Fitting ACT-R Models with Trial-by-Trial Maximum Likelihood

Andrea Stocco, University of Washington stocco@uw.edu

Fitting models

• We all do. That's part for the job!

Fitting models

- We all do. That's part for the job!
- But what do we **fit for**?
- In most cases, we **minimize** RMSE or R^2
- Suggestion: We should use Maximum Likelihood (MLE)
- In linear models, minimizing RMSE and maximizing log-likelihood are the same
 - \circ ... and they both maximize R^2
- When we use **non-linear** models, however, things are different
- And ACT-R has several non-linear equations

What is MLE?

Find parameters $\boldsymbol{\theta}$ of a model that maximize likelihood $\boldsymbol{\pounds}$

$$\mathcal{L}(m, \theta \mid x) = P(x \mid m, \theta)$$
model parameters data

In practice, you use **log**-likelihood, because probs become vanishingly small when there are series of products

$$\log \mathcal{L}(m, \theta \mid x) = \log P(x \mid m, \theta)$$

Why would you use log-likelihood?

Intuitively, that is what you are trying to do: Finding the most probable model. But, also:

- It allows **comparison** across models with different complexity
 - BIC and AIC are expressed as a function of log likelihood:

 $BIC = k \log(n) - 2 \log \mathcal{L} \qquad AIC = 2k - 2 \log \mathcal{L}$

- It allows fitting to **individuals** as well as **group** data
 - Group-level log likelihoods are the sum of individual log likelihoods!

How to do it – easy way

- Set your values for m and θ
- Run many simulations
- Calculate mean and standard deviation
- Compare to subject data point **x**

Participant data

Limits

ACT-R models often takes a long time to run

Necessary to run model many times to get stable data

Aggregated data often contains very few data points

Trial by trial

Trial by trial likelihood

$$\mathcal{L}(m, \theta \mid \mathbf{x}) = P(\mathbf{x} \mid m, \theta); \quad \mathbf{x} = \{x_1, x_2, \dots, x_N\}$$

$$P(\mathbf{x} \mid m, \theta) = P(x_1 \mid m, \theta) \cdot P(x_2 \mid m, \theta, x_1) \cdot \dots \cdot P(x_N \mid m, \theta, x_1, x_2 \dots x_N)$$
ACT-R is a Markov model, and every choice is determined only by the current state.

So, if we force the model to follow the choices:

$$P(\mathbf{x}|m, \theta) = P(x_1|m, \theta) \cdot P(x_2|m, \theta) \cdot \dots \cdot P(x_N|m, \theta)$$
$$\log \mathcal{L} = \sum_i \log P(x_i|m, \theta)$$

This is just model tracing! (Koediger & Anderson, 1993)

Advantages of trial by trial data

- You get more data points for every individual
- Aggregated data can be deceiving:

Example: Incentive Processing Task

- N = 199 participants
- 2 runs for each participant
- 4 blocks per run (2 Win, 2 Loss)
- 8 choices per block
- 64 trials total

Two ways to approach the task

Procedural Memory

Declarative Memory

 $U_{t}(p) = U_{t1}(p) + a[R - U_{t1}(p)]$

 $A_t(c) = \sum_j (t - t_j)^{-d}$

 $P(more) = e^{U(more)/T} / e^{U(more)/T} + e^{U(less)/T}$

$$P(more) = e^{A(more)/s} / \sum_{chunk} e^{A(chunk)}$$

Model-Based Group Assignment

Implemented equations in Python

For every participant:

- Use Powell's method to maximize Declarative log-likelihood across parameters (θ)
- Repeat for Procedural
- Assign participant to the model with greater likelihood

Total runtime: ~ 20 mins!

https://github.com/UWCCDL/ProcVsDecl/

Yang et al, BioArXiv

Participant assignments

Distribution of Model Log-Likelihood Differences

How Reliable are our Models?

- Generated 20,000 simulated runs for each model
 - with random initial params
- Applied trial-by trial MLE to recover model

Differences btw Declarative and Procedural groups

Behavioral Differences Between Groups

Differences btw Declarative and Procedural groups

Procedural - Declarative Groups Durings Task

Medial Right

Lateral Right

Medial Left

Lateral Left

Mixing different measures

Better memory after errors

Elaborative Hypothesis

Mediator Hypothesis

Mediator predicts longer RTs!

Leonard et al., 2022 CogSci

Mixing different measures

$$A_t(c) = \sum_i (t - t_i)^{-d} + s$$
$$P(c) = e^{A(c)/s} / \sum_i e^{A(i)/s}$$

But ACT-R also makes **predictions about RTs**:

$$rt = t_0 + F e^{A(c)}$$
$$P(\mathbf{x}_i | m, \theta) = P(c_i | m, \theta) + P(rt_i | m, \theta)$$

Mediator vs Elaborative

Evidence for Mediator = sum of individual $\Delta LL = 1,728$. Mediator is $e^{1,728}$ more likely

Accurate Parameter Recovery

Accurate parameter recovery

In my lab, we make a big deal about understanding individuals using parameters

But to make sense, these parameters need to be accurate

How Reliable are our Models?

- Generated 20,000 simulated runs for each model
 - with random initial params
- Applied trial-by trial MLE to recover model

How Reliable are our Models?

- Generated 20,000 simulated runs for each model
 - with random initial params
- Applied trial-by trial MLE to recover model

Parameter Recovery Results

PSS Task (Frank et al., 2004)

ChooseA and **AvoidB** are proxies for D1/D2 dopamine receptors

Poor reliability

Test-Retest Correlation

Xu & Stocco, 2021, Comp. Brain Behav.

Including D1/D2 parameters in ACT-R model

Parameters have greater reliability!

Tracking memory decline

Long-running study to track memory decay in 47 elderly individuals

Really, **a** param in Pavlik & Anderson ("Speed of forgetting", **SOF**)

Weekly tests over one year

Mean correlation r = 0.72

SoF Correlations Across Topics

Hake et al, 2023, *CogSci* ***** Applied Modeling Award

Differences in memory predict cognitive impairment

Adjusted $r^2 = 0.38$

Summary

Reasons to use Maximum Likelihood (especially trial-by-trial)

- Clear interpretation
- Comparisons between models of different complexity
- Can mix multiple measures
- Reliable individual differences

Even shorter summary

Super special thanks to...

