

Type Shifting and Overriding in
Double R Grammar

Two Key Mechanisms of Context

Accommodation

aInstitute for Defense Analyses

Jerry T. Ball & Stuart M. Rodgersa

ACT-R Workshop 2023

Double R Grammar
A Computational Cognitive Grammar of the Grammatical
Analysis of Written English

The Grammatical Encoding of Referential and Relational
Meaning

Cognitively and Linguistically Motivated

Incremental and Interactive Language Analysis

Pseudo-Deterministic Language Analysis

Construction Driven Language Analysis

Large-scale and Functional

Focus on meaning determination

Double R Grammar
● Descendant of Propositional Model (PM) – 1985 to 1991

– Implemented in Prolog (Programming in Logic) which proved to be inadequate
● No probabilistic mechanisms and no type hierarchy
● Unification based pattern matching to logic clauses, but no matching to higher level types
● Strictly serial execution of matching logic clauses based on file order
● Not suitable for preference semantics – couldn’t handle ambiguity of natural language

● Ported to ACT-R 5 in 2003
– Logic clauses → productions and facts → chunks

– ACT-R 5 has probabilistic mechanisms and type hierarchy

– Chunks organized into a type hierarchy
● Parallel chunk retrieval uses base level and spreading activation across matching types
● Single chunk retrieved

– Productions matched in parallel using type hierarchy
● Single matching production with highest utility serially executed

– Used in development of a synthetic teammate capable of analyzing text chat
from human teammates and piloting a simulated UAV (drone)

Synthetic Teammate Project
● Simulated UAV reconnaissance task
● Synthetic Pilot
● Two Human Teammates

– Navigator
– Photographer

● Communicate via text messaging
● Implemented in ACT-R 5

– Reimplemented GUI in Lisp!

to support interaction of synthetic teammate

● Empirically evaluated
– Overall performance of teams

with a synthetic pilot was not significantly

different from all human teams

Double R Grammar
● Ported to Java ACT-R in 2015 for follow on to synthetic teammate

project
● Advantages of Java ACT-R

– Compatible with ACT-R 6

– Lots of good Java programmers and more attractive than Lisp to newcomers

– GUI integration easier in Java vs. Lisp

– Borrowed Java based code for spelling correction using edit distance

– Used Java based regular expressions for perceptual bypass – tokenization

– Java based tree diagram code implemented by Stuart Rodgers

● Disadvantages of Java ACT-R
– Limited support for non-standard implementation of ACT-R

– Most of ACT-R community uses standard Lisp version

– Java based functionality not within ACT-R cognitive architecture

Current Capabilities
● Written word recognition

– ~100,000 words and multi-word units in mental lexicon
● In line with estimates of size of human mental lexicon
● Created with a combination of automated and manual techniques

– ~70 parts of speech organized into a multiple inheritance hierarchy
– ~50 prefixes, ~120 suffixes and ~40 morphological analysis productions
– ~35 lexical retrieval and perceptual bypass productions
– Perceptual bypass uses Java based regular expressions for tokenization
– Spelling correction uses Java code based on edit distance algorithm
– Single and double shot learning of new lexical chunks for unknown words

● Recently achieved 98.5% part of speech tagging accuracy rate
– Competitive with state of the art machine learning and

deep learning systems
– Results reported at Virtual ICCM 2023

Current Capabilities
● Grammatical analysis

– ~150 grammatical chunk types
– ~2000 grammatical analysis productions

● Manually created and tuned – linguistically motivated

– Covers most of the common grammatical constructions of English
● Declarative clause, wh & yes-no question, imperative clause, existential there, locative

focus, relative clause, wh clause, that complement clause
● Intransitive, transitive, ditransitive and situation complement predicates
● Active vs. passive alternation, indirect object vs. recipient alternation
● Nominal, possessive nominal, conjunction, punctuation

– Some more specialized constructions also handled
● Comparative, focus, subject extraposition

