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Memory should make more available things that are more likely to be needed. Across multiple
environmental domains, it has been shown that such a system would match qualitatively the memory
effects involving repetition, delay, and spacing (Schooler & Anderson, 2017). To obtain data of
sufficient size to study how detailed patterns of past appearance predict probability of being needed
again, we examined the patterns with which words appear in large two data sets: tweets from popular
sources and comments on popular subreddits. The two data sets show remarkably similar statistics,
which are also consistent with earlier, smaller studies of environmental statistics. None of a candidate
set of mathematical models of memory do well at predicting the observed patterns in these environ-
ments. A new model of human memory based on the environmental model proposed by Anderson and
Milson (1989) did better at predicting the environmental data and a wide range of behavioral studies
that measure memory availability by probability of recall and speed of retrieval. A critical variable in
this model was range, the span of time over which an item occurs, which was discovered in mining the
environmental data. These results suggest that theories of memory can be guided by mining of the
statistical structure of the environment.
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Rational analysis (Anderson, 1990) has been a productive
approach for the past three decades in cognitive science, addressing
a variety of topics in different, novel ways (e.g., Chater & Oaksford,
1999; Gershman et al., 2015; Griffiths et al., 2015; Kemp & Regier,
2012; Lewis et al., 2014). With similarities to Marr’s computational
level analysis (Marr, 1982), it proposes that an abstract specification
of human behavior can be derived as an optimal solution for
achieving human goals in an uncertain environment and within
computational limitations. In the early analyses of Anderson (1990),
the emphasis was on cognition as emerging as a response to the
statistical structure of the environment with minimal commitments
about cognitive mechanisms. Many of the more recent approaches
(see Lieder & Griffiths, 2019), have focused on how computational
limitations shape cognition in the spirit of ecological rationality
(Todd & Gigerenzer, 2012).

As one earlier example of rational analysis, Anderson and Milson
(1989; henceforth A&M), proposed that the goal of memory was to
make most available what was most likely to be needed in the
current situation. They proposed a model of how the probability of
an item varied (details later in this article) and with that model were
able to predict many of the major effects in human memory such
learning functions, forgetting functions, and the spacing effect. The
only computational assumptions they needed were that past experi-
ences are considered in order of their probability of being needed
and that it takes more time to consider more experiences.

Simon (1989) made an early and cutting criticism of this rational
analysis, particularly with its emphasis on the environment and
disregard for mechanism. For instance, he commented on the A&M
assumption that the need to remember an experience decayed with
time. He asserted that this assumption was “motivated by our
knowledge that empirically there is memory decay” (p. 33). He
argued that rational analysis was just making up a world in which
human memory would be optimal and that the assumptions in that
model should be tested as to whether they were true of the actual
world. In his thesis, Schooler (1993) performed just such empirical
tests. In analyses of three environments that make memory demands
on humans (word use in New York Times headlines, word use in
caregivers’ speech to children, and sources of email messages)
Schooler showed that a system that made most available what
was probable would display behavior that matched human memory.

The early rational analysis had argued for a focus on the structure of
the environment instead of the structure of mind. That competition
between approaches was mistaken. A careful analysis of the demands
of the environment can help shape amechanistic theory of themind that
responds to those demands. The A&M theory and the Schooler
analyses guided the mechanistic theory of Adaptive Control of
Thought–Rational (ACT-R; Anderson & Lebiere, 1998), which also
incorporated other results from rational analysis in its design.
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This article follows up on Schooler’s work by exploring much
larger environmental databases. We will show that a detailed
understanding of the structure of such data can lead to a more
successful theory of human memory. This article has the following
six parts:

1. A review of Schooler’s analyses which serve as the
template for the new analyses reported here.

2. An examination of the detailed structure of two large
databases, one involving Twitter messages and the other
involving Reddit messages.

3. Tests showing that relevant theories of memory do not
correspond to this structure.

4. A new theory of memory, A&M Performance Equation
(AMPE) based on the original A&M theory, that does
correspond to the environmental structure.

5. Tests showing that AMPE fits behavioral data on human
memory better than alternative theories.

6. Discussion of the robustness of the statistical structure of
the environment and its implications for understanding
human memory.

The Schooler Analyses

To understand the approach that Schooler took to relating the
environment to memory we will review his analysis of patterns of
word usage in the New York Times during the 1980s. The
underlying assumption was that when a word like “Qaddafi”
appeared in a headline it was a demand on the reader’s memory to
retrieve who Qaddafi is in order to judge whether they wanted to
read the article. An adaptive memory would make knowledge
available about Qaddafi to the degree that it was likely to be
needed.
Anderson and Schooler (1991) examined how the pattern of

word use in the last 100 days of the New York Times predicted its
use on the next (101st) day. Figure 1 illustrates some of the effects
they found. Figure 1a and 1b illustrate that the probability of a
word appearing in a New York Times headline on the next day
decreases as a function of the number of days since it last
appeared. Part (a) shows a function that initially drops rapidly
but also rapidly decelerates in its descent. Part (b) shows that this
function becomes linear when both axes are log-transformed—
the signature of a power function. Human forgetting has also been
characterized (e.g., Wickelgren, 1974; Wixted & Ebbesen, 1991)
as a power function—probability of recalling a memory de-
creases as a power function of the amount of time that has passed.
Note that here is the response to Simon’s challenge to see if such a
decay occurred in the real world.
Figure 1c shows how the frequency with which a word has

appeared in the last 100 days combines with delay since the last
appearance of the word. The three frequency bands are approxi-
mately parallel linear functions of delay on a log–log plot. More-
over, the curves are approximately spaced according to the log of the
frequency, giving rise to the observation that odds are approximately
a product of a power function of practice and a power function of

delay. In a survey of the literature, Schooler and Anderson found
that frequency and recency combined in a similar way.

Figure 1d is for words that appeared just twice in the last 100
days and shows the interaction between the spacing of the two
occurrences and the delay since the last occurrence. The different
curves reflect different spacings between the two occurrences.
Reflecting the classic spacing effect (Cepeda et al., 2006) in
human memory, the drop in probability with delay is greatest for
items that occurred twice close together. As we will see, it proves
challenging to understand how the spacing effect in Figure 1d
relates to the apparently independent effects of practice and delay
in Figure 1c.

Since this article will be doing similar analyses, it is important to
understand how the data in displays like Figure 1 is calculated.
These analyses examine how measures calculated from the appear-
ances of a word like “Qaddafi” in the last 100 days of New York
Times headlines predicts the probability it occurred on the 101st
day. The data for these analyses come from 730 days of headlines
that span 1987 and 1988. To perform these analyses, a 101-day
window is slid day-by-day across the period and results are aver-
aged. Some points, like the probability of occurring on the next day
(1 on the x-axis in Figure 1a), are averages of all words meeting that
exact pattern (in this case, all words that appeared on the 100th day
for all of these windows). In other cases to get reliable data, patterns
are averaged together. Such averaging was done for the later points
in Parts a and b of Figure 1, many of the points in Part c, and all of the
points in Part d.

Anderson and Schooler (1991) found strikingly similar patterns in
caregiver speech to children and in who sent John Anderson (JA) email
messages. Subsequently, similar patterns have been found in what trees
Howler monkeys visit, what locations baboons visit, what other chim-
panzees a chimpanzee encounters in a day, and which other people a
German student encounters in a day (Pachur et al., 2014; Schooler et al.,
2000; Stevens et al., 2016). This supports the conclusion that there are
robust regularities in way information appears in the human environ-
ment that may reflect patterns that hold even in pre-human history. An
adaptive memory would be shaped to reflect such regularities.

One limitation of the Anderson and Schooler (1991) analyses and
of the later analyses is the size of the databases that were examined.
This reflected both limitations in computational power in some cases
and in the amount of data that was available in other cases. This
means that the ability to identify the patterns that appear in Figures 1c
and 1d is limited. Moreover, these analyses have not extended to
temporal patterns beyond 100 (x-axis in Figure 1). Increasing that
scale can reveal much about such sequential data. Behavioral experi-
ments on memory are even more limited in the detail with which they
can examine such patterns, but it is no longer necessary to similarly
restrict studies of environmental demands on memory. This raises the
possibility that, if the rational thesis is correct, we will be able to
discover things about memory by studying the environment.

