 number =num1
)

The LHS of the start production tests the goal buffer. It tests that there is a value in the start slot
which it now references with the variable =num1. This is often referred to as binding the
variable, as in, =num1 is bound to the value that is in the start slot. It also tests the count slot for
the value nil. The value nil is a special value that can be used when testing and setting slots. Nil
is the Lisp symbol which represents both the boolean false and null (the empty list). Its use in a
slot test is to check that the slot does not exist in the chunk. Thus, that is testing that the chunk in
the goal buffer does not have a slot named count.

17

ACT-R Tutorial 7/19/22 Unit One

The RHS of the start production performs two actions. The first is a modification of the chunk in
the goal buffer. That modification will add the slot named count to the chunk in the goal buffer
(since the condition tested that it does not have such a slot) with the value that is bound to
=num1. The other action is a request of the retrieval buffer. All requests to the declarative
module (the retrieval buffer’s module) perform a search of the chunks in declarative memory to
find one that matches the information provided and then place that chunk into the retrieval
buffer. This request is asking the declarative module to find a chunk that has the value which is
bound to =num1 in its number slot.

Looking at the model trace, we see that the first production that gets selected and fired by the
model is the production start:

 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.000 PROCEDURAL PRODUCTION-SELECTED START
 0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.050 PROCEDURAL PRODUCTION-FIRED START

The first line shows that the procedural module is performing an action called conflict-resolution.
That action is the process which the procedural module uses to select which of the productions
that matches the current state (if any) to fire next. The next line shows that among those that
matched, the start production was selected. The important thing to remember is that the
production was selected because its condition was satisfied. It did not get selected because it
was the first production listed in the model or because it has the name start. The third line shows
that the selected production’s condition tested the chunk in the goal buffer. That last line, which
happens 50 milliseconds later (time 0.050), shows that the start production has now fired and its
actions will take effect. The 50ms time is a parameter of the procedural module, and by default
every production will take 50ms between the time it is selected and when it fires.

The actions of the production are seen as the next two lines of the trace:

 0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.050 PROCEDURAL MODULE-REQUEST RETRIEVAL

Mod-buffer-chunk is the action which modifies a chunk in a buffer, in this case the goal buffer,
and module-request indicates that a request is being sent to a module through the indicated
buffer.

The next line of the trace is also a result of the RHS of the start production:

 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL

That is the implicit clearing of the buffer which happens because of the request that was made.

The next line in the trace is a notification from the declarative module that it has received a
request and has started the chunk retrieval process:

 0.050 DECLARATIVE start-retrieval

18

ACT-R Tutorial 7/19/22 Unit One

That is followed by the procedural system now trying to find a new production to fire:

 0.050 PROCEDURAL CONFLICT-RESOLUTION

However, it is not followed by a notification of a production being selected, because there is no
production whose condition is satisfied at this time.

The following two lines show the successful completion of the retrieval request by the
declarative module after another 50ms have passed and then the setting of the retrieval buffer
with that chunk.

 0.100 DECLARATIVE RETRIEVED-CHUNK TWO
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL TWO

Now we see conflict resolution occurring again and this time the increment production is
selected.

 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.100 PROCEDURAL PRODUCTION-SELECTED INCREMENT

1.5.4.2 The Increment Production

(p increment
 =goal>
 ISA count-from
 count =num1
 - end =num1
 =retrieval>
 ISA number
 number =num1
 next =num2
 ==>
 =goal>
 ISA count-from
 count =num2
 +retrieval>
 ISA number
 number =num2
 !output! (=num1)
)

On the LHS of this production we see that it tests both the goal and retrieval buffers. In the test
of the goal buffer it uses a modifier in the testing of the end slot:

 =goal>
 ISA count-from
 count =num1
 - end =num1

The “-” in front of the slot is the negative test modifier. It means that the following slot test must
not be true for the test to be successful. The test is that the end slot of the chunk in the goal

19

ACT-R Tutorial 7/19/22 Unit One

buffer have the value bound to the =num1 variable (which is the value from the count slot of the
chunk in the buffer). Thus, this test is true if the end slot of the chunk in the goal buffer does not
have the same value as the count slot since they are tested with the same variable =num1. Note
that the negation of the end slot test would also be true if the chunk in the goal buffer did not
have a slot named end because a test for a slot value in a slot which does not exist is false, and
thus the negation of that would be true.

The retrieval buffer test checks that there is a chunk in the retrieval buffer which has a value in
its number slot that matches the current count slot from the goal buffer chunk and binds the
variable =num2 to the value of its next slot:

 =retrieval>
 ISA number
 number =num1
 next =num2

We can see that these two buffers were tested by the production in the next two lines of the trace:

 0.100 PROCEDURAL BUFFER-READ-ACTION GOAL
 0.100 PROCEDURAL BUFFER-READ-ACTION RETRIEVAL

Now we will look at the RHS of this production:

 =goal>
 ISA count-from
 count =num2
 +retrieval>
 ISA number
 number =num2
 !output! (=num1)

The first two actions are very similar to those in the start production. It modifies the chunk in
the goal buffer to change the value of the count slot to the next number, which is the value of the
=num2 variable, and it makes a retrieval request to get the chunk representing that next number.
The third action is a special command that can be used in the actions of a production:

 !output! (=num1)

!output! (pronounced bang-output-bang) can be used on the RHS of a production to display
information in the trace. It may be followed by a single item or a list of items, and the given
item(s) will be printed in the trace when the production fires. In this production it is used to
display the numbers as the model counts. The results of the !output! in the first firing of
increment can be seen in the trace after the production fires:

 0.150 PROCEDURAL PRODUCTION-FIRED INCREMENT
TWO

20

ACT-R Tutorial 7/19/22 Unit One

The output is displayed on one line in the trace after the notice that the production has fired. The
items in the list to output can be variables as is the case here (=num1), constant items like
(stopping), or a combination of the two e.g. (the number is =num). When a variable is included
in the items to output the value to which it was bound in the production will be used in the output
which is displayed. That is why the trace shows TWO instead of =num1.

