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Personalizing Anti-phishing Training 

◦ Organizations typically use simulation campaigns to train employees to detect phishing emails
◦ Employees selected randomly to be sent a simulated phishing email

◦ If they click on the malicious link, they are given immediate feedback and training 

◦ Non-personalized – humans are adaptive and learn from experience

◦ Personalized training requires a representation of the cognitive states of each individual in the 
organization
◦ We propose that phishing classification decisions are similar to other kinds of decisions from 

experience

◦ Instance-based learning theory (IBLT)1
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1Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance based learning in 

dynamic decision making. Cognitive Science, 27(4), 591-635
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Cognitive Model of Phishing Susceptibility

◦ Generalizable IBL model built in ACT-R cognitive architecture1

◦ Classifications made by generalizing across past experiences in memory

◦ Influenced by matching and retrieval mechanisms (i.e., blending2)

◦ Similarity of current instance to past instances

◦ Recency of past instances

◦ Frequency of past instances

◦ Similarities based on the semantic similarity between email features

◦ UMBC Semantic Similarity tool3

◦ Combination of LSA and WordNet

◦ Feedback
◦ Classification slot changed to “Phishing”

after incorrect classifications of phishing 
emails, prior to saving instance to memory

3

2Lebiere, C. (1999). A blending process for aggregate 

retrievals. In Proceedings of the 6th ACT-R 

Workshop. George Mason University, Fairfax, Va.

3Han, L., Kashyap, A. L., Finin, T., Mayfield, J., & Weese, J. (2013). 

UMBC_EBIQUITY-CORE: Semantic Textual Similarity Systems. 

In Proceedings of the 2nd JCLCS (pp. 44-52). Atlanta, GA.

1Cranford, E. A., Lebiere, C., Rajivan, P., Aggarwal, P., & Gonzalez, C. (2019). Modeling cognitive 

dynamics in end-user response to phishing emails. In Proceedings of the 17th Annual Meeting 

of the International Conference on Cognitive Modeling (pp. 35–40). Montreal, CA.
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Generalizable Model

◦ Same IBL model predicts human 
decision making across different 
tasks, with different databases of 
emails, and with different pools of 
participants1 
◦ Phishing Training Task -  PTT

(Singh et al., 2019)

◦ 3 phases: Pre-Test, Training, Post-Test

◦ Phishing Email Suspicion Test - PEST 
(Hakim et al., 2020)

◦ Testing Phase only

◦ Continuous suspiciousness ratings 
instead of binary classification decision
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1Cranford, E. A., Singh, K., Aggarwal, P., Lebiere, C., & Gonzalez, C. (2021). 

Modeling phishing susceptibility as decisions from experience. Proceedings 

of the 19th Annual Meeting of the ICCM (pp. 44–49). Virtual.
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How can we strategically schedule interventions?

◦ Effectively a scheduling problem
◦ Individuals require different amounts of training; timing is important

◦ Who to target at each time step?

◦ We combine cognitive modeling with machine learning methods to improve training
◦ Framed as a Restless Multi-Armed Bandit (RMAB)

◦ Employees (i.e., arms) modeled as Markov Decision Process (MDP)

◦ Cognitive model used to estimate transition probabilities

◦ Simulation study to compare effectiveness of solutions
◦ Cognitive Model of phishing susceptibility 

as simulated participants

◦ Presented either a phishing email (intervention)
or ham email (no intervention) on each trial

◦ 100 trials – 20 pre-test, 60 training, 20 post-test

◦ Selection algorithm determines which users to send phishing interventions

◦ Feedback provided after only after incorrect classification of phishing email
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Restless Multi-Armed Bandit formulation
◦ Each round, learner selects an arm for intervention and receives feedback/reward
◦ Goal to maximize total reward observed by learner

◦ Budget of 20%

◦ Each arm (i.e., employee/user) is modeled as a Markov Decision Process
◦ 2 possible States:

◦ Good or Bad

◦ Roughly, in the good state, the user always labels emails correctly and the reverse for the bad state

◦ 2 possible Actions:
◦ 1) intervention (send phishing email)

◦ 2) no intervention (send ham email)

◦ Rewards:
◦ Value of being in each of the states

◦ 1 in a good state and 0 in a bad state

◦ Transition Probabilities:
◦ Distribution over the possible next states given the current state and action

◦ 𝑝𝑔𝑏
1 , 𝑝𝑔𝑏

2 , 𝑝𝑏𝑔
1 , and 𝑝𝑏𝑔

2 , where 𝑝𝑥𝑦
𝑖  denote the probability of transfer from state x to state y when action i is taken

◦ We use the Cognitive Model to estimate these transition probabilities

6
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RMAB – User specification
◦ SuperArm-WIQL used to solve the RMAB
◦ Reduces complexity and computational costs of learning the parameters for each user

◦ SuperArm – users clustered into groups (as described earlier) and learning experiences combined

◦ WIQL – Whittle Index Q-Learning1

◦ Q*(s, a) values capture the quality of taking action a from state s

◦ Selects users from SuperArms based on Whittle Index

◦ Q*(s, 1) – Q*(s, 2) 

◦ Simulated users initialized with different amounts/types of emails
◦ Represents individual differences in experience
◦ Email usage (Init Length)

◦ 10-100 emails in increments of 10

◦ More emails = greater overall email usage, but 
new emails have less impact on learning

◦ Phishing & network security experience (Ham Prop)

◦ 70%-100% ham normally distributed (M = 0.85, sd = 0.05)

◦ Fewer ham emails = greater phishing experience and
greater likelihood to classify phishing emails correctly
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1Biswas, A., Aggarwal, G., Varakantham, P., & Tambe M. (2021). Learn to 

intervene: An adaptive learning policy for restless bandits in application to 

preventive healthcare. Proceedings of the 30th IJCAI, (pp. 4039–4046).
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RMAB – Using Cog Model to derive transition probabilities

◦ In the absence of data to train an MDP, we use a cognitive model to simulate data
◦ A priori predictions based on constrained mechanisms resulting from a theory of cognition

◦ Simulated 1000 cognitive agents performing the task
◦ Paired against a random selection algorithm

◦ On each trial an agent is deemed in a good state if their classification of a test phishing email is 
correct or a bad state if their classification is incorrect

◦ Transition probabilities based on the model’s sequence of decisions

◦ Proportion of transitions from a good or bad state at time t to a good state at t+1, depending on the action

8

Cluster ID Cluster Label 𝒑𝑮𝑮
𝟏 𝒑𝑩𝑮

𝟏 𝒑𝑮𝑮
𝟐 𝒑𝑩𝑮

𝟐

1 high-high 0.783 0.610 0.659 0.458
2 low-low 0.877 0.824 0.849 0.715
3 low-high 0.824 0.645 0.738 0.461
4 high-low 0.871 0.818 0.830 0.761
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Comparing alternative transition probabilities

◦ Defining only 2 states limits effectiveness of RMAB
◦ In reality, users are typically somewhere between “good” and “bad” states

◦ As a first step, increase to 3 states: Good, Intermediate, Bad

◦ Two test phishing emails given on each trial to determine state

◦ Static transition probabilities represent average across time horizon
◦ Users learn and adapt over time, and thus transition probabilities should reflect this learning rate

◦ As a first step, derive transition probabilities for each block of 20 trials

◦ Using 3 states

◦ Reflects improvement in phishing classification ability (and some decrease in ham classification 
ability) from start, to middle, to end of training phase

