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Fitting models

e We all do. That’s part for the job!

SO'WHAT WOULDYOU'SAY.
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Fitting models

We all do. That'’s part for the job!

But what do we fit for?

In most cases, we minimize RMSE or R?

Suggestion: We should use Maximum Likelihood (MLE)

In linear models, minimizing RMSE and maximizing log-likelihood

are the same
o ... and they both maximize R?

When we use non-linear models, however, things are different
e And ACT-R has several non-linear equations



What is MLE?

Find parameters 6 of a model that maximize likelihood £

L(m, 8| x) =P x| m,8)
v

parameters

In practice, you use log-likelihood, because probs become
vanishingly small when there are series of products

log £(m, 8 | X) = log P (x| m, ©)



Why would you use log-likelihood?
Intuitively, that is what you are trying to do: Finding the most
probable model. But, also:

e |t allows comparison across models with different complexity
o BIC and AIC are expressed as a function of log likelihood:

BIC = k log(n) - 2 log /. AIC = 2k-2 log £

e |t allows fitting to individuals as well as group data
o Group-level log likelihoods are the sum of individual log likelihoods!



How to do it - easy way

e Set your values for mand 6

e Run many simulations

e Calculate mean and standard
deviation

e Compare to subject data point x
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Limits
ACT-R models often takes a long time to run

Necessary to run model many times to get stable data

Aggregated data often contains very few data points



Trial by trial



Trial by trial likelihood

Lm, 8| x)=P(x|mB8); x={x,X,, ... X;}
P(x|m, 8) = P(x,|m, 8) - P(x,|m, 0, x,) - ... - Px,|/m, 8, x, X, ... X,)

ACT-R is a Markov model, and every choice is determined only by
the current state.

So, if we force the model to follow the choices:
P(x|m, 8) = P(x,|m, 8) - P(x,|m, 0) - ... - P(x,|m, 0)
log £ =3 log P(x|m, 6)
This is just model tracing! (Koediger & Anderson, 1993)



Advantages of trial by trial data

e You get more data points for every individual
e Aggregated data can be deceiving:




Example: Incentive Processing Task
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Two ways to approach the task

Procedural Memory Declarative Memory

more | win | J— more!
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https://github.com/UWCCDL/ProcVsDecl/ Yang et al, BioArXiv



Participant assignments

Distribution of Model Log-Likelihood Differences
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How Reliable are our Models?

e Generated 20,000 simulated runs
for each model
o with random initial params
e Applied trial-by trial MLE to recover
model

Recovery Probabilities by Model

Actual
Declarative

Procedural

Declarative Procedural
Predicted



Differences btw Declarative and Procedural groups

Behavioral Differences Between Groups
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Differences btw Declarative and Procedural groups

Procedural - Declarative Groups Durings Task

Medial Right Lateral Right

Medial Left Lateral Left




Mixing different measures



Better memory after errors

Elaborative Hypothesis

Participant
Cue: “whale”
Error: “tail”
Target: “swims”

Model
Chunk size = activation

Existing word associations

Task associations

Working Memory

Long-Term Memory
Chunk 2 Chunk 1
whale - tail whale - ocean

Cue: Element:
whale / ? “whale”

Chunk 3
whale - mammal

The cue gives more
spreading activation
to the chunk that
references it twice

Chunk 4
whale - swims
whale - *not* tail

Mediator Hypothesis

Detect-Error

Retrieve Retrieve
error | cue target | cue
Retrieve
target | error

Mediator predicts longer RTs!

Leonard et al., 2022 CogSci



Mixing different measures

Alc)=3 (t-t)+ s
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Mediator vs Elaborative
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Evidence for Mediator = sum of individual ALL = 1,728. Mediator is e*"2® more likely



Accurate Parameter Recovery



Accurate parameter recovery

In my lab, we make a big deal about understanding individuals using
parameters

But to make sense, these parameters need to be accurate



How Reliable are our Models?

e Generated 20,000 simulated runs
for each model
o with random initial params
e Applied trial-by trial MLE to recover
model

Recovery Probabilities by Model

Actual
Declarative

Procedural

Declarative Procedural
Predicted



How Reliable are our Models?

Actual

Generated 20,000 simulated runs
for each model

o with random initial params
Applied trial-by trial MLE to recover
model

Recovery Probabilities by Model
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PSS Task (Frank et al., 2004)
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ChooseA and AvoidB are proxies for D1/D2 dopamine receptors



Poor reliability

Test-Retest Correlation
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Xu & Stocco, 2021, Comp. Brain Behav.



Including D1/D2 parameters in ACT-R model

é ACT-R Model )
Task Vision Procedural Motor
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Parameters have greater reliability!
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Tracking memory decline
Long-running study to track memory
decay in 47 elderly individuals

Really, a param in Pavlik & Anderson
(“Speed of forgetting”, SOF)

Weekly tests over one year

Mean correlation r=0.72

With

SoF Correlations Across Toplcs
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Hake et al, 2023, CogSci % Applied Modeling Award



Differences in memory predict cognitive impairment

Probability of MCI Diagnosis by SoF y
Probability
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Summary

Reasons to use Maximum Likelihood (especially trial-by-trial)

Clear interpretation

Comparisons between models of different complexity
Can mix multiple measures

Reliable individual differences



Even shorter summary
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