The next few lines of the trace show the actions initiated by the increment production and they
look very much like the actions that the start production generated. The goal buffer is modified,
a retrieval request is made, a chunk is retrieved, and then that chunk is placed into the retrieval
buffer:

 0.150 PROCEDURAL MOD-BUFFER-CHUNK GOAL
 0.150 PROCEDURAL MODULE-REQUEST RETRIEVAL
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE start-retrieval
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK THREE
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL THREE

We then see that the increment production is selected again:

 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.200 PROCEDURAL PRODUCTION-SELECTED INCREMENT

It will continue to be selected and fired until the value of the count and end slots of the goal
chunk are the same, at which time its test of the goal buffer will fail. We see that it fires twice in
the trace and then a different production is selected at .3 seconds into the run:

 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.300 PROCEDURAL PRODUCTION-SELECTED STOP

1.5.4.3 The Stop Production

(p stop
 =goal>
 ISA count-from
 count =num
 end =num
 =retrieval>
 ISA number
 number =num
 ==>
 -goal>
 !output! (=num)
)

The stop production matches when the values of the count and end slots of the chunk in the goal
buffer are the same and they also match the value in the number slot of the chunk in the

21

ACT-R Tutorial 7/19/22 Unit One

retrieval buffer. The action it takes is to again print out the current number and to also clear the
chunk from the goal buffer:

 0.350 PROCEDURAL PRODUCTION-FIRED STOP
FOUR
 0.350 PROCEDURAL CLEAR-BUFFER GOAL

The final event that happens in the run is conflict-resolution by the procedural module. No
productions are found to match and no other events of any module are pending at this time (for
instance a retrieval request being completed) so there is nothing more for the model to do and it
stops running.

 0.350 PROCEDURAL CONFLICT-RESOLUTION
 0.350 ------ Stopped because no events left to process

1.6 Basic Model Operations Exercise

To help you understand how an ACT-R model runs, this section contains an exercise in which
you will be asked to perform the operations of the procedural and declarative modules. You will
be looking at the contents of the buffers to perform the conflict resolution process (determining
which productions match the current state, if any), assigning the variables in the selected
production to the values they have from the buffer chunks (called instantiating the production),
and determining which chunks in the model’s declarative memory, if any, match the retrieval
buffer requests that the productions makes. This will require using two of the tools in the
Control Panel while running the count model described in the previous section.

1.6.1 Load or reset the model if necessary

If you have not yet loaded the count model then you need to press the “Load ACT-R code”
button on the ACT-R Environment Control Panel and select the “count.lisp” file in the
tutorial/unit1 directory. If you have already loaded the model and run it, then you need to reset it
to its initial conditions so that you can run it again. To reset the model you should press the
“Reset” button on the Control Panel.

1.6.2 The Stepper

Press the “Stepper” button on the Control Panel to open the Stepper tool. When the model is run,
for each event that shows as a line in the trace, the stepper will pause the model to wait for your
confirmation before handling that event. That provides you with the opportunity to inspect all of
the components of the model as it progresses and can be a very useful tool when developing and
debugging models. For some events, the stepper will also show additional information after it
happens. The production-selected and production-fired events will show the text of the
production, the bindings for the variables as they matched that production, and a set of
parameters for that production (which we will describe later in the tutorial). After a retrieval
request completes, the Stepper will show the details of the chunk it retrieved and the
corresponding parameters that lead to that chunk being the one retrieved (more on that in a later
unit).

22

ACT-R Tutorial 7/19/22 Unit One

For this exercise, you should click the “Tutor Mode” checkbox at the top of the Stepper window.
That will enable the additional interactions which you will be asked to perform for the conflict-
resolution, production-selected, and start-retrieval events.

1.6.3 The Buffers tool

Press the “Buffers” button in the Control Panel to bring up a new buffer inspection window.
That will display a list of all the buffers for the existing modules. Selecting one from the list will
display the chunk that is in that buffer in the text window to the right of the list by default. If
you press the “Status” button the display will switch to show the information about queries for
the buffer, and pressing the “Contents” button will switch it back to showing the chunk. At this
point all of the buffers are empty, but that will change as the model runs.

1.6.4 Running with the Stepper

Now you should run the model by pressing the “Run” button in the Control Panel. When you do
that you will notice that unlike before nothing shows up in the ACT-R window. Instead, the first
action that will occur, the setting of the chunk in the goal buffer, now shows at the top of the
Stepper window after “Next Step:”. That is the next action which will occur, but it is delayed
until you press the “Step” button in the Stepper window to allow that action to occur. You should
press it now, and then you will see that line printed out in the model trace. The Stepper now
shows that event as “Last Stepped:” and a new event, conflict-resolution, is shown as the next
step. In the Buffers tool window you can now see that there is a chunk in the goal buffer.

1.6.5 The goal-chunk0 Chunk and Buffer Chunk Copying

The chunk in the goal buffer looks like this:

GOAL: GOAL-CHUNK0 [FIRST-GOAL]
GOAL-CHUNK0
 START TWO
 END FOUR

The goal-focus command in the model made the goal module set the goal buffer to the chunk
named first-goal. The trace indicated that the chunk first-goal was used to set the buffer, but
this output is displaying that a chunk named goal-chunk0 is currently in the goal buffer. Why is
that? When a chunk is placed into a buffer the buffer always makes its own copy of that chunk
which is then placed into the buffer. The name of the chunk that was copied is shown in the
buffer inspection window in square brackets after the name of the chunk actually in the buffer.
The reason for copying the chunk is to prevent the model from being able to alter the original
chunk – it cannot directly manipulate the information that it has learned previously, but it may
use the contents of that knowledge to create new chunks.