This article is based on two much larger data sets, one from Twitter
and one from Reddit, that allow for a thorough examination of the
interaction between recency, frequency, and spacing (as well as other
factors). Looking at the patterns that emerge from these data and
performing detailed tests, we improved the A&M theory of the structure
of environmental demands onmemory. This then led to a new theory of
memory, AMPE, that addresses the interactions of recency, frequency,
and spacing more successfully than existing theories.
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Patterns in Twitter Messages and Reddit Comments

Below we describe two modern data sets that are much larger
than the data sets used by Anderson and Schooler (1991). They
have distinct properties that allow each to address some inter-
esting questions about human memory. Like Schooler’s data
from the New York Times and caregiver speech, they involve a
sequence of texts, where each text consists of a set of words. We
will be examining the statistical patterns of the strings in these
texts (like “Qaddafi” in the New York Times headlines) and how
these patterns predict the appearance of the strings in future
texts. One sequence of texts will be tweets that appear across
years from highly followed individuals. The other sequence of
texts will be comments that appear in popular subreddits on a
single day. In both cases, the question of interest is how the
appearances of a string in prior texts in the sequence predict its
probability of occurring in the next text. Because the appearance
of a string is a demand on the memory of the follower to
understand the referent of the string, an adaptive memory would

make most available information about the most probable
strings. Despite their differences these data sets will prove to
have some strong statistical commonalities that allow us to test
and refine theories of memory, particularly focused on the
spacing effect.1

Twitter Database

The first database is a subset of the data in Stanley’s dissertation
(Stanley, 2014; Stanley & Byrne, 2016) on predicting hashtag
usage. The subset involved the tweets of the top 500 English
tweeters measured by number of followers as of the collection of
the data (January 7, 2014). It contained all their tweets from near
the beginning of Twitter (July 11, 2007) to the collection date
(January 7, 2014). Each tweet from a source posed memory
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Figure 1
Anderson and Schooler’s (1991) Predictive Patterns in the New York Times

0 20 40 60 80 100
Days Since Word Last in Headlines

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
ro

ba
bi

lit
y 

of
 W

or
d 

in
 H

ea
dl

in
es

(a) New York Times: Recency
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(b) New York Times: Recency power
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(c) New York Times: Recency and Frequency
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(d) New York Times: Spacing
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Note. (a) Probability of a word occurring on the next day as function of how long ago it last occurred; (b) Log–log transform
of part of Part a; (c) Joint effect of frequency of occurrence in the last 100 days and delay since last occurrence; (d) For items
that occurred twice in the last 100 days, the effect of lag between the two occurrences and time since last occurrence.

1 The data (Anderson, 2022), analysis code, and simulation code for this
paper are available at http://act-r.psy.cmu.edu/?post_type=publications&p=
32939. This work was not preregistered.
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demands on someone following the tweeter. For instance, here is a
tweet from @barackobama:

This debate is not just about numbers. It’s a set of major decisions that
are going to affect millions of families.

A reader of this tweet would have to know what “debate” refers to,
but every content word is a demand on memory to retrieve its
meaning. An adaptive memory should make these words available
to the degree they are likely to occur. We stripped high-frequency
function words from the tweets, then limited all tweets to a
vocabulary of the 20,000 most frequent strings (tweets do contain
strings that are not words), and eliminated repeated strings in a
tweet. Hashtags survived if they had high enough frequency. The
surviving strings from the example tweet are:

“debate” “just” “numbers” “set” “major” “decisions” “going” “affect”
“millions” “families”

This process yielded 1,038,632 tweets averaging 7.5 unique
strings.2

Using the same moving window technique described with respect
to Figure 1, we examined how the pattern of appearance over 1,000
tweets predicted the probability of occurring in the 1001st tweet. Of
the top 500 English tweeters, 361 had in excess of 1,000 tweets and
they averaged approximately 2,722 tweets.3 To apply this analysis
we need at least 1,001 tweets—first 1,000 are the predictive context
and the last is the tweet to be predicted. Thus, there are approxi-
mately 361 × (2,722 − 1,001) = 621,281 windows for analysis.
Each string that appears at least once in a 1,000-tweet set will define
a pattern of appearance to predict whether it occurs in the 1001st
tweet. The windows average approximately 1900 distinct strings.
Thus, there are approximately 621,281 × 1900 or ∼1.2 billion
patterns for analysis.
Even though there are more than a billion patterns, there are many

more (21000) possible patterns than observations. Still, the size of the
data set allows for examining detailed information about how past
patterns predict future appearance of a string. Figure 2 displays
analyses of these that highlight the effects of recency, frequency, and
spacing. Part (a) shows how probability of a string appearing in the
1001st tweet increased with the number of tweets it had appeared in
and decreased with the number of tweets since it last appeared.4 To
better reveal what is happening, both the x and y axes are plotted in
log units. The patterns in Figure 2a correspond somewhat to what
Anderson and Schooler (1991) reported—parallel linear functions
of delay (see Figure 1c). The best-fitting function of the form

logðprobabilityÞ = a + b * logðFrequencyÞ + c * logðLagÞ; (1)

has the values a = −3.67, b = .54, and c = −.65.
While this equation captures some of the effects, there are

deviations from its simple linear combination: higher frequencies
show somewhat shallower slopes initially. However, at a certain
point the higher bands show a sharp drop with delay to the point
where differences among frequencies seem to almost disappear.
This final drop-off can be characterized as reflecting a spacing
effect: If all the many presentations were massed together a long
time ago, they show accelerated forgetting and are not much more
likely to be remembered than a single presentation that long ago.
Restricted to the lowest four frequency bands and delays less than
100, the pattern is similar to Figure 1c, which covers this range.5

However, this pattern does not fully generalize to greater frequen-
cies and longer delays.

Part b of Figure 2 is focused on those cases where an item has just
occurred twice and investigates the effect of the lag between those
two occurrences, breaking that lag into bands. This replicates the
pattern found by Anderson and Schooler (1991) but in greater detail.
At a short delay, a short lag is better but at long delays the long lags
are better. For all of the lag bands, the effect of delay is negatively
accelerated, which is consistent with the low frequencies in Part (a).
Figure 2b also shows the N = 1 curve from Part (a). At long lags
there is no difference between a single presentation (N = 1) and two
back-to-back presentations (Lag = 1). It is as if those two presenta-
tions have been merged into one.

The x-axis in Figure 2 is the number of intervening tweets. These
tweets are tagged for when they were sent, allowing a comparison of
the predictive power of intervening time versus number of inter-
vening tweets. This question for the environment corresponds to the
perennial question in memory research: whether the passage of time
promotes forgetting or whether forgetting is caused by intervening
events that interfere with the original memory (Wixted, 2004). The
time since the last tweet containing a string, if that string occurred in
the last 1,000 tweets, varies from 0 to 1860 days with a median of
36.1 days—5.5% of the cases are less than a day, 25.4% less than
10 days, 72.0% less than 100 days, and 99.9% less than 1,000 days.
Not surprisingly, number of intervening tweets and number of days
are correlated (r= .497), but the correlation is not so strong that they
cannot be separated. Both are weakly correlated with frequency
(order r = −.054, time r = −.027), which has a strong effect of its
own. We investigated how the log of the three variables, number of
occurrence in the last 1,000 tweets (N), number of intervening
tweets since last occurrence (I), and days since last occurrence (T),
predicted probability of occurring in the next tweet. All were highly
significant predictors. In a stepwise regression they entered in the
order Log(N), Log(I), and Log(T). Log(I) accounted for 7.8 times
the variance as Log(T). The best-fitting combination was

Probability = .0086 + .0066 *LogðNÞ − .0015 *LogðIÞ
− .0003 *LogðTÞ: (2)
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2 While frequency of retweeting varies from tweeter to tweeter, approxi-
mately one–fifth of these tweets are retweets.

