

Because a

RetRaces

AB LOD 2

2 200

Carnegie

Mellon University 178 S

150

Peter Pirolli, Konstantinos Mitsopoulos, Choh Man Teng, Christian Lebiere, Mark Orr

esing

🗴 ihmc

Individual Psychology Matters in the Prediction of Population-level Response to Pandemics

 People have different mindsets and capabilities, they respond differently to behavior-change interventions, and those responses change over time.

The States Most & Least Likely To Wear Face Masks

statista 🔽

©∄⊝

SIR Models (Compartmental Models; ODE Models)

Population is in different states or compartments:

- *S* = Number Susceptible
- *I* = Number Infectious
- *R* = No. Removed (immune or deceased)

SIR Models (Compartmental Models; ODE Models)

Population is in different states or compartments:

- *S* = Number Susceptible
- *I* = Number Infectious
- *R* = No. Removed (immune or deceased)

A set of ordinary differential equations characterize the transitions

SIR Models (Compartmental Models; ODE Models)

Population is in different states or compartments:

- *S* = Number Susceptible
- *I* = Number Infectious
- *R* = No. Removed (immune or deceased)

A set of ordinary differential equations characterize the transitions

Agent Based Models

Venkatramanan, S., Lewis, B., Chen, J., Higdon, D., Vullikanti, A., & Marathe, M. (2018). Using data-driven agent-based models for forecasting emerging infectious diseases. *Epidemics*, 22, 43-49. doi:10.1016/j.epidem.2017.02.010

Individual-level behavior-response strength profile

Hand washing

Mask wearing Social distancing Nonessential visits

Vaccination

Individual-level behaviorresponse strength profile

Embed <u>Psychologically</u> <u>Valid Agents</u> *in an agentbased simulation of a given region and period*

Data-informed Agents in Epi-Networks

Types of Data-Informed Agents

Simple Scenario with Global Information

 $Rt \rightarrow Model \rightarrow \bigoplus \rightarrow Epidemic Model \rightarrow Rt+1 \rightarrow ...$

SIRS with varying immunity

Running Scenarios

Running Scenarios with Experience-based Agents

Simple Scenario with Local Information and Realistic Network

'Asym.prop',	
'Critical.prop',	
'Die.in.icu.prop',	Population parameters
'Hosp.prop',	i opulation parameters
'MonthsOfImmunityDuration',	
'Severe.prop',	
'd.asym',	
'd.hos',	
'd.icu.mult',	
'd.incum',	
'd.sym.mild',	
'd.to.death.not.hosp',	
'd.to.hos',	
'incum.non.infec.proportion',	
'm.Sm',	
'm.Ss',	
'm.h',	
'severe.die.hosp.shut',	
'tau',	
'prob.tran.base',	
'mult.trans',	
'daily.vacc.rate',	
'vacc.eff.prev.trans',	
'daily.prob.randomly.testing',	
'false.positive.rate',	
'false.negative.rate',	
'pos.test.mixing.reduction',	
'variant.prob',	
'variant.trans.drift',	
'variant.count',	
'variant.history',	
'tau.eff',	
'RO',	
'status_init'	

t=0

	≑ id	≑ sex	+ household_id	+ age	<pre> inf.status </pre>	test.day	trans.factor		+ pos.test	+ vaccinated	+ variant	≎ path	+ R.count	+ R.count.transformed	\$ strength	vacc.priority.score
2000261	2000261		2000076	57	Susc	nan	1.00000	nan	False	False	nan	1	0.00000	0.00000	0.01820	5568.00000
2000262	2000262	1	2000076	23	Susc	nan	1.00000	nan	False	False	nan	1	0.00000	0.00000	0.05794	6503.00000
2000263	2000263	1	2000076	32	Susc	nan	1.00000	nan	False	False	nan	1	0.00000	0.00000	0.03788	6160.00000
2000264	2000264		2000076	26	Susc	nan	1.00000	nan	False	False	nan	1	0.00000	0.00000	0.06993	7577.00000
2000413	2000413		2000122	36	Susc	nan	1.00000	nan	False	False	nan	1	0.00000	0.00000	0.02172	4604.00000

t=30

2007066	2	2002564	41	Inf.Sm	750110.00	0.20000	31.00000	False	False	1.00000	Inf.Sm	0.00000	0.00000	0.05749	8338.00000
2007067		2002564	18	Susc	nan	1.00000	nan	False	False	nan	1	0.00000	0.00000	0.02937	3434.00000
2007068	1	2002564	17	Susc	nan	1.00000	nan	False	False	nan	1	0.00000	0.00000	0.01117	1315.00000
2007189		2002598	49	Susc	nan	0.20000	nan	False	False	nan	1	0.00000	0.00000	0.04795	8332.00000
2007190		2002598	18	Susc	nan	1.00000	nan	False	False	nan	1	0.00000	0.00000	0.04712	4853.00000
2007191	1	2002598	16	Susc	nan	1.00000	nan	False	False	nan	1	0.00000	0.00000	0.01526	1691.00000