1.6.6 Conflict-resolution

You should press the Step button again to allow the conflict-resolution action to occur. When
you do so, the tutoring mode will open another window. In that window the conditions of the
productions in the model are shown, and it is your task to pick which, if any, match the current
state. To determine that you will need to use the Buffers tool to look at the chunks in the buffers

23

ACT-R Tutorial 7/19/22 Unit One

and compare them to the patterns that are specified in the productions. Once you have chosen
the item or items that you think match the current state you should press the “Check” button to
have your choices compared to what the procedural model did during conflict resolution. If all
of your choices were correct the window will close and you can continue stepping through the
run. If any of your choices were incorrect then the conflict resolution window will show those
incorrect choices, and if one of the choices does not match there will be a short description of the
reason that it does not match. You will then need to press the “Ok” button to close the window
and continue.

1.6.7 Production Selection

The next step shown is now production-selected, and you should press the Step button to allow
that to happen. When a production-selected event happens the Stepper shows additional
information about the selected production, which in this case, is the start production. In tutor
mode, the production is shown in the bottom right pane of the Stepper window with all of the
variables highlighted. Your task is to replace all of the variables with the values to which they
are bound in the matching of this production. When you click on a highlighted variable in the
production display of the Stepper a new window will open in which you can enter the value for
that variable. You must enter the value for every variable in the production (including multiple
occurrences of the same variable) before it will allow you to progress to the next event.

You will again need the information from the Buffers tool to be able to instantiate the production.
One thing to remember is that a variable which names the buffer, for example the variable =goal
in the =goal> condition, will always bind to the name of the chunk in the corresponding buffer.
The bindings for the other variables will correspond to the value of the indicated slot of the
tested buffer. A variable will have the same value everywhere in a production that has been
selected6, and the bound values are displayed in the Stepper window as you enter them. Thus
once you find the binding for a variable you can just refer to the Stepper to get the value for other
occurrences of the variable in that production.

At any point in time, you can ask the tutor for help in binding a variable by hitting either the Hint
or Help button of the entry dialog. A hint will instruct you on where to find the correct answer
and help will just give you the correct answer.

Once the production is completely instantiated, you can continue stepping through the model run
with the Step button. You should step the model to start-retrieval event which is the next part of
the tutored exercise.

1.6.8 Declarative retrieval

The start-retrieval event is an indication from the declarative memory module that it has
retrieved a request to find a chunk in memory. If you press the Step button now it will open
another window which is similar to the conflict resolution selection window. In this window you
are shown the retrieval request which the production made and all of the chunks in the model’s
declarative memory. Your task is to select the chunks which match the request that was made.

6 At least for the models used through most of the tutorial, but in unit 8 we will see situations where that may not
always be true.

24

ACT-R Tutorial 7/19/22 Unit One

Once you have made your choices you should press the “Check” button. If you correctly chose
the chunk or chunks which matched the request the window will close and you can continue
stepping through the model. If you made any incorrect selections then those items will be shown
and you will need to press the “Ok” button to continue.

You should now continue to step through the model performing the conflict resolution,
production instantiation, and declarative memory matching exercises until the model finishes the
task.

1.7 The Semantic Model

The next example model for this unit is the semantic model, found in the “semantic.lisp” file of
tutorial unit 1. You should load that model file now. When you do so, you may notice that there
is some text displayed in the window that indicates it loaded successfully and that text is also
displayed in the ACT-R window. For now, you can ignore that output and just press “Ok” as you
did for the previous model. We will come back to that after describing the operation of the
model.

This model contains chunks which encode the following network of categories and properties.

ostrich

animal

moves

skin

fish
gills

swims

shark
dangerous

swims
salmon

edible

swims

bird
wings

flies

canary
yellow

sings

can't fly

tall

The productions it has are capable of searching this network to make decisions about whether
one category is a member of another category, for example, is a canary an animal or is a shark a
bird.

1.7.1 Encoding of the Semantic Network

All of the links in this network are encoded by chunks with the slots object, attribute, and
value. For instance, the following three chunks encode the links involving shark:

 (p1 ISA property object shark attribute dangerous value true)
 (p2 ISA property object shark attribute locomotion value swimming)
 (p3 ISA property object shark attribute category value fish)

25

ACT-R Tutorial 7/19/22 Unit One

p1 encodes that a shark is dangerous (set in the attribute slot) by setting the value slot to true.
p2 encodes that a shark can swim by setting the value slot to swimming with the attribute slot set
as locomotion. p3 encodes that a shark is a fish by setting fish as the value and the attribute as
category.

There are of course many other ways one could encode this information, for example instead of
using slots named attribute and value it seems like one could just use the slot as the attribute and
the value as its value for example:

(p1 object shark dangerous true)
(p2 object shark locomotion swimming)
(p3 object shark category fish)

or perhaps even collapsing all of that information into a single chunk describing a shark:

(shark dangerous true locomotion swimming category fish)

How one chooses to organize the knowledge in a model can have an effect on the results, and
that can be a very important aspect of the modeling task. For example, choosing to encode the
properties in separate chunks vs a single chunk will affect how that information is reinforced (all
the items together vs each individually) as well as how it may be affected by the spreading of
activation for related information (both topics which will be discussed in later units). Typically,
there is no one “right way” to write a model and one should make the choices necessary based on
the objectives of the modeling effort and any related research which provides guidance.

For this model we have chosen the representation for practical reasons – it provides a useful
example. It might seem that the second representation would still be better for that, and such a
representation could have been used for the category searching model described below since we
are only searching for the category attribute which could have been encoded directly into the
productions. However, with what has been discussed so far in the tutorial, it would be difficult to
use that representation to perform a more general search for information in the network. When
we get to unit 8 of the tutorial we will see some additional aspects of the pattern matching in
productions which could be used with such a representation to make the searching more general.