– Approaching breadth and accuracy of leading
machine learning systems

Type Shifting and Overriding
● Chunk types made more flexible in ACT-R 6

– Able to dynamically change the type of a chunk
– Able to dynamically add or remove slots from a chunk

● These changes made a type shifting mechanism possible
● Previously only able to override a chunk with an alternative

chunk
– But chunk may be integrated into higher level chunk

● Need to adjust pointers from higher level chunks to alternative chunk

– But instantiated slot values may be lost
● Need to copy all appropriate instantiated slot values

from overridden chunk to alternative chunk

● Why do we need type shifting and overriding?

Incremental & Interactive
Processing

● Incremental processing means no parallel access to right context
● Interactive processing means using all available information to make

the best choice given current input and current context
● Locally best choice may not be globally preferred
● Need to accommodate evolving context

– Context accommodation is non-monotonic – representation may be altered

● Overall, processing is pseudo-deterministic
– Make best choice given current input and context
– Assume choice is correct and proceed incrementally

forward
– Accommodate evolving context

Context Accommodation
● Type Shifting

– Change the type of a chunk without replacing it
● Instantiated slot values remain
● Higher level pointers to chunk remain

– Preferred to overriding when only minor adjustment is needed

– Predicate intransitive verb construction → Predicate transitive verb construction
● Add an object argument slot

● Overriding
– Replace a chunk of one type with an alternative chunk of a different type

● Instantiated slot values must be copied to alternative chunk or they will be lost
● Higher level pointers must be shifted to alternative chunk or they will be incorrect

– Preferred to type shifting when types are significantly different
● Lexical noun → Object referring expression (i.e. nominal) construction
● Lexical verb → Verbal predicate construction

Type Shifting
● Change the type of an existing chunk
● John began the book

– Began in mental lexicon as a verb that prefers an object argument
– Access a predicate verb object (transitive predicate) construction when

began is incrementally processed
– Integrate the book as object argument when incrementally processed

● John began reading
– Began can also occur with a situation complement with progressive

(reading) or infinitive (to read) verb form
– When reading is incrementally processed, type shift predicate verb object

(transitive predicate) to predicate verb ing situation
complement

– Integrate reading as ing situation complement

Java based
tree diagrams
integrate
multiple
chunks for
display
purposes, but
are really pointers
in ACT-R

 declarative
situation referring expression
 (i.e. declarative clause)

 predicate verb object
(i.e. transitive predicate)

Representation for John began the book

grammatical
 functions
 (GFs)

object referring
expression
(i.e. nominal)

chunks must be accessible for type shifting
 – buffers preferred over retrieval

pointer

Representation for John began reading

type shift pred-verb-obj to
pred-verb-ing-sitcomp

 integrate ing
situation referring expression
 (i.e. progressive clause)
 as situation complement

 subject
co-reference

integrate
empty (e) implicit object
of transitive verb reading

new grammatical function

PRO = implicit subject

Type Shifting
● ’s = possessive marker or auxiliary

– John’s book – ’s = possessive marker
– John’s going – ’s = auxiliary verb is

● With type shifting, we can choose one and
accommodate the alternative

● Alternatively, we could have a composite part
of speech category
– But meaning of possessive marker is

different from meaning of auxiliary verb is

Type Shifting
● ’s = auxiliary verb is or has
● John’s gone

– Default preference is auxiliary verb is

– But cliticized auxiliary use is ambiguous

– Need fine-grained meaning to disambiguate

● John is gone – intransitive inactive
(from is)
– Inactive voice is intransitive equivalent to transitive passive

● John has gone – intransitive active
(from has)

Type Shifting
● The taxi’s waiting he’s blowing his horn – ’s = is

– Default preference for ’s is auxiliary verb is
– Default preference is reinforced by subsequent progressive

participle
● he is blowing vs. *he has blowing

● The taxi’s waiting he’s blown his horn – ’s = has
– In context of perfect participle blown, type shift lexical chunk to has
– Is has preferred over is when followed by perfect participle?
– Preference may be verb specific and context dependent