3 Because our analyses are of 1,001 tweet windows, it is actually irrelevant
whether the reader reads all the tweets from a source or just a subsequence
that involves these 1,001 tweets.

4 The nth frequency band includes 2n–1 specific frequencies. We similarly
aggregated delays into bands that had 2n–1 delays and plotted these at the
x-values that were the average delays for those bands. This means, for
instance, that in Figure 2a the fourth point on the third curve aggregates all
cases with 5–9 appearances of the string in the last 1,000 tweets and the most
recent appearance between 10–16 tweets ago. There are 4,134,835 instances
contributing to this point and in 35,117 of these cases that string occurred in
the next (1001st) tweet for a percentage of 0.85. That value is plotted on the
third curve at x = 13 which is the mean of 10–16. Cases are plotted only if
they have at least 5,000 observations. The first four frequency bins have all
observations plotted out to the longest delay bin, but the larger frequency
bins are missing some of the longer delays. The highest frequency band
(197–225) only has observations out to the fifth lag bin (17–25) where there
are 11,296 cases.

5 However, the frequency bands refer to number of occurrences in the last
1,000 tweets, not the last 100 days as in Figure 1c.
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The coefficient for Log(I) is 4.57 times larger than the coefficient
for log(T) implying that to match the loss associated with doubling
of the number of intervening tweets one would have to increase
the number of intervening days by a multiplicative factor of
24.57 = 23.8.
The relatively weak effect of time corresponds to the memory

phenomenon that forgetting is much less rapid outside of the context
of an experiment. For instance, Anderson et al. (1999) found that the
passage on a day outside of the context of a memory experiment was
equivalent to approximately 10 min in an experiment (see also
McBride &Dosher, 1997;Wickelgren, 1972). The fact that memory
forgetting is more strongly driven by the passage of time in a
particular experimental context than by the passage of time in
general can be seen as an adaptation to what predicts the likelihood
of an event occurring in the environment.

Reddit Database

Reddit is a discussion website organized by topics into subreddits.
Within a subreddit there are discussions which begins with an initial
posting followed by a series of hierarchically organized comments.
Order of discussions and order of comments within a discussion are
determined by user votes. These discussions provide a test of
whether the same patterns will emerge in a sequence of texts that
is produced in a quite different way. We analyzed comments on the
top 501 subreddits (by subscribers) on 2 days, April 23 and May 5,
2021. For each subreddit, we took the perspective of someone
browsing that subreddit and processing the strings in comments like:

I received 100% attendance in 4th grade and got a free ice cream dessert
at Ponderosa.

We assumed that the subscriber would read the first 25 discus-
sions listed on the subreddit. Reddit has an algorithm that orders
these discussions both by recency and votes of the users.While these
discussions can go on very long, by default Reddit makes available
no more than 200 comments although one can always click to see

more (we assume our subscriber does not click). Comments are
hierarchically organized with the top-level being responses to the
original story and below these are comments on the comments and
below that comments on those, etc. By default the comment depth is
10 although again one can click to see more. The order of the
comments at a level is determined by voting of the users (apparently
no effect of recency). The net effect of these Reddit algorithms is
that the order in which our hypothetical subscriber reads things is
weakly affected by recency of posting and strongly affected by
group popularity. This contrasts with the order that tweets are read
by the follower of a tweeter, which is determined by the order the
tweeter sends them. This contrast is important because one might
argue that the memory-environment correspondence in the case of
Twitter is because the tweeter’s memory is shaping the environment,
rather than the environment shaping memory. However, in the case
of Reddit the environment is not controlled by any user’s memory
(this was also true of Schooler’s analysis of senders of email to JA).
To the degree that Twitter and Reddit reflect similar statistics, this is
evidence for the similarity of the demands faced by human memory
in trying to make most accessible what is most needed.

The maximum number of comments that our hypothetical sub-
scriber would read would be 25 stories times 200 comments equals
5,000. In fact, the number of comments on a subreddit ranged from
104 to 4,691 with a mean of 1,131. Four hundred thirty nine
subreddits had a least 1,001 comments with a mean length of
1832. Again, we stripped out any function words or any strings
that were not among the 20,000 most used strings. We also limited
any comment to the first 100 strings. In total, there were 1,133,182
comments averaging 14.85 strings in length. The number of 1,000-
string patterns is slightly more than 1.2 billion patterns, similar to the
Twitter database.

Despite their common size, the two sources are quite different in
how they were created. The Twitter data set describes the followers
of a tweeter over years. The Reddit data set reflects the experience of
a user in one sitting. The tweets are ordered by when they were sent
while the ordering of the comments is determined by the Reddit
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Figure 2
A Strings Pattern of Appearance in the Last 1,000 Tweets Predicts Its Probability of Occurring in the Next Tweet
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e) (a) Twitter Data: Recency and Frequency
N=197-225
N=170-196
N=145-169
N=122-144
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e) (b) Twitter Data: Once and Twice Occurring

N=1
Lag=1
Lag=2-9
Lag=10-49
Lag=50-225
Lag>225

Note. The x-axis in both graphs is the number of tweets since the string last occurred. Part (a) looks at how this variable
interacts with N, the number of occurrences of the string in the last 1,000 tweets. Part (b) focuses on strings that occurred just
once (N = 1) or twice in the last 1,000 tweets. For the strings that occurred twice it shows the effect of Lag, the number of tweets
intervening between the two occurrence. See the online article for the color version of this figure.
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algorithms strongly reflecting group popularity. The topic usually
changes at least a little with each discussion in Reddit, while any
topic change in Twitter is at the tweeter’s discretion. Both the
Twitter and Reddit data sets are artifacts shaped by humans but they
are quite different in their shaping. To the degree they reflect similar
statistics, this is evidence for the similarity of the demands faced by
human memory in trying to make most accessible what is most
needed.
Figure 3a displays the frequency and recency effects to compare

with Figure 2a. Figure 3b displays the spacing effects to compare
with Figure 2b. The patterns are strikingly similar to Figure 2. Parts
(a) of Figures 2 and 3 have mean percentages of 2.80% and 2.85%
with standard deviations of 4.77% and 4.64%. In probability scale,
the numbers in Figure 2a and 3a are correlated .997 and in log
probability they are correlated .986. Parts (b) of Figures 2 and 3 have
mean percentages of 0.33% and 0.39% with standard deviations of
1.10% and 1.12%. In probability scale, they are correlated .973 and
in log probability they are correlated .990. The similarity in magni-
tudes is in part due to the decision to seek out more than a billion
patterns of length 1,000 involving 20,000 strings. The similarity in
the patterns, on the other hand, speaks to the ubiquitous way
experiences are shaped. Joined with the original Anderson and
Schooler (1991) analyses and other subsequent analyses (see
Schooler & Anderson, 2017, for a review) the ubiquity seems
profound.