1.7.2 Testing for Category Membership

This model performs a test for category membership when a chunk in the goal buffer has object
and category slot values and no slot named judgment. There are 3 different starting goals
provided in the initial chunks for the model. The one initially placed in the goal buffer is g1:

 (g1 ISA is-member object canary category bird)

which represents a test to determine if a canary is a bird. That chunk does not have a judgment
slot, and the model will add that slot to indicate a result of yes or no. If you run the model with

26

ACT-R Tutorial 7/19/22 Unit One

g1 in the goal buffer (which is already placed there by the call to goal-focus in the model
definition) you will see the following trace:

 0.000 GOAL SET-BUFFER-CHUNK GOAL G1 NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED INITIAL-RETRIEVE
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK P14
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P14
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED DIRECT-VERIFY
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.150 ------ Stopped because no events left to process

If you inspect the goal chunk after the model stops it will look like this:

GOAL: GOAL-CHUNK0
GOAL-CHUNK0
 OBJECT CANARY
 CATEGORY BIRD
 JUDGMENT YES

This is among the simplest cases possible for this network of facts and only requires the retrieval
of this property to determine the answer:

 (p14 ISA property object canary attribute category value bird)

There are two productions involved. The first, initial-retrieve, requests the retrieval of
categorical information and the second, direct-verify, uses that information and sets the
judgment slot to yes:

(p initial-retrieve
 =goal>
 ISA is-member
 object =obj
 category =cat
 judgment nil
==>
 =goal>
 judgment pending
 +retrieval>
 ISA property
 object =obj
 attribute category
)

Initial-retrieve tests that there are object and category slots in the goal buffer’s chunk and that it
does not have a judgment slot. Its action is to modify the chunk in the goal buffer by adding a

27

ACT-R Tutorial 7/19/22 Unit One

judgment slot with the value pending and to request the retrieval of a chunk from declarative
memory which indicates a category for the current object.

After that production fires and the chunk named p14 is retrieved the direct-verify production
matches and fires:

(P direct-verify
 =goal>
 ISA is-member
 object =obj
 category =cat
 judgment pending
 =retrieval>
 ISA property
 object =obj
 attribute category
 value =cat
==>
 =goal>
 judgment yes
)

That production tests that the chunk in the goal buffer has values in the object and category slots
and a judgment slot with the value pending, and that the chunk in the retrieval buffer has an
object slot with the same value as the object slot of the chunk in the goal buffer, an attribute slot
with the value category, and a value slot with the same value as the category slot of the chunk in
the goal buffer. Its action is to modify the chunk in the goal buffer by setting the judgment slot
to the value yes.

Something to notice about this production is that after it fires we see this event in the trace from
the procedural module:

 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL

This is another instance of implicit buffer clearing. If a production matches the chunk from a
buffer on the LHS and does not modify it on the RHS, then for most buffers7 that chunk will be
automatically cleared from the buffer.

Some terminology which is often used when discussing productions which use a chunk that is in
a buffer and then clear that chunk from the buffer is to say that it “harvests” the chunk – the
direct-verify production harvests the chunk from the retrieval buffer. We would not say that it
harvests the goal buffer’s chunk because it is modified and remains in the buffer. The implicit
clearing of a chunk which is matched and not modified is referred to as “strict harvesting” and it
is there as a convenience so that one does not need to add lots of explicit buffer clearing actions
to the productions they write.

If you would like some more experience with how the ACT-R modules work, you can reset the
model, open the Stepper, enable tutor mode, and run it like you did with the count model.

7Of the buffers used in the tutorial models, only the goal buffer is not subject to that automatic clearing mechanism.

28

ACT-R Tutorial 7/19/22 Unit One

1.7.3 Chaining Through Category Links

A slightly more complex case occurs when the category is not an immediate super ordinate of the
indicated object and it is necessary to chain through an intermediate category. An example
where this is necessary is in the verification of whether a canary is an animal, and such a test is
created in chunk g2:

 (g2 ISA is-member object canary category animal)

You should change the goal-focus call in the model file to set the goal to g2 instead of g1. After
you save that change to the file you must load the model again. That can be done using the
“Reload” button on the Control Panel which will load the last model file that was loaded, or you
can use the “Load ACT-R code” button to select the file and load it.8

Running the model with chunk g2 as the goal will result in the following trace:

 0.000 GOAL SET-BUFFER-CHUNK GOAL G2 NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED INITIAL-RETRIEVE
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK P14
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P14
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED CHAIN-CATEGORY
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE start-retrieval
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK P20
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P20
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-FIRED DIRECT-VERIFY
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.250 ------ Stopped because no events left to process

This trace is similar to the previous one except that it involves an extra production, chain-
category, which will attempt to retrieve the next category in the case that an attribute has been
retrieved which does not immediately allow a decision to be made.
(P chain-category
 =goal>
 ISA is-member
 object =obj1
 category =cat
 judgment pending
 =retrieval>
 ISA property
 object =obj1
 attribute category
 value =obj2
 - value =cat

8It is also possible to update the goal buffer chunk without editing the model file and loading it again, and the
unit1_code text shows how that could be done.

29

ACT-R Tutorial 7/19/22 Unit One

==>
 =goal>
 object =obj2
 +retrieval>
 ISA property
 object =obj2
 attribute category
)

This production tests that the chunk in the goal buffer has values in the object and category slots
and a judgment slot with the value of pending, and that the chunk in the retrieval buffer has an
object slot with the same value as the object slot of the chunk in the goal buffer, an attribute slot
with the value category, a value in the value slot, and that the value in the value slot is not the
same as the value of the category slot of the chunk in the goal buffer. Its action is to modify the
chunk in the goal buffer by setting the object slot to the value from the value slot of the chunk in
the retrieval buffer and to request the retrieval of a chunk from declarative memory which has
that same value in its object slot and the value category in its attribute slot.