\$ from	÷ to	÷ data
2000261	2000262	{'weight': 0.01849580767861203, 'edge_id': 1}
2000261	2000263	{'weight': 0.01849580767861203, 'edge_id': 2}
2000261	2000264	{'weight': 0.01849580767861203, 'edge_id': 3}
2000261	2029128	{'weight': 0.01849580767861203, 'edge_id': 4}
2000261	2189707	{'weight': 0.01849580767861203, 'edge_id': 5}
2000261	2668730	{'weight': 0.01849580767861203, 'edge_id': 6}
2000261	2000260	{'weight': 0.01849580767861203, 'edge_id': 7}
2000262	2000263	{'weight': 0.01849580767861203, 'edge_id': 8}
2000262	2000264	{'weight': 0.01849580767861203, 'edge_id': 9}
2000262	2006030	{'weight': 0.01849580767861203, 'edge_id': 10}
2000262	2026136	{'weight': 0.01849580767861203, 'edge_id': 11}
2000262	2030942	{'weight': 0.01849580767861203, 'edge_id': 12}

Alg	orithm 1 ABM Epidemiological Simulatio	n
1:	$robjects.r[source](abm_run_init.R)$	\triangleright Run initialization script in R
2:	$g_sim_r \leftarrow \text{robjects.r}[g_sim]$	\triangleright g_sim is from R workspace
3:	$p \leftarrow \text{robjects.r}[p]$	\triangleright population params
4:	$g_sim_py \leftarrow \mathbf{convert_to_python}(g_sim_r)$	
5:	$G \leftarrow \mathbf{create_network}(g_sim_py)$	
6:	$create_decision_makers(G)$	
7:		
8:	for t in range $(num_periods)$ do	
9:	$g_sim_r \leftarrow \text{robjects.r}[\text{RunAbm}](g_sim_r$	$p, days = 7) \triangleright simulation in R$
10	a sim mu (convert to pathon (a sim	(m)

10:
$$g_sim_py \leftarrow \mathbf{convert_to_python}(g_sim_r)$$

11:
$$G \leftarrow \mathbf{update_network}(G, g_sim_py)$$

- 12: mask_decisions(G, criterion)
- 13: $g_sim_r \leftarrow \mathbf{revert_network_to_r}(G, g_sim_r, g_sim_py)$

14: **end for**

Masking

No Masking

COVID-19 initially ravaged the most densely populated parts of the U.S., but that pattern has changed substantially over the past two years

Average monthly reported coronavirus deaths per 100.000 U.S. residents

Note: councies are grouped into deciles by population density. Lach decile represents 10% of the total U.S. population.

Source: Pew Research Center analysis of COVID-19 data collected by The New York Times as of Feb. 28, 2022. See methodology for details.

PEW RESEARCH CENTER

Data Pipeline

Norms and norm amplification

Gollwitzer, A., et al. (2020). Partisan differences in physical distancing are linked to health outcomes during the COVID-19 pandemic. *Nature Human Behaviour, 4*(11), 1186-1197. doi:10.1038/s41562-020-00977-7

- Compliance with nonpharmaceutical interventions (NPIs) or vaccination involves decision making about riskreducing options
- Different individuals/regions have different norms
- Differences in norms amplified over time by experience & memory sampling bias

Awareness-driven reactions drives the shape and dynamics of epidemics

- Proximal experience, news, social media etc. give indication of cases and death
- These perceptions influence attitudes, intentions, behavior
- Behavior modulates transmission
- There are delays between infection, fatality, and awareness
- This results in oscillatory dynamics

Dampened Oscillation of Effective Transmission Number (R_t)

Dampened Oscillation of R_t

Oscillation of R_t and Mask Wearing Exhibits a Learning Effect

Example 1: 50 State Agents, Estimate Subjective Utilities of Wearing Masks

- Curve-fitting exercise that is analogous to typical policy & econometric analysis that use surveys to estimate factors affecting risk perceptions and behavioral preferences
- Revealed preferences as opposed to stated preference
- Goal: Find the subjective utility values for the model that best predict the observed data
- Data = 50 states, daily mask wearing, waves 1,2,3 (3-15-2020 to 3-31-2021)

Example 1: 50 State Agents, Estimate Subjective Utilities of Wearing Masks

- Assume
 - Prob(mask) = exp(V)/(1+exp(V)
 - Prob(mask) = .5 when V = 0 logits
 - Where V is some blending of mask-wearing utilities U(i)
- State agents have normative utilities
 - Mask, no-mask wearing
 - Utility chunks added in proportion to demographic variables—e.g., percent voting Trump in 2016
- State agents have awareness-based reactions
 - Utility of risk reduction of mask wearing is high when Rt is high and low when Rt is low
 - Utility chunks added in proportion to observed proportion of people wearing masks ("fear") or not ("freedom")
 - Use blending to predict mask-wearing utility based on current day's Rt value