Range

In investigating the patterns in these databases we found a factor
which may be more informative than spacing. This is the number of
texts that span the first to last mention of a string, a variable we call
range. Range is the sum of all the individual spacings between the
pairs of mentions of a string, but theories of memory have focused
on the separate effects of the individual spacings rather their total. In
Figures 2b and 3b where there are just two occurrences, spacing and
range are identical, but they can have different predictions when
there are more than two occurrences.
The simplest case where range is distinct from individual spacings

is when there are three occurrences of a string in a 1,000 text window.
Figures 4a and 4b show the effect of range in this case, in a form
similar to Figures 2b and 3b. The interaction of range with delay can
be understood the same way as the interactions in Figures 2b and 3b:
Items that span longer lags or ranges are more stable. However, at
short delays since the last occurrence (x-axis), items at short lags or
ranges have the advantage that earlier occurrences are also close to the
current text. As delay increases this recency advantage for the earlier
items dissipates.
This leaves open the question of whether range captures all of the

effect of the lags (the individual spacings) whose sum is the range.
Since the effects in Figures 4a and 4b seem to stabilize after a delay
of 500, we examined how the pattern of three appearances of a string
predicted its frequency of occurrence after a delay of 500 texts
without appearing again since its third occurrence. We counted the
number of occurrences of a string an observation window consisting
of 501–1,000 texts after the third occurrence.6 Combining Twitter
and Reddit, there were 65,908 cases. The average number of
occurrences in the 500-text observation window was .792 (varies
from 0 to 43). Range was a much stronger predictor of this total than
either of the lags and highly significant (t = 17.54). After entering

range as a predictor, there was no significant further variance pre-
dicted by the two lags (t’s for entering either were .43). The difference
in the Bayesian information criterion (BIC) measures for a model
using just the single predictor of range was 11.9 more than the model
that used the two separate lags.7 We extended this comparison to
cases where therewere four occurrences in the last 1,000 texts (38,887
cases) and five occurrences in the last 1,000 texts (23,537 cases). The
BIC advantage for the single variable of range versus the three lags in
the case of four occurrences was 17.3 and none of the three lags
significantly improved the prediction. The BIC advantage for the
single variable of range versus the five lags in the case of five
occurrences was 14.0. In this case, adding the second lag improved
prediction (t= 3.80), but the other lags did not help. In summary, there
may be small effects of the individual spacings, but range captures
most of what has been attributed to individual spacings, at least in the
case of the environment.

Parts (c) and (d) of Figure 4 compare the relatively potency of
range and frequency. The x-axes give the number of occurrences of a
string in a window of 1,000 comments and the y-axes give the mean
number of occurrences in a window of 500 messages after a delay of
500 messages without occurrence. The different points and lines
reflect different ranges. An item that has a range of 1 necessarily has
frequency of 1 and so it is a single point in the figures. Similarly, an
item which has a range of 2 must have a frequency of 2 (i.e., the two
appearances of the string were in adjacent messages) and so it also a
single point. Holding frequency constant, range has a large effect on
probability of occurring. The figure also shows that frequency has a
quite small effect for items that have a small range. It is almost as if
all those presentations in that small range have been collapsed into a
single occurrence. Overall, frequency and range have relatively
equal effects. Looking at the individual strings tracked in the Twitter
Figure 4c (more than 350,000 instances) number of occurrences of
the strings in the target window correlates .293 with range and .230
with frequency. Looking at the individual strings tracked in the
Reddit Figure 4d (almost 230,000 instances) number of occurrences
correlates .295 with range and .358 with frequency. In a stepwise
regression both range and frequency enter as highly significant
predictors.

Memory Models Applied to the Environmental Data

If environmental structure shaped human memory, as the rational
hypothesis implies, theories developed to account for human mem-
ory would match the environment. Anderson and Schooler (1991)
showed that this was true for the qualitative effects of recency,
frequency, and spacing. Since 1991, there have been a number of
mathematical theories of memory that address the interactions of
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6 More precisely for each window of 1,000 texts, we focused on those
strings in the 1000th text that had occurred twice earlier for a total of 3. This
yielded two lags, one between the first and second and the other between the
second and third. Of these strings we included only those that did not occur in
the next 500 texts, guaranteeing a delay of 500. For these we counted the
number of times the string occurred in the next 500 texts. Such an analysis
can only be applied for sources that have at least 2000 texts.

7 A number of memory studies have investigated whether memory is
better when the spacing among repetitions expands but the results are
ambiguous (Cepeda et al., 2006). There is no evidence for such a relationship
in this environmental data: the mean number recalled when the second lag
was greater (mean 462 vs. 121 intervening items) is .797 and when the
second lag was shorter (121 vs. 461) was .794.
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these factors. The current data set is of such a size to provide a
demanding test of how well these theories can fit the detailed
patterns in the environment. The models we will review do not
fare particularly well in these tests, but note that most of these
models never claimed they would. Later sections will address
whether this speaks against the rational analysis of memory or
whether it points to weaknesses in the models because of limitations
in the memory experiments that shaped these models.
The data from the Twitter Figure 2 and the Reddit Figure 3 were

combined into a target data set and Table 1 examines how well
various models fit those data. The first five models in the table are
the memory models of interest. The last three models are models
of the environment based on the original A&M (1989) proposal
that we will discuss in the next section. Figure 5a displays the
combined data from Twitter and Reddit for the effects of fre-
quency and delay while Figure 5b–5f display the fits of the best-
fitting predictions for the five models. Figure 6 does the same for
the effects of spacing and delay for the case of strings occurring
twice in a 1,000-text window. The Appendices A and B specify
the details of the fitting process and the details of the models.
Here, we specify the basics of the fitting and explain the central
equation of each model.
In fitting these and the later environmental models, we mini-

mized the sum of squared deviations from log probabilities. The
choice to focus on log probabilities is to emphasize the lower
probabilities. Any memory system would make available highly
probable items. The challenge is how to treat the less probable. The
data shown in Parts (a) of Figures 5 and 6 are only for cases with
more than 5,000 observations (326 data points in Figure 5a and 187
in Figure 6a). Predictions are shown for more cases for the
mathematical models because they allow for precise predictions
in all possible cases. However, the fitting only involved the cases
where that data had more than 5,000 observations. The two
measures reported in Table 1 are the root mean square error
(RMSE) and the R-squared. While the central equations for each
model specify odds, these were converted into log probabilities for
display and measuring fit.

General Performance Equation

Anderson and Schunn (2000) proposed what they called the
general performance equation (GPE), which holds that odds is
the product of a power function of the number of past occurrences
(N) and a power function of delay (T; Equation 3):

Odds = A × Nc × T−d: (3)

The GPE model (Figures 5b and 6b) captures the major effects of
number of occurrences and number of texts (tweets or comments)
since last occurrence—these are the factors N and T in the GPE
equation. However, it does not capture other features of the data, most
notably spacing effects—the predictions are identical for all spacings
in Figure 6b. While the GPE equation does not fare particularly well,
variants of it are the basis for the predictive performance equation
(PPE) and AMPE models in Table 1, which are more successful.

ACT-R Adaptive Control of Thought-Rational

Most models of human memory make no strong claims about a
relationship to statistics in the environment, but this is not true of the
ACT-R theory (Anderson & Lebiere, 1998). Activation of declara-
tive memories in ACT-R is supposed to reflect log odds of the
memories being needed. One component of activation, called base-
level activation, is supposed to reflect the effect of the past history of
a memory on its log odds. ACT-R uses the following equation for
odds from Anderson and Schooler (1991; Equation 4):

Odds = b ×
Xn
j=1

t−dj ; (4)

where the summation is over the n times the memory appeared in the
past, tj is how long ago the jth appearance was, d is a parameter
controlling rate of decay, and b is a scaling parameter. Figures 5c
and 6c show the predictions of this model. The ACT-R model
captures major trends of frequency and recency, but overall it fit is
not as good as the GPE (Table 1). The delay functions in Figure 5c
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Figure 3
Predictive Patterns in the Reddit Data
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(a) Reddit Data: Recency and Frequency
N=197-225
N=170-196
N=145-169
N=122-144
N=101-121
N=82-100
N=65-81
N=50-64
N=37-49
N=26-36
N=17-25
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N=5-9
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(b) Reddit Data: Once and Twice Occurring

N=1
Lag=1
Lag=2-9
Lag=10-49
Lag=50-225
Lag>225

Note. (a) Joint effect of frequency of occurrence in the last 1,000 comments and delay since last occurrence; (b) Items that
occurred once or twice in the last 1,000 comments—effect of lag for twice occurring. See the online article for the color version of
this figure.
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are straight lines on this log–log scale and so fail to capture the
empirical shape of the curves, especially the precipitous drop of the
high frequency curves at long lags. Figure 6c confirms the failure to
capture spacing effects. The lag between the two occurrences does
show an effect at short delays in Figure 6c because shorter lags mean
shorter delays since the first occurrence of the item, but this advan-
tage fades at long delays producing a convergence of the curves.