Again, for more experience, you can reset this model and step through it in tutor model.

1.7.4 The Failure Case

Now you should change the initial goal to the chunk g3 and reload the model file.

 (g3 ISA is-member object canary category fish)

When you run the model with this goal, you will see what happens when the chain reaches a
dead end:
 0.000 GOAL SET-BUFFER-CHUNK GOAL G3 NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED INITIAL-RETRIEVE
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK P14
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P14
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED CHAIN-CATEGORY
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE start-retrieval
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK P20
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL P20
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-FIRED CHAIN-CATEGORY
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 DECLARATIVE start-retrieval
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.300 DECLARATIVE RETRIEVAL-FAILURE
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.350 PROCEDURAL PRODUCTION-FIRED FAIL
 0.350 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.350 PROCEDURAL CONFLICT-RESOLUTION
 0.350 ------ Stopped because no events left to process

30

ACT-R Tutorial 7/19/22 Unit One

There we see the declarative memory module reporting that a retrieval-failure occurred at time
0.3 which is then followed by the production fail firing. The fail production uses a test on the
LHS that we have not yet seen.

1.7.5 A Query in the Condition

In addition to testing the chunks in the buffers as has been done in all of the productions we have
seen to this point, it is also possible to query the status of the buffer itself and the module which
controls it. This is done using a “?” instead of an “=” before the name of the buffer. There is a
fixed set of queries which can be made of the buffer itself. The buffer’s module must respond to
some specific queries, but may have any number of additional queries for its specific operations
to which it will respond. The result of a query will be either true or false. If any query tested in
a production has a result which is false, then the production does not match.

1.7.5.1 Querying the buffer itself

When querying the buffer itself, it can be in one of three mutually exclusive situations: there can
be a chunk in the buffer, a failure can be indicated, or the buffer can be empty with no failure
noted. If there is a chunk in the buffer or a failure has been indicated, then it is also possible to
test whether that was the result of a requested action or not. Here are examples of the possible
queries which can be made to test the status of a buffer, using the retrieval buffer for the
examples.

This query will be true if there is a chunk in the retrieval buffer and false if there is not:

 ?retrieval>
 buffer full

This query will be true if a failure has been noted for the retrieval buffer and false if not:

 ?retrieval>
 buffer failure

This query will be true if there is not a chunk in the retrieval buffer and there is not a failure
indicated and false if there is either a chunk in the buffer or a failure has been indicated:

 ?retrieval>
 buffer empty

This query will be true if there is either a chunk in the retrieval buffer or the failure condition
has occurred for the retrieval buffer, and that chunk or failure was the result of a request made to
the buffer’s module. Otherwise, it will be false:

 ?retrieval>
 buffer requested

This query will be true if there is either a chunk in the retrieval buffer or the failure condition
has occurred for the retrieval buffer, and that chunk or failure happened without a request being

31

ACT-R Tutorial 7/19/22 Unit One

made to the buffer’s module, as was the case for the chunk placed into the goal buffer as a result
of the goal-focus command in the model9. Otherwise, it will be false:

 ?retrieval>
 buffer unrequested

1.7.5.2 Querying a buffer’s module

Every module must respond to a query for its state which can be tested for being either free or
busy. Most modules will respond to other queries that are specific to their operation, and those
will be described in future units when needed. Below are some examples of querying the state
using the retrieval buffer.

This query will be true if the retrieval buffer’s module (the declarative module) is not currently
performing an action and will be false if it is currently performing an action:

 ?retrieval>
 state free

This query will be true if the retrieval buffer’s module is currently performing an action and will
be false if it is not currently performing an action:

 ?retrieval>
 state busy

1.7.5.3 Using queries in productions

When specifying queries in a production multiple queries can be made of a single buffer. This
query checks if the retrieval buffer is currently empty and that the declarative module is not
currently handling a request:

 ?retrieval>
 buffer empty
 state free

One can also use the optional negation modifier “-” before a query to test that such a condition is
not true. Thus, either of these tests would be true if the declarative module was not currently
handling a request:

 ?retrieval>
 state free

or
 ?retrieval>
 - state busy

9 Later units will describe modules which can perform operations without being requested to do so that are not just
the result of commands specified by the modeler.

32

ACT-R Tutorial 7/19/22 Unit One

1.7.6 The fail production

Here is the production that fires in response to a category request not being found.
(P fail
 =goal>
 ISA is-member
 object =obj1
 category =cat
 judgment pending

 ?retrieval>
 buffer failure
==>
 =goal>
 judgment no
)

Note the query for a retrieval buffer failure in the condition of this production. When a retrieval
request does not succeed, in this case because there is no chunk in declarative memory which
matches the specification requested, the buffer will indicate that as a failure. In this model, this
will happen when one gets to the top of a category hierarchy and there are no super ordinate
categories.

Again, you can reset the model and work through its execution with the tutor mode of the
Stepper tool. This time, you will also need to check the status of the retrieval buffer to
determine when the fail production matches.

1.7.7 Model Warnings

Now that you have worked through the examples we will examine another detail which you
might have noticed while working on this model. When you load or reload the semantic model
there are the following warnings displayed in the Successful load window and the ACT-R
window:

#|Warning: Creating chunk CATEGORY with no slots |#
#|Warning: Creating chunk PENDING with no slots |#
#|Warning: Creating chunk YES with no slots |#
#|Warning: Creating chunk NO with no slots |#

Output that begins with “#|Warning:” is a warning from ACT-R, and indicates that there is
something in the model that may need to be addressed. This differs from warnings or errors
which may be reported by the Lisp which implements the ACT-R system that can occur because
of problems in the syntax or structure of the code in the model file. If you see ACT-R warnings
when loading a model you should always read through them to make sure that there is not a
serious problem in the model.