Example 2: 50 State Agents Behavioral outcomes stored directly with regional features

- Train norms for each state using N = 10 initial days of data
 - F1, ... Fk demographic & psychographic variables
 - Outcome ~ [0, 1]
 - Learn <F1, ..., Fk, outcome> for each state
- State agents have awarenessbased reactions
 - Use blending to predict mask-wearing outcome based on current day's Rt value

Specific state dynamics

Example 2: 50 State Agents Behavioral outcomes stored directly with regional features

- Train norms for each state using N = 10 initial days of data
 - F1, ... Fk demographic & psychographic variables
 - Outcome ~ [0, 1]
 - Learn <F1, ..., Fk, outcome> for each state
- State agents have awarenessbased reactions
 - Use blending to predict mask-wearing outcome based on current day's Rt value

Probe for effects of specific features

Probe for predicted masking given known state feature

Example 3: One agent containing all state info

- Norms and reactions in chunks that contain all demo- and psycho-graphic factors as well as state labels
- Blending can query values based on factors or state labels

Example 4: County level, Reduction in non-essential visits (social distancing)

- Similar to state model. One big agent for all counties (N = 1999)
- Richer demo- /psycho—graphic features
 - Demographics
 - Weather
 - Big 5 personality

Conclusions

- Psychologically Valid Agents can be used to predict behavior change
 - Exhibit norm amplification & awareness-driven transmission oscillation
- Previous work has used ML and NLP analysis of Twitter to seed the models with attitudes
- Technical issues for ACT-R
 - Can IBL salience be used as a robust measurement of the effects of a change in an input factor X on a dependent behavior Y?
 - The structure of similarity space is currently ad hoc
- Theoretical challenges
 - Are we modeling individuals, types of individuals, populations (regions, networks...)?
 - When are we doing cognitive modeling and when are we using architectures for data science?
- Plenty of available data and phenomena to address:
 - Information flows and consumption, effects of mass media, regional media consumption
 - Eye-of-the-beholder: How people interpret/react to experiences, messages, guidance, mandates.
 - Complexities and dynamics of source credibility and information flow in reaction to waves of cases and mandates

Predictive Intelligence for Pandemic Prevention (PIPP)

- IHMC + CMU + UVA is one of 26 teams in \$26 million NSF program to support interdisciplinary investigations and collaboration to predict and prevent the next infectious disease outbreak
- Increase our ability to anticipate the role of human behavior and information sharing, and development of mitigation strategies and policy recommendations.

% Control of the second s

IHMC+CMU+UVA Grand Challenge

An interdisciplinary science of computational theories and models needs to address the mutually adaptive dynamics of (mis)information flows, human behavior, and the transmission and evolution of pathogens

Thanks

Delphi Research Group

unacast.

- Anton Gollwitzer
 - County level demographics
- Uncast
 - Mobility datsa
- Delphi Group COVIDcast
 - Mask-wearing and other psychobehavioral data
- Tobias Ebert and Samuel Gosling
 - Regional Big 5 Personality data

- Johns Hopkins
- Andrew Parker and Raffaele Vardavas
 - Agent-based network SIR platform

http://www.dianefarrisgallery.com/artist/currelly/ex00/images/uncharted_territory.html

Goals and Memory Chunks in ACT-R

GOAL-35 ISA BEHAVIOR-GOAL BEHAVIOR STATIC_LUNGE_WITH_WALL DIFFICULTY -0.5437191 ABILITY NIL MOTIVATION NIL UTILITY 1

Goal

Memory

BEHAVIOR-EXPERIENCE100-0 ISA BEHAVIOR-EXPERIENCE BEHAVIOR MARCHING_IN_PLACE DIFFICULTY -0.013206851 ABILITY 0.025988732 MOTIVATION 0.242358 UTILITY 1.0 OUTCOME SUCCESS

BEHAVIOR-EXPERIENCE5-0 ISA BEHAVIOR-EXPERIENCE BEHAVIOR PUSHUPS_OFF_WALL DIFFICULTY -1.037143 ABILITY -1.0252459 MOTIVATION 0.23818936 UTILITY 1 OUTCOME SUCCESS The Scientific Opportunity for Cognitive Science

Behavior Change in the Real World

- Take computational psychology out of the lab, off of Mechanical Turk, and into the real ecology of everyday life
- •Neuroscience and cognitive psychology can address the meaningful, complex activities that people perform in their everyday life
- •Multilevel: From neurons to communities