9

Cluster ID Cluster Label 𝒑𝑮𝑮
𝟏 𝒑𝑮𝑰

𝟏 𝒑𝑮𝑩
𝟏 𝒑𝑰𝑰

𝟏 𝒑𝑰𝑮
𝟏 𝒑𝑰𝑩

𝟏 𝒑𝑩𝑩
𝟏 𝒑𝑩𝑰

𝟏 𝒑𝑩𝑮
𝟏 𝒑𝑮𝑮

𝟐 𝒑𝑮𝑰
𝟐 𝒑𝑮𝑩

𝟐 𝒑𝑰𝑰
𝟐 𝒑𝑰𝑮

𝟐 𝒑𝑰𝑩
𝟐 𝒑𝑩𝑩

𝟐 𝒑𝑩𝑰
𝟐 𝒑𝑩𝑮

𝟐

1 high-high 0.663 0.287 0.050 0.377 0.520 0.104 0.248 0.423 0.329 0.516 0.367 0.117 0.414 0.359 0.228 0.472 0.348 0.180
2 low-low 0.793 0.191 0.016 0.278 0.682 0.040 0.167 0.258 0.575 0.754 0.218 0.028 0.304 0.623 0.073 0.238 0.393 0.369
3 low-high 0.737 0.236 0.027 0.360 0.536 0.105 0.236 0.429 0.334 0.635 0.296 0.070 0.395 0.407 0.199 0.495 0.340 0.164
4 high-low 0.793 0.188 0.019 0.259 0.711 0.031 0.049 0.343 0.608 0.711 0.253 0.035 0.326 0.612 0.063 0.119 0.379 0.502
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Cog Model Simulation Design

◦ Cognitive Model used to simulate 1000 users paired with each selection algorithm
◦ Same set of initialized users for each simulation

◦ Multiple model agents run in parallel via ACT-R’s built-in mechanism
◦ On each trial, selection algorithm determines which users to send phishing intervention

◦ Agents are sent appropriate type of email

◦ Each agent makes a decision before moving to the next trial 

◦ 5 selection algorithms compared
◦ NoAction

◦ Random

◦ RMAB-2s (2 states)

◦ RMAB-3s (3 states)

◦ RMAB-3sB (3 states – Blocks)

10

Selection 
Algorithm

Cognitive Simulations

Cognitive Model Agents



11

Selection Preferences

◦ Accuracy metrics are dependent on which users 
are selected

◦ Analysis of selection preferences reveal different 
patterns between selection algorithms
◦ RMAB-2s tends to select users with high HamProp

◦ Results in improving users who have least phishing 
experience

◦ RMAB-3s tends to select users with low InitLength

◦ Results in improving users who have least experience with 
emails in general (training has easier impact)

◦ RMAB-3sB tends to select users with high InitLength 
and high HamProp

◦ Results in improving those users that need the most 
phishing training to overcome large history of experience 
(recency) with ham emails and little experience with 
phishing emails (frequency)

11
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Signal Detection Measures

◦ Intervention improves signal detection compared to no 
intervention (NoAction)
◦ Most impact on High HamProp groups (Low-High & High-High)

◦ Difference in D-prime scores from first 20 trials to last 20
◦ RMAB-3sB only condition predicted to improve overall 

classification ability compared to Random intervention

◦ Also, only condition to improve High-Low group

12



13

Conclusions

◦ Overall, the RMAB-3sB solution proved most successful at increasing phishing detection 
accuracy while minimizing false alarms across the groups
◦ Likely that RMAB would do better

◦ as the number of clusters approaches the number of users

◦ as number of states increases

◦ Future research will explore optimal tradeoff in number of clusters, number of states, and 
computational costs

◦ Future research will
◦ Validate simulation results in human laboratory experiments

◦ Refine the Cognitive Model based on experimental results of Random condition

◦ Refine the RMAB formulation based on updated Cognitive Model

◦ Explore methods of further combining the pros of cognitive models with pros of RMAB

◦ e.g., Using cog model to provide additional learning rate estimations

◦ Compare the RMAB formulation to purely cognitive solutions

◦ Cognitive solution have lower computational overhead and the advantage of selecting users at the individual level

◦ Explore methods to further personalize training by selecting specific emails based on type and content
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