In this case, the warnings are telling you that the model uses chunks named category, pending,
yes, and no, but does not explicitly define them and thus they are being created automatically.
That is fine in this case. Those chunks are being used as explicit markers in the productions and
there are no problems caused by allowing the system to create them automatically because they
are arbitrary names that were used when writing the productions.

33

ACT-R Tutorial 7/19/22 Unit One

If there had been a typo in one of the productions however, for instance misspelling pending in
one of them as “pneding”, the warnings may have shown something like this:

#|Warning: Creating chunk PNEDING with no slots |#

That would provide you with an opportunity to notice the discrepancy and fix the problem before
running the model and then trying to determine why it did not perform as expected.

There are many other ACT-R warnings that may be displayed and you should always read the
warnings which occur when loading a model to make sure that there are no serious problems
before you start running the model. Most warnings which are not a serious problem can be
eliminated with some additional declarations or changes to the model. For example, if we
wanted to eliminate these warnings we could explicitly create those chunks in the model. With
what we have seen so far that would be done by adding them to declarative memory with the
other chunks that are created, but later in the tutorial we will show a better approach that does
not require adding them to the model’s memory.

1.8 The Addition Model

There is another example model included with the unit materials which is similar to the count
model which uses a larger set of counting facts to do a somewhat more complicated task. It will
perform addition by counting up. Thus, given the goal to add 2 to 5 it will count 5, 6, 7, and
report the answer 7. We will not cover that model in detail here. If you would like to examine
and run that model, it is found in the “addition.lisp” file of unit 1, and you would use it the same
way you loaded and ran the other models.

1.9 Building a Model

We would like you to now construct the pieces of an ACT-R model on your own. The “tutor-
model.lisp” file included with unit 1 contains the basic code necessary for a model, but does not
have any of the declarative or procedural elements defined. The instructions that follow will
guide you through the creation of those components. You will be constructing a model that can
perform the addition of two two-digit numbers using this process to add the numbers (which is of
course not the only way one could implement the addition process):

To add two two-digit numbers start by adding the ones digits of the two numbers. After
adding the ones digits of the numbers determine if there is a carry by checking if that
result is equal to 10 plus some number. If it is, then that number is the answer for the
ones column and there is a carry of 1 for the tens column. If it is not, then that result is
the answer for the ones column and there is no carry. Then add the digits in the tens
column. If there is no carry from the ones column then that sum is the answer for the tens
column and the task is done. If there is a carry from the ones column then add the carry
to that sum and make that the answer for the tens column to finish the task.

Once all of the pieces have been created as described below to implement that process, you
should be able to load and run the model to produce a trace that looks like this:

34

ACT-R Tutorial 7/19/22 Unit One

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED START-PAIR
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK FACT67
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT67
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED ADD-ONES
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE start-retrieval
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK FACT103
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT103
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.250 PROCEDURAL PRODUCTION-FIRED PROCESS-CARRY
 0.250 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.250 DECLARATIVE start-retrieval
 0.250 PROCEDURAL CONFLICT-RESOLUTION
 0.300 DECLARATIVE RETRIEVED-CHUNK FACT34
 0.300 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT34
 0.300 PROCEDURAL CONFLICT-RESOLUTION
 0.350 PROCEDURAL PRODUCTION-FIRED ADD-TENS-CARRY
 0.350 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.350 DECLARATIVE start-retrieval
 0.350 PROCEDURAL CONFLICT-RESOLUTION
 0.400 DECLARATIVE RETRIEVED-CHUNK FACT17
 0.400 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT17
 0.400 PROCEDURAL CONFLICT-RESOLUTION
 0.450 PROCEDURAL PRODUCTION-FIRED ADD-TENS-DONE
 0.450 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.450 PROCEDURAL CONFLICT-RESOLUTION
 0.450 ------ Stopped because no events left to process

There is a working solution model included with the unit 1 files, and it is also described in the
code description text for this unit. Thus, if you have problems you can consult that for help, but
you should try to complete these tasks without looking first.

You should now open the tutor-model.lisp file in a text editor if you have not already. The
following sections will describe the components that you should add to the file in the places
indicated by comments in the model (the lines that begin with the semicolons) to construct a
model for performing this task. There are of course many ways one could represent the addition
facts and process them using productions to perform the addition, but the description below
corresponds to the solution model which is provided for reference and thus should be followed
explicitly if you want to be able to compare to that as you go along.

1.9.1 Chunk-types

The first thing we should do is define the chunk-types that we will use in writing the model.
There are two chunk-types which we will define for doing this task. One to represent addition
facts and one to represent the goal chunk which will hold the initial components of the task and
and the correct answer when it is done. These chunk types will be created with the chunk-type
command as described in section 1.4.2.

35

ACT-R Tutorial 7/19/22 Unit One

1.9.1.1 Addition Facts

The first chunk-type you should create is one to represent the addition facts. It should be named
addition-fact and have slots named addend1, addend2, and sum. Chunks with these slots will
represent the basic addition facts for addends from 0-10.

1.9.1.2 The Goal Chunk Type

The other chunk type you should create is one to represent the goal of adding two two-digit
numbers. It should be named add-pair. It will have slots to encode all of the necessary
components of the task. It should have two slots to represent the ones digit and the tens digit of
the first number called one1 and ten1 respectively. It will have two more slots to hold the ones
digit and the tens digit of the second number called one2 and ten2, and two slots to hold the
answer, called one-ans and ten-ans. It will also need a slot to hold any information necessary to
process a carry from the addition in the ones column to the tens column which should be called
carry.

1.9.2 Chunks

We are now going to define the chunks that will allow the model to solve the problem 36 + 47
and place them into the model’s declarative memory. This is done using the add-dm command
which was described in section 1.4.3.