Pavlik and Anderson

Pavlik and Anderson (2005), henceforth P&A, introduced an
elaboration to the ACT-R model that captured many spacing
effects on recall probability. As in ACT-R, activation of a
memory was determined by a sum of decaying components,
but P&A proposed different decay rates for different presentations
with higher rates in cases of close spacing (see Appendix A.1, for
details). Cast as a prediction about odds (like Equation 4) their
model would be (Equation 5):

Odds = b ×
Xn
j=1

t
−dj
j : (5)

Figures 5d and 6d show the fit of this model, which is better in
terms of measures of fit than the standard ACT-R model (Table 1).

It definitely captures the precipitous drop of high-frequency pre-
sentations at long lags (Part c) and shows some spacing effect for
twice presented items (Part d). However, it also does not do as well
as the GPE model, which has no spacing effect. Perhaps most
dramatically, it underestimates the benefit of many presentations at
short delays. This is because these presentations are necessarily
massed and therefore rapidly decaying.

PPE

Walsh et al. (2018) proposed what they call the predictive
performance equation (henceforth PPE) as a refinement of the
GPE specifically designed to address spacing effects. Applying
their model to obtain a odds prediction yields (Equation 6)

Odds = A × Nc
i × T−di

i ; (6)

where Ni is the number of times the item has occurred, Ti is “elapsed
time,” and di is the decay rate for i. The Appendix A.2 describes how
spacing determines decay in their model, which is different than in
P&A. They emphasize the computational advantage of their model
over P&A in that one does not have to calculate a sum of decaying
components. Rather their elapsed time Ti is an amalgam of the
individual tj‘s, again as described in the Appendix A.2. Figures 5e
and 6e show the fit of this model which is better than the previous
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Figure 4
Effects of Range in Twitter and Reddit Data
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s (d) Reddit: After a Delay of 500 Messages
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Note. (a) and (b) Effect of range and delay for items that occurred three times in the last 1,000 messages. (c) and (d) The
relative effect of range and frequency in predicting the number of times an item will occur in a window of 500 messages
after a delay of 500 messages without an occurrence. See the online article for the color version of this figure.
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models. PPE produces spacing effects (Figure 6e), if weaker than in
the data. It could produce larger spacing effects by estimating larger
di’s for massed items, but this would be at cost to its overall fit to the
data. In particular, higher frequencies tend to become worse than
lower frequencies at long lags.

Multiscale Context Model

Another spacing model is the multiscale context model (hence-
forth MCM) described byMozer et al. (2009).8 According to MCM,
memory for an item is stored as a set of N decaying traces and the
probability of recall is determined by the weighted strengths of these
traces. Adding a scale parameter, A, and transforming their

predictions of probability of recall into odds of occurring in the
environment, their equation becomes9 (Equation 7)

Odds = A ×

XN
i=1

γixi

1−
XN
i=1

γixi

; (7)
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Table 1
Fit of Various Models to the Environmental Data

Version

Measures of fit

RMSE r2 Model parameters

(a) Mathematical models
1. GPE 0.581 0.886 c = .575 d = .608 A = .021
2. ACT-R 0.825 0.784 d = .792 b = −.040
3. P&A 0.684 0.847 c = .444 a = .758 B = −2.94
4. PPE 0.549 0.898 x = 8.699 c = .612 b = .549 m = .186 A = 0.018
5. MCM 0.578 0.888 m = .032 u = 1.111 w = .704 x = .978 A = 0.029
6. AMPE 0.398 0.947 a = 214 b = 1,401 tP = 15.18 gP = 1,565

(b) A&M simulations of the environment with different decay functions
7. Exponential 0.574 0.906 v = .164 b = 0.139 a = 0.035 b = 333 A = 0.704
8. Power 0.409 0.944 v = .199 b = .482 a = 4.076 b = 800 A = 0.724

Parameters:
GPE:
c: Exponent for number of presentations Equation 3
d: Decay exponent for time since last occurrence Equation 3
A: Scaling parameter for odds Equation 3
ACT-R: d: Decay exponent for each presentation Equation 4
b: Scaling parameter for odds Equation 4

P&A:
c: decay parameter multiplied by activation Equation A2
a: minimum decay Equations A1 and A2
b: Scaling parameter for odds Equation 5

PPE:
x: power in estimation of decay time Equation A3
c: Exponent for number of presentations Equation 6
m: decay parameter multiplied by lag estimate Equation A4
b: minimum decay Equation A4
A: Scaling parameter for odds Equation 6

MCM:
μ: scale parameter for decay rate Equation A7
υ: decay rate parameter raised to power Equation A7
ω: scale parameter for weight strength Equation A8
ξ: weight parameter raised to power Equation A8
A: Scaling parameter for odds Equation 7

AMPE:
a: scale parameter for desirability Equation 13
b: scale parameter for decay Equation 12
tP: prior time in estimation of decay time Equation 10
gP: prior gap in estimation of effective interval Equation 12

A&M (Anderson & Milson, 1989)
v,b: parameters defining distribution of desirabilities
α: parameter defining distribution of decays
β: parameter controlling rate of revival
A: Scaling parameter for odds

Note. RMSE = root mean square error; GPE = general performance equation; ACT-R = Adaptive Control of Thought–Rational; P&A = Pavlik and
Anderson; PPE = predictive performance equation; MCM = multiscale context model; AMPE = Anderson & Milson Performance Equation.

8 We thank Mike Mozer for his help in achieving an implementation of
this model.

9 To avoid infinity or other nonsense values it is necessary to bound the
sum in the numerator and denominator at a value below 1—we chose
.999999. Mozer et al. bound the sum at 1 for their probability predictions.
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where xi is the strength and γi is the weight for trace i. The
details of how the strengths decay with time and increase with
practice are given in the Appendix A.3 as well as the details
of how the weights are set to produce power functions. Also
as described in the appendix, our implementation of the model
involves a simplification because the original model becomes

computationally infeasible in when frequency gets high.
Figures 5f and 6f show the predictions of the MCM model.
It has comparable fit measures to PPE and captures some of
the effects of spacing as well as frequency and recency, but
there are discrepancies. Perhaps most glaring is that it predicts
high frequencies will be worse than low frequencies at longer
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Figure 5
Effects of Frequency of Occurrence in the Last 1,000 Texts and Delay Since Last Occurrence
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delays. The massing of the items builds up high strength but
this strength decays very rapidly. This discrepancy could also
be produced by PPE, but its best-fitting parameters spared
such crossovers at the cost of underpredicting spacing effects.

Summary

All of these memory models capture the basic effects of recency
and frequency, but none of them properly captures the precipitous

drop for high-frequency items in Figure 5a or the character of the
spacing effect in Figure 6a. We have attributed the precipitous drop
in Figure 5a to a spacing-like effect in that the early high-density
massing of these items results in rapid decay. The spacing models
(P&A, PPE, and MCM) do not offer particularly good fits to the
spacing data in Figure 6. It should be noted that these models can
offer substantially better fits to that data if only fit to the Figure 6 data
for the once and twice occurring strings. However, their fits were
constrained by also fitting the effects at much higher frequencies in
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Figure 6
Strings That Appeared Just Once (N = 1) or Twice in the Last 1,000 Tweets

1 2 5 10 25 100 250 1000
Texts since String Last Occurred (log scale)

0.0005

0.005

0.05

0.5

P
ro

ba
bi

lit
y 

S
tr

in
g 

is
 in

 N
ex

t T
ex

t (
lo

g 
sc

al
e) (a) Data

N=1
Lag=1
Lag=2-9
Lag=10-49
Lag=50-225
Lag>225

1 2 5 10 25 100 250 1000
Texts since String Last Occurred (log scale)

0.0005

0.005

0.05

0.5

P
ro

ba
bi

lit
y 

S
tr

in
g 

is
 in

 N
ex

t T
ex

t (
lo

g 
sc

al
e) (b) GPE

N=1
Lag=1
Lag=2-9
Lag=10-49
Lag=50-225
Lag>225

1 2 5 10 25 100 250 1000
Texts since String Last Occurred (log scale)