● Passive: John’s kicked the ball by Bill = is
● Active: John’s kicked the ball to Bill = has

Overriding
● Override an existing chunk with an alternative chunk

– John is running
● Intransitive verb running integrated as predicate head GF without accessing a

predicate intransitive verb construction – build minimal structure needed

– John is running fast
● Use accessible predicate intransitive verb construction so that the adverb fast can

be integrated as a predicate modifier
● Override lexical chunk (running) with grammatical chunk (predicate intransitive

verb)
● Shift lexical chunk (running) from clausal head GF to predicate head
● Overriding + function shifting ~ adjunction in Tree Adjoining Grammar (TAG)

● Since lexical chunk already integrated, need to adjust pointer from
higher level chunk to point to predicate intransitive verb
instead — higher level chunk must be accessible

Overriding

intransitive verb running
integrated as clausal head GF

Overriding

predicate intransitive verb
overrides verb as head

intransitive verb running shifted from clausal head to predicate head
 (function shifting)

overriding + function shifting ~
adjunction in TAG higher level chunk

must be accessible

Summary
● Context accommodation needed given well-established cognitive constraints on

Human Language Processing
– Incremental and interactive processing

● ACT-R 6 (Java ACT-R) provides architectural support for type shifting and
overriding

● Prefer type shifting for minor changes to chunk
● Prefer overriding for major changes which motivate creation of an alternative chunk
● Need for context accommodation is very common

– Many intransitive verbs can be used transitively
● John smiled a big smile

– Many transitive verbs can be used ditransitively
● John kicked Mary the ball

– Construction driven accommodation (e.g. caused motion construction)
● Mary sneezed the napkin off the table

Jerry Ball

Stu Rodgers

References
Ball, J. & Rodgers, S. (2023). Cognitively and Linguistically Motivated Part of Speech Tagging:
Quantitative Assessment of a Near Human-Scale Computational Cognitive Model. Virtual ICCM.

Ball, J. (2023, in preparation). Double R Grammar, the Grammatical Encoding of Referential and
Relational Meaning. Preprint available at https://www.researchgate.net/profile/Jerry-Ball/research

Ball, J. (2011). A Pseudo-Deterministic Model of Human Language Processing. In L. Carlson, C.
Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive
Science Society, 495-500. Austin, TX: Cognitive Science Society.

Ball, J. (2007). A Bi-Polar Theory of Nominal and Clause Structure and Function. Annual Review
of Cognitive Linguistics, 27-54. Amsterdam: John Benjamins.

Additional Examples

Type Shifting, Overriding & Function
Shifting

● I cried a river over you
– Cried only in mental lexicon as an intransitive verb

– Type shift intransitive predicate associated with cried to
transitive when a river is incrementally processed

● Intransitive predicate chunk available in parallel in buffer to avoid
retrieval or projection which requires extra production – brings
Double R in to closer alignment with human reading rates

– Override lexical chunk with transitive predicate chunk

– Integrate a river as the object of transitive predicate chunk

Incremental Representation for
I cried...

intransitive verb
integrated as head

 declarative
situation referring expression
 (i.e. clause)

Java based
tree diagrams
integrate
multiple
chunks for
display
purposes

chunk integration
is via pointers –
chunk not directly
integrated

chunks must be in
buffers to be
accessible without
a retrieval

Representation for I cried a river over you

type shift
predicate intransitive verb
to
predicate verb object = transitive
and integrate as head

integrate
object referring expression
as object

over you should be
a modifier of cried
not a river
(prepositional phrase
attachment ambiguity)

grammatical
functions

constructions

Type Shifting, Overriding & Function
Shifting

● You can cry me a river
– Type shift intransitive predicate associated with cried