1.9.2.1 The Addition Facts

You need to create addition facts which encode the following math facts in the model’s
declarative memory to be able to solve this problem using the process described above and
implemented with the productions which will be described later:

3+4=7
6+7=13
10+3=13
1+7=8

They will use the slots of the type addition-fact and should be named based on their addends.
For example, the fact that 3+4=7 should be named fact34. The addends and sums for these facts
will be the corresponding numbers. Thus, fact34 will have slots with the values 3, 4, and 7. Note
that for simplicity we are just using the actual numbers as the values of the slots instead of
creating separate number chunks like the other models in this unit.

1.9.2.2 The Initial Goal

You should now create a chunk named goal which encodes that the goal is to add 36+47 which
will use slots from the add-pair chunk-type. This should be done by specifying the values for the
ones and tens digits of the two numbers and leaving all of the other slots empty.

36

ACT-R Tutorial 7/19/22 Unit One

1.9.2.3 Checking the results so far

Once you have completed adding the chunk-types and chunks to the model you should be able to
save the file and then load it to inspect the components you have created. To see the chunks you
have created you can press the “Declarative” button on the Control Panel. That will open a
declarative memory viewer which allows you to see all of the chunks in the model’s declarative
memory (every time you press that button a new declarative viewer window will be opened so
that you can view different chunks at the same time when needed). To view a particular chunk
with that tool select it in the list of chunks on the left of the window. The window on the right
will then show the declarative parameters for that chunk (which will be described in later units)
along with the slots and values for that chunk.

Once you are satisfied with the chunks that you have created you can move on to creating the
productions which will use those chunks.

1.9.3 Productions

So far, we have been looking mainly at the individual productions in the models. However, a
model really only functions because of the interaction of the productions it contains. Essentially,
the action of one production will set the state so that the condition for another production can
match, which has an action that sets the state to allow another to match, and so on. It is that
sequence of productions firing, each of which performs some small step, which leads to
performing the entire task, and one of the challenges of cognitive modeling is determining how
to perform those small steps in a way that is both capable of performing the task and consistent
with human performance on that task – just “doing the task” is not usually the objective for
creating a model with a cognitive architecture like ACT-R.

Your task now is to write the ACT-R productions which perform the steps described in English
above to do multi-column addition. To do that you will need to use the ACT-R p command to
specify the productions as described in section 1.4.4, and to help with that we will further detail
six productions which will implement that process using the chunk-types and chunks created
previously.

START-PAIR

If the goal buffer contains slots holding the ones digits of two numbers and does not have a slot
for holding the ones digit of the answer then modify the goal to add the slot one-ans and set it to
a value of busy and make a retrieval request for the chunk indicating the sum of those ones
digits.

ADD-ONES

If the chunk in the goal buffer indicates that it is busy waiting for the answer for the addition of
the ones digits and a chunk has been retrieved containing the sum of the ones digits then modify
the goal chunk to set the one-ans slot to that sum and add a slot named carry with a value busy,
and make a retrieval request for an addition fact to determine if that sum is equal to 10 plus some
number.

37

ACT-R Tutorial 7/19/22 Unit One

PROCESS-CARRY

If the chunk in the goal buffer indicates that it is busy processing a carry, a chunk has been
retrieved which indicates that 10 plus a number equals the value in the one-ans slot, and the
digits for the tens column of the two numbers are available in the goal chunk then set the carry
slot of the goal to 1, set the one-ans slot of the goal to the other addend from the chunk in the
retrieval buffer, set the ten-ans slot to the value busy, and make a retrieval request for an addition
fact of the sum of the tens column digits.

NO-CARRY

If the chunk in the goal buffer indicates that it is busy processing a carry, a failure to retrieve a
chunk occurred, and the digits for the tens column of the two numbers are available in the goal
chunk then remove the carry slot from the goal by setting it to nil, set the ten-ans slot to the value
busy, and make a retrieval request for an addition fact of the sum of the tens column digits.

ADD-TENS-DONE

If the chunk in the goal buffer indicates that it is busy computing the sum of the tens digits, there
is no carry slot in the goal chunk, and there is a chunk in the retrieval buffer with a value in the
sum slot then set the ten-ans slot of the chunk in the goal buffer to that sum.

ADD-TENS-CARRY

If the chunk in the goal buffer indicates that it is busy computing the sum of the tens digits, the
carry slot of the goal chunk has the value 1, and there is a chunk in the retrieval buffer with a
value in the sum slot then remove the carry slot from the chunk in the goal buffer, and make a
retrieval request for the addition of 1 plus the current sum from the retrieval buffer.

1.9.4 Running the model

When you are finished entering the productions, save your model, reload it, and then run it.

If your model is correct, then it should produce a trace that looks like the one shown above, and
the correct answer should be encoded in the ten-ans and one-ans slots of the chunk in the goal
buffer:
GOAL: GOAL-CHUNK0
GOAL-CHUNK0
 ONE1 6
 TEN1 3
 ONE2 7
 TEN2 4
 TEN-ANS 8
 ONE-ANS 3

1.9.5 Incremental Creation of Productions

38

ACT-R Tutorial 7/19/22 Unit One

It is also possible to write just one or two productions and test them out first before you go on to
try to write the rest – to make sure that you are on the right track. For instance, this is the trace
you would get after successfully writing the first two productions and then running the model:

 0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL NIL
 0.000 PROCEDURAL CONFLICT-RESOLUTION
 0.050 PROCEDURAL PRODUCTION-FIRED START-PAIR
 0.050 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.050 DECLARATIVE start-retrieval
 0.050 PROCEDURAL CONFLICT-RESOLUTION
 0.100 DECLARATIVE RETRIEVED-CHUNK FACT67
 0.100 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT67
 0.100 PROCEDURAL CONFLICT-RESOLUTION
 0.150 PROCEDURAL PRODUCTION-FIRED ADD-ONES
 0.150 PROCEDURAL CLEAR-BUFFER RETRIEVAL
 0.150 DECLARATIVE start-retrieval
 0.150 PROCEDURAL CONFLICT-RESOLUTION
 0.200 DECLARATIVE RETRIEVED-CHUNK FACT103
 0.200 DECLARATIVE SET-BUFFER-CHUNK RETRIEVAL FACT103
 0.200 PROCEDURAL CONFLICT-RESOLUTION
 0.200 ------ Stopped because no events left to process

The first production, start-pair, has fired and successfully requested the retrieval of the addition
fact fact67. The next production, add-ones, then fires and makes a retrieval request to determine
if there is a carry. That chunk is retrieved and then because there are no productions which
match the current state of the system and no actions remaining to perform it stops. You may find
it helpful to try out the productions occasionally as you write them to make sure that the model is
working as you progress instead of writing all the productions and then trying to debug them all
at once.

1.9.6 Debugging the Productions

In the event that your model does not run correctly you will need to determine why that is so you
can fix it. One tool that can help with that is the “Why not?” button in the Procedural viewer. To
use that, first press the “Procedural” button on the Control Panel to open a viewer for the
productions in the model. That tool is very similar to the Declarative viewer described
previously – there is a list of productions on the left and selecting one will show the parameters
and text of the production on the right. Pressing the “Why not?” button at the top of the
Procedural viewer window when there is a production selected in the list will open another
window. If the chosen production matches the current state of the buffers then the new window
will indicate that it matches and display the instantiation of that production. If the chosen
production does not match the current state then the text of the production will be printed and an
indication of the first mismatching item from the LHS of the production will be indicated, for
example, when the start-pair production described above does not match it might say “The chunk
in the GOAL buffer has the slot ONE-ANS” since that production specifies that the goal buffer
should not have a slot named one-ans.

The Stepper is also an important tool for use when debugging a model because while the model
is stopped you can inspect everything in the model using all of the other tools. For more
information on writing and debugging ACT-R models you should also read the “Modeling” text
which accompanies this unit. That file is the “unit1_modeling” document, and each of the odd

39

ACT-R Tutorial 7/19/22 Unit One

numbered units in the tutorial will include a modeling text with details on potential issues one
may encounter and ways to detect and fix those issues.

40

ACT-R Tutorial 7/19/22 Unit One

References

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y . (2004). An
integrated theory of the mind. Psychological Review 111, (4). 1036-1060.

Anderson, J. R. (2007). How Can the Human Mind Occur in the Physical Universe? New York:
Oxford University Press.

41

http://act-r.psy.cmu.edu/?post_type=publications&p=14305
http://act-r.psy.cmu.edu/?post_type=publications&p=13623
http://act-r.psy.cmu.edu/?post_type=publications&p=13623

	Unit 1: Introduction to ACT-R
	1.1 Knowledge Representations
	1.1.1 Chunks in ACT-R
	1.1.2 Productions in ACT-R

	1.2 The ACT-R Architecture
	1.2.1 Goal Module
	1.2.2 Declarative Module
	1.2.3 Procedural Module
	1.2.4 Overview

	1.3 ACT-R Software and Models
	1.3.1 Starting ACT-R
	1.3.2 Interacting with Lisp
	1.3.3 ACT-R models
	1.3.4 Loading a model
	1.3.5 Running a model

	1.4 Creating an ACT-R Model
	1.4.1 ACT-R control commands
	1.4.1.1 clear-all
	1.4.1.2 define-model

	1.4.2 Chunk-Types
	1.4.3 Creating Chunks
	1.4.4 Creating Productions
	1.4.4.1 Production Condition: Buffer Pattern Matching
	1.4.4.2 Production Action
	1.4.4.2.a Buffer Modifications, the = action
	1.4.4.2.b Buffer Requests, the + action
	1.4.4.2.c Buffer Clearing, the - action
	1.4.4.2.d Implicit Clearing

	1.5 The Count Model
	1.5.1 Chunk-types for the Count model
	1.5.2 Declarative Memory for the Count model
	1.5.3 Setting the Initial Goal
	1.5.4 The Productions
	1.5.4.1 The Start Production
	1.5.4.2 The Increment Production
	1.5.4.3 The Stop Production

	1.6 Basic Model Operations Exercise
	1.6.1 Load or reset the model if necessary
	1.6.2 The Stepper
	1.6.3 The Buffers tool
	1.6.4 Running with the Stepper
	1.6.5 The goal-chunk0 Chunk and Buffer Chunk Copying
	1.6.6 Conflict-resolution
	1.6.7 Production Selection
	1.6.8 Declarative retrieval

	1.7 The Semantic Model
	1.7.1 Encoding of the Semantic Network
	1.7.2 Testing for Category Membership
	1.7.3 Chaining Through Category Links
	1.7.4 The Failure Case
	1.7.5 A Query in the Condition
	1.7.5.1 Querying the buffer itself
	1.7.5.2 Querying a buffer’s module
	1.7.5.3 Using queries in productions

	1.7.6 The fail production
	1.7.7 Model Warnings

	1.8 The Addition Model
	1.9 Building a Model
	1.9.1 Chunk-types
	1.9.1.1 Addition Facts
	1.9.1.2 The Goal Chunk Type

	1.9.2 Chunks
	1.9.2.1 The Addition Facts
	1.9.2.2 The Initial Goal
	1.9.2.3 Checking the results so far

	1.9.3 Productions
	START-PAIR
	ADD-ONES
	PROCESS-CARRY
	NO-CARRY
	ADD-TENS-DONE
	ADD-TENS-CARRY

	1.9.4 Running the model
	1.9.5 Incremental Creation of Productions
	1.9.6 Debugging the Productions

	References