0.0005

0.005

0.05

0.5

P
ro

ba
bi

lit
y 

S
tr

in
g 

is
 in

 N
ex

t T
ex

t (
lo

g 
sc

al
e) (c) ACT-R

N=1
Lag=1
Lag=2-9
Lag=10-49
Lag=50-225
Lag>225

1 2 5 10 25 100 250 1000
Texts since String Last Occurred (log scale)

0.0005

0.005

0.05

0.5

P
ro

ba
bi

lit
y 

S
tr

in
g 

is
 in

 N
ex

t T
ex

t (
lo

g 
sc

al
e) (d) P&A

N=1
Lag=1
Lag=2-9
Lag=10-49
Lag=50-225
Lag>225

1 2 5 10 25 100 250 1000
Texts since String Last Occurred (log scale)

0.0005

0.005

0.05

0.5

P
ro

ba
bi

lit
y 

S
tr

in
g 

is
 in

 N
ex

t T
ex

t (
lo

g 
sc

al
e) (e) PPE

N=1
Lag=1
Lag=2-9
Lag=10-49
Lag=50-225
Lag>225

1 2 5 10 25 100 250 1000
Texts since String Last Occurred (log scale)

0.0005

0.005

0.05

0.5

P
ro

ba
bi

lit
y 

S
tr

in
g 

is
 in

 N
ex

t T
ex

t (
lo

g 
sc

al
e) (f) MCM

N=1
Lag=1
Lag=2-9
Lag=10-49
Lag=50-225
Lag>225

Note. For the strings that occurred twice it shows the effect of Lag, the number of texts intervening
between the two occurrence. (a) The combined Twitter and Reddit Data; (b-f) Predictions of various
mathematical models of memory. GPE = general performance equation; ACT-R = Adaptive Control of
Thought–Rational; P&A = Pavlik and Anderson; PPE = predictive performance equation; MCM =
multiscale context model. See the online article for the color version of this figure.
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Figure 5. One might think that the failure of the spacing models to fit
the combined data is because effects in memory are different than
effects in the environment. However, another possibility is that these
models never addressed memory data of this density. As a first step
to deciding between these possibilities we need to come to an
understanding of what is happening in the environment, which is the
goal of the next section.

Models of the Environment

As noted earlier, Anderson and Milson (1989) had derived
some of the basic effects in memory from a model of how
material appeared in the environment. However, that model
was never compared to environmental data, as Simon (1989)
noted. The current data sets offer an opportunity to determine
whether their model actually describes environmental data. The
A&M model started from Burrell’s (1985) model of library
borrowings, which had been tested against a number of data
sets. A&M had suggested that just like a library must determine
how likely a book is to be borrowed to decide how available to
make the book, so human memory made memories available
based on an estimate of how likely they were to be needed. The
A&M model had four assumptions, the first two of which were
identical to Burrell:

1. Different memories have different initial desirabilities,
interpreted as odds of being needed. Following Burrell,
these desirabilities are distributed according to a gamma
distribution with shape v and scale b; hence mean odds of
being needed is v × b.

2. Items decay in desirability over time according to an
exponential function: r(t) = e−dt.

3. The rate of decay, d, varies for items according to an
exponential distribution with mean α, rather than the
constant decay rate in Burrell.

4. Items can have spontaneous revivals (modeled as a Pois-
son process with rate β) where they return to their original
desirability and begin to decay again. Later Burrell (2005)
did consider the possibility of revival-like effects for
journal articles.

Given just the original Burrell Assumptions 1 and 2, there is a
closed-form solution for the estimating the odds of needing an item
that has had n occurrences in time t:

λðn; tÞ = v + n

MðtÞ + 1=b
whereMðtÞ =

ð
t

0
r ðxÞdx: (8)

Adding Assumptions 3 and 4 allows for a much better description
of the different types of items.When the decay rate of an item is very
low, it is quite stable staying close to its initial desirability. When the
decay rate is high and desirability is high, the item is “flash-in-the-
pan,” that has its moment of glory and disappears. The revivals
allow for such items to return. While these four assumptions seem
reasonable qualitative features of the experiences that might shape
our memories, the exact mathematical formulations are somewhat
arbitrary and are likely to be approximately true at best.

With these four assumptions, there is no closed-form expression
for the odds of needing an item given a particular history of
occurrences. A&M came up with predictions using Monte Carlo
simulations. They sampled initial odds and rates according to
Assumptions 1 and 3 and added in random patterns of revival
according to Assumption 4. At each revival, the need odds returned
to the original desirability and decayed according to each item’s
decay rate. The predicted odds was then the average of the need odds
calculated from these 100,000 samples. The odds calculated this
way produced results that qualitatively corresponded to practice
effects, retention effects, and spacing effects in human memory.

Monte Carlo Simulations

Like Anderson and Milson (1989), we also used Monte Carlo
simulation to generate predictions for the environmental data,
treating time in the A&M model as number of texts. For each
simulated item, we selected a desirability from a gamma distribution
with parameters v and b, a history of revivals from an exponential
distribution with parameter β, and a decay rate from an exponential
distribution with parameter α.10 Given these choices, we randomly
generated a set of occurrences of a string over a sequence of 3,000
strings which provides 1999 history windows of length 1,000 strings
followed by an observation string. Rather than simply observing
whether the string occurred in the 1001st observation text, we used
its probability of occurring. Finally, we estimated a scale parameter
A to make the resulting probabilities have the same mean as the
observed probabilities. Holding the random seed constant,11 we
estimated a set of parameters that minimized the deviations for
500,000 simulated strings. Then with the estimated set of parame-
ters, but starting with a new random seed, we generated 18 million
simulated string histories which yielded over 12 billion 1,000-text
histories.12 The resulting predictions have less noise than the data
not only because there are five times as many observations, but also
because rather than dividing number of occurrences by number of
opportunities, we average probabilities of occurring. Like the data,
there are cases with few observations and we kept predictions based
on cases that had at least 1,000 observations. There were 585 such
cases, which is more than the 513 cases kept in the case of the data.

Figures 7b and 8b show the predictions of the A&Mmodel with
the combined data reproduced again in Figures 7a and 8a. Its
measures of fit (Table 1) are comparable to the more successful
models considered so far. While the model does capture effects of
frequency, recency, and spacing, there are differences in theT
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10 Anderson and Milson (1989) assumed that the decay of an item began
with its first presentation, which is not an unreasonable assumption in an
experiment with items being presented for study. However, in these envi-
ronmental domains the item has an unknown history before the 1,000-text
window and has been decaying for an unknown time. We model this by
randomly choosing a time (according to the exponential distribution associ-
ated with revivals) before the history begins and assume it has decayed from
then to the beginning of the 1,000-text window.

11 This avoided the possibility that a particular parameter choice might
have not “lucky” or “unlucky” random draws. It also guaranteed that the
same parameter values would yield the same results upon repetition in the
search.

12 We harvested these from 10 times more Monte Carlo 1,000-string
windows since the majority of the generated windows have no occurrence of
the string. This is roughly consistent with the data where only about 10% of
the 20,000-string vocabulary occurs in a 1,000-text window.
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shape of the delay functions, particularly apparent in Figure 7b:
Whereas in the data the high-frequency (N > 4) delay functions
start out negatively accelerated and become positively acceler-
ated converging to the low-frequency curves, in the model there is
a final plateau above the low-frequency cases. With respect to the
spacing effects in Figure 8b: whereas the lag functions for the data
cross over with short lags best at short delays and long lags best at
long delays, the predictions just converge at long delays. A&M
show that at certain parameterizations their model can predict a
crossover in spacing effects, but the predictions here are from the
best-fitting parameters. The shape of the delay functions deviate
from the data in part because an exponential decay is too rapid.
An item would typically have decayed to zero by the end of the
1,000-text window. The probabilities at long delays plateau are
above 0 because of revivals that return some items to their
original desirability.
We explored a variation on the A&M model that assumed a

power-law decay, which has been used to model many forgetting

effects in human memory because of its slower decay in the long
term. We kept all the other assumptions of the A&M model and
simply used r(t) = t−d for the decay function, assuming a similar
exponential distribution on decay rates d (although d has a different
meaning now). Figures 7c and 8c show the predictions of this model.
This model gives a better fit than any model considered so far,
having a considerably higher R-squared and considerably RMSE
(Table 1), although there are detectable differences from the data.
Perhaps the most apparent difference is the lack a frequency effect
for low frequencies at a delay of 1 (Frequencies 1–16 in Figure 7c
and is also manifest in Figure 8c).