to ditransitive
● Intransitive predicate available in parallel in buffer

– Override intransitive verb with predicate ditransitive
verb construction

– Shift intransitive verb from clausal head GF to
predicate head

– Integrate me as the indirect object
– Integrate a river as the object

Type Shifting, Overriding & Function
Shifting

type shift
predicate intransitive verb
to
predicate ditransitive verb
and override verb as
clausal head GF

integrate
obj referring expression
as object

integrate
obj refer exp
as indirect
object

function shift verb
to predicate head

Type Shifting, Overriding & Function
Shifting

● John has...
– Has prefers to be an auxiliary verb
– Incrementally integrate has as clausal

specifier GF of situation referring expression
(i.e. clause)

Incremental Representation for
John has...

prefers to be auxiliary verb

clausal head is predicted
to occur

Type Shifting, Overriding & Function
Shifting

● John has a cold
– In context of object referring expression (i.e. nominal) a cold, type shift

has from auxiliary verb to regular verb
– Access predicate transitive verb construction and integrate as clausal

head
– Shift has from clausal specifier to predicate head GF
– Cold prefers to be an adjective (e.g. John has a cold beer)
– Should also type shift cold from adjective to noun in absence of a head

noun since cold can also be a noun
● Generic wrap up production treats head as empty (e)
● Need alternative production that type shifts cold from adjective to

noun and function shifts cold from modifier to head when adjective
can also be a noun

Type Shifting, Overriding & Function
Shifting

successful type shift and function shift

missed type shift and function shift

successful override

expected head is empty (e)

Overriding + Function Shifting ~
Adjunction

● Override an existing chunk with an alternative chunk
– John is running a marathon

● Access a predicate verb object = transitive construction so that the
nominal a marathon can be integrated as the object of running

● Override lexical chunk (running) with grammatical chunk (predicate
verb object)

● Shift lexical chunk (running) to predicate head GF

● Since lexical chunk is already integrated, need to adjust
pointer from higher level chunk to point to predicate verb
object chunk — higher level chunk must be accessible
– Use of buffers for accessibility preferred over retrieval

Overriding + Function Shifting ~
Adjunction

predicate verb object
overrides verb as head

intransitive verb running
shifted to predicate head GF

object referring expression
a marathon integrated
as object GF

higher level chunk
must be accessible

Extreme Type Shifting, Overriding &
Function Shifting

● John’s sad

– Lexical chunk for adjective sad integrated as lexical head of
situation referring expression (i.e. clause)

– ’s is the cliticized auxiliary verb is that functions as specifier

Representation for John’s sad

auxiliary verb lexical head

situation
referring
expression
(i.e. clause)

Extreme Type Shifting, Overriding &
Function Shifting

● John’s sad story

– Adjective sad functions as modifier of noun story within object referring expression

– Object head construction accessed
● Noun story integrated as head GF, adjective sad integrated as modifier GF

– Object referring expression (i.e. nominal) construction accessed
● Object head integrated as head

– Second object referring expression construction accessed and type shifted to
possessive object referring expression

– ’s = auxiliary type shifted to possessive marker and integrated as poss-marker GF

– Possessive object referring expression integrated as specifier GF of higher level
object referring expression

– Higher level object referring expression overrides situation referring expression

Representation for John’s sad story
object
referring
expression
(i.e. nominal)

integrate
object head as
clause head GF

shift adjective to mod GF integrate noun as object head GFtype shift

integrate
possessive
object referring
expression
as
specifier

Extreme Type Shifting, Overriding &
Function Shifting

● No obvious processing difficulty for humans in making these
extensive adjustments
– No garden path effect – e.g. The horse raced past the barn fell

● But what if expression is already integrated?
– I think John’s sad story is coming to an end

● Need to adjust higher level pointers if chunk is overridden
● Need to copy appropriate instantiated values from overridden

chunk and remove inappropriate values
– Risk of losing previously instantiated values
– Risk of having inappropriate values

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