The modified A&M model assumes (a) specific distributions of
desirability and decay rate, (b) power law decay, and (c) occasional
revivals of items to their original level of desirability. Together these
assumptions produce the fits in Figures 7c and 8c. To address
Simon’s (1989) challenge to test the model’s assumptions against
the environment, Appendix C reports supporting evidence for each
of these three assumptions.
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Figure 7
Effects of Frequency of Occurrence in the Last 1,000 Texts and Delay Since Last Occurrence
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Note. (a) The combined Twitter and Reddit Data; (b–d) Predictions of various versions of the A&M environmental model.
A&M = Anderson and Milson; AMPE = Anderson & Milson Performance Equation. See the online article for the color
version of this figure.
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While the A&M model with power-law decay appears to be
capturing much of the structure of the environment, the need for
Monte Carlo simulation limits its usefulness for predicting human
memory experiments. The process of deriving predictions is much
more expensive than with a mathematical model and the predictions
that are derived are only approximate. Also, just as many specific
patterns are rare (sometimes nonexistent) in the data, they are rare in the
MonteCarlo simulations. Thus, it is not practical to produce predictions
for the specific patterns, in contrast to the mathematical models of
Figures 5 and 6 where precise predictions could be derived for any
possible pattern. This limitation is serious because most memory
experiments involve collecting data for many replications of exact
patterns of presentation that almost never occur in the environment or
in the Monte Carlo simulations.

The AMPE Mathematical Model

From the point of view of the A&M model of the environment,
the critical factors determining odds of occurring an item i in the
next text are

1. Desirability(πi): What is the desirability (initial odds of
occurring) of that item?

2. Currency(Ti): How long has that item been decaying from
its initial desirability?

3. Stability(di): How fast does the desirability decay?

The history of the item is only of relevance in terms of the
information it provides about these three factors. If we had exact
estimate of these quantities, a variant of the GPE Equation 3 would
give the odds of an item being needed (Equation 9):

Oddsi = πi × T−di
i : (9)

We developed a mathematical model, AMPE, which uses heu-
ristic estimates of these three quantities informed by our under-
standing of the A&M power model.

Currency

Since an item has the highest probability of appearing right after it
has been revived, appearances of the item are hints that it has
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Figure 8
Strings That Appeared Just Once (N = 1) or Twice in the Last 1,000 Tweets
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Note. For the strings that occurred twice it shows the effect of Lag, the number of texts intervening between the two
occurrences. (a) The combined Twitter and Reddit Data; (b–d) Predictions of various versions of the A&M
environmental model. A&M = Anderson and Milson; AMPE = Anderson & Milson Performance Equation. See
the online article for the color version of this figure.
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revived. Since only the most recent revival is relevant the more
recent appearances of the item are more informative. We use the
harmonic mean as a way of averaging the past times which
emphasizes the most recent times (the harmonic mean is a special
case of the averaging function used to calculate Ti in PPE):

Ti = harmonicMeanðti;1; : : : ; ti;n; tPÞ + 1; (10)

where ti,1 to ti,n are how long ago were the n occurrences of item i
and tP is a prior estimate of time since last revival (added to help
stabilize the estimate).

Stability

We ranMonte Carlo simulations of the power A&Mmodel where
we knewwhat the decay rate was and could investigate what statistic
in the data predicted it. There was a strong negative relationship (r =
−.63) between decay and the range, which had a strong effect in the
real data (Figure 4). Range reflects how long an item stays around
before it decays to a level where it is no longer available. The actual
time it was available is probably somewhat longer than the observed
range and so we tempered the observed range with a prior estimate
gP of the true gap. These are averaged to define a quantityMi, which
we call the effective interval:

Mi =
Rangei + gP

2 : (11)

To ensure that decay rates di were positive, we defined decay to
have an inverse relationship to Mi:

di = b
Mi
: (12)

Desirability

The closed form estimate of desirability in Burrell’s model, (v+ n)/
(M(t) + 1/b), makes desirability a ratio of frequency, n, and M(t)
which is likeMi (v and b serve as stabilizing constants in the Burrell
expression). In a similar if slightly simpler vein, we defined desir-
ability as the number of observations of the item, ni, divided by Mi,
scaled with a parameter a:

πi =
a× ni
Mi

: (13)

Note thatMi has opposing effects on odds of occurring through its
effect on in desirability and decay. A large value of Mi dilutes the
estimate of desirability but also slows down the effect of decay.
We fit this AMPE model to the data in the same way as the other

closed-form spacing models by estimating best-fitting values of its
parameters, which are a, b, tP, and gP. Figures 7d and 8d show the
predictions of AMPE, which provide a slightly better fit to the data
than the Monte Carlo simulation of the power-law decay version of
A&M and considerably better than any other model (Table 1). While
it comes close to capturing all the effects of frequency and recency,
there are discrepancies. We believe they are due at least in part to the
simple assumption that range is the total period from the first to the
last presentation. If there have been a few occurrences bunched
recently and a few more bunched 900 texts ago, it seems likely that
the item rapidly decayed away 900 texts ago and had a revival
recently—a pattern consistent with a high decay. In contrast, the

AMPE model would treat this as having a large effective interval
and a low decay.We can improve the fit by making assumptions that
reduce range estimates in such cases where there is a long blank
period. For instance, in Figure 8d the model is overpredicting the
probability of items that occurred twice at wide spacings, treating
these as slow decaying while they may well be fast-decaying items
that had a revival close to the end of the 1,000-text window. While
we could improve fit by adding special rules for treating such cases,
this move seemed too ad hoc to include in a final model.

Fitting Human Memory Data

AMPE is a mathematical model that provides a better fit to the
environmental data than the other mathematical models considered.
The rational-analysis hypothesis implies that it should provide a
better model for human memory. This section puts that hypothesis to
test. Since the best performing alternative models all addressed the
spacing effect, wewill start out by examining its success in predicting
such effects in the memory literature. Then, we will consider
AMPE’s success in predicting memory results at high frequencies.

The AMPE model does a good job of predicting effects of
frequency, recency, and spacing in the environment that are qualita-
tively like those that occur in human memory experiments. However,
data sets from memory experiments have statistical patterns quite
unlike what occurs in natural environments. This is because their
presentation patterns were created to achieve particular experimental
goals. For instance, an experiment might present subjects with a long
sequence of items reflecting one specific spacing pattern and nothing
else. Such a simple repetitive pattern would not occur in a natural
environment. Thus, it is not obvious that AMPE will even produce
qualitatively similar patterns when presented with such patterns, let
alone quantitative fits that are competitive with other models.

Spacing Effects

To address how the AMPE model predicts human memory, we
will assume that odds in the environment are related to probability of
recall in the same way as in the ACT-R model. In ACT-R memory
activation is supposed to reflect log odds of appearing: Ai =
log(Oddsi). A memory will be retrieved if its activation is above
a threshold τ. Memory activations have momentary noise around
their expected values. Assuming this noise is logistically distributed
with scale parameter s, ACT-R predicts that the probability of
recalling a memory with activation Ai is

1

1 + e
τ−Ai

s

: (14)

Combining the ACT-R mapping with the AMPE Equation 14
for odds might seem to require estimating two further parameters,
τ and s. However, the desirability scale a in Equation 9 will get
absorbed in the estimate of the threshold τ yielding the following
equation for predicting probability of recall:

Probabilityi = 1

1+e
η− αi

s
where αi = log

�
ni × T

−di
i

Mi

�
: (15)

Thus, the parameters to estimate in fitting an experiment are the
threshold η, the noise parameter s, the prior time tP involved in
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defining Ti (Equation 10), the prior gap gP involved in defining Mi

(Equation 11), and b involved in defining di (Equation 12).
In comparing their PPE to P&A and the Search of Associative

Memory (SAM) model (Raaijmakers, 2003), Walsh et al. (2018) fit a
number of data sets, all involving spacing effects. We will take
advantage of their work fitting these models, especially with the SAM
model, which is expensive computationally. Table 2 reproduces their
results and adds the fits of AMPE and its parameter estimates.
Appendix D provides a brief description of each experiment and
shows the AMPE fits. Table 2 makes a separation between three
classes of experiments that require different considerations in defining
what an event is for purposes of applying AMPE, which is event-
based not time-based:

One Day

The first set involves single-session experiments where the
application of AMPE is straightforward—each test or study oppor-
tunity is another event.

Between Days

The second set involves multi-day experiments where different
items are studied in different patterns over days. In Bahrick’s
famous experiment, sessions involved training items to criterion,
leaving the number and spacing of actual presentations of the items
unknown. It takes fewer presentations to reach criterion on later
sessions, particularly when the session is in the same day. The
experiments by Cepeda et al. involved training items to criterion on
the first session, but the subsequent sessions involved two presenta-
tions. Since the exact timing of the presentations in a session is
unknown, we took advantage of the near-scale-invariance of AMPE
and just counted days as intervening events in determining Ti. In

terms of representing how many presentations were in a session we
used a 3-1-2 rule: The first study of the item counted as three
observations (all with Ti = 1), a repeat on the same day counted as
one observation (with Ti= 1), and a repeat on another day counted as
two (with Ti = number of days). This probably underestimates how
many times items were seen in a session in Bahrick experiment and
how many times items were seen on the first day in the Cepeda
experiments, but it does capture relative exposure and attention.

Mixed

The final set involved multi-day experiments where the manipu-
lation involves the spacing of presentations on each day, with the
number and spacing of presentations known. Because the manipu-
lation involves spacing on a day we cannot avoid the question of
how to relate spacing of presentations within a session to the passage
of days. P&A had treated a day as involving the same amount of
relevant time as time to go through 480 items in a session. Following
that lead, we chose to treat a day as 500 intervening events. A whole
day undoubtedly involves more experiences than 500, just as
followers of a Twitter source undoubtedly had many experiences
between the tweets. Interfering events must somehow be bound to a
context.

In terms of quality of fit over all these experiments, Walsh et al.
note that PPE and P&A are basically tied. The AMPE model does a
tiny bit better than either and so joins that tie. Note that AMPE
considers only range while these other models consider individual
spacings and these experiments were largely designed to investigate
effects of individual spacings. We have shown that range and not
individual spacings is critical in predicting occurrence in the envi-
ronment. These results indicate it also does well in fitting the results
of memory experiments that focus on individual spacings.
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Table 2
Fit of Models to Spacing Experiments

Experiment

RMSE r2 AMPE parameters

PPE P&A SAM AMPE PPE P&A SAM AMPE b tP gP h s

(a) One day
Begg and Green (1988) 0.0 0.0 1.8 0.0 1.00 1.00 0.99 1.00 2.2 200 9 −3.29 0.47
Bregman (1967) 5.4 6.4 7.3 5.5 0.95 0.92 0.90 0.92 320.9 9 452 −7.40 0.66
Glenberg (1976) 3.6 4.5 3.7 3.8 0.88 0.80 0.87 0.86 12.8 1,000 27 −3.93 2.11
Rumelhart (1967) 1.9 1.8 1.9 2.1 0.99 0.99 0.99 0.99 82.3 2 103 −6.51 0.63
Young (1971) 4.0 4.0 2.7 3.0 0.83 0.81 0.92 0.90 177.0 2 236 −6.70 0.81

(b) Between days
Bahrick (1979) 9.8 6.4 11.8 9.4 0.89 0.95 0.83 0.89 178.5 998 1,000 −5.80 0.41
Cepeda et al. (2008) 4.7 3.8 8.3 5.3 0.97 0.98 0.92 0.97 25.1 780 184 −4.17 0.20
Cepeda et al. (2009)
Exp 1 3.2 3.9 6.5 1.7 0.96 0.94 0.83 0.99 18.5 4 78 −3.37 0.29
Exp 2a 4.1 5.3 10.1 4.4 0.97 0.95 0.82 0.97 6.4 1,000 27 −3.12 0.55
Exp 2b 4.1 5.6 8.5 3.7 0.98 0.97 0.91 0.98 146.3 1,000 601 −5.84 0.46

(c) Mixed
P&A (2005) 4.8 5.4 6.4 5.6 0.97 0.96 0.93 0.95 280.9 404 752 −8.35 0.72

Rawson and Dunlosky (2013)
Exp 1 5.6 3.4 7.8 3.4 0.88 0.96 0.81 0.95 15.8 25 51 −4.51 0.55
Exp 2 4.8 3.8 7.3 6.2 0.91 0.94 0.78 0.81 6.0 1,000 9 −5.40 2.24
Exp 3 4.4 4.3 6.5 5.1 0.94 0.95 0.88 0.92 23.3 36 56 −5.13 0.75
Average 4.3 4.2 6.5 4.2 0.93 0.4 0.89 0.94

Note. Best-fitting parameters for Begg and Green are underdetermined. RMSE = root mean square error; AMPE = Anderson & Milson Performance
Equation; PPE = Predictive Performance Equation; P&A = Pavlik & Anderson; SAM = Search of Associative Memory.
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The parameters of the model show considerable variation
across experiments. The parameters η and s, which scale log
odds to probability of recall, vary the least and correspond to
parameters in current ACT-R that have shown similar variation
(e.g., Anderson et al., 1998), presumably reflecting differences
in procedures, materials, and populations. There are some big
outliers in the estimates of prior tP, but the contribution of tP is
minimal and the fits would be only marginally worse with a fixed
tP. It is more challenging how to think about the variation in b and
gP, since fits would be much worse with fixed values for these.
Decay is determined by the ratio of b to M and M is an average of
range and the gP estimate (Equations 11 and 12). Across the
experiments in Table 2, b and gP are correlated (r = .77),
resulting in small variation in decay rates despite the large
variation in range. The ratios of b to gP are smaller for the
between-days experiments than the within-day experiments,
resulting in smaller decay rates. This may reflect a slowing of
decay over long time spans.

Effects When Frequency Is High

There were surprising effects in the environment for high-
frequency items. Studies of percent recall tend not to examine
what happens in the presence of very high frequencies because
memory will be near perfect offering no discriminative information.
Latency is used to examine effects when probability of recall has
effectively reached 1.
The most striking aspect of the environmental data involves the

high-frequency cases where there has been a long time since the last
occurrence of an item. The low probabilities of occurring in these
cases correspond to a latency effect called thewarm-up decrement, a
momentary loss of fluency after a long delay. For instance,
Anderson et al. (1999) gave subjects extensive practice on 1 day,
waited a day, and then gave subjects more practice. Their mean
latency on the first recall trial of the second day for an item was
3.08 s longer than the level achieved by the end of the first day,
but their latency on the second trial on that item sped up 2.13 s
approaching the level of the first day. There are similar warm up
effects in the environment. For instance, consider items that have
occurred at least 50 times in a 1,000 texts but have not appeared in
the last 100 of those 1,000 texts. The probability of occurring in the
1001st text has dropped from their average rate of 11.70% before the
hiatus to 0.97%. However, if they occur in the 1001st text their
probability jumps to 8.72% in the 1002nd text. Such a jump would
be expected in the AMPE model because the appearance in the
1001st text suggests a recent revival.
Many of the models also had difficulty accounting for the

environmental patterns shown by high-frequency items after
short delays. This case has been the focus of studies of Hick’s
law, which describes the phenomenon that choice reaction time
approximately increases as log of the number of alternatives. As
number of alternatives increases, the frequency of any one item
during a fixed period decreases. While the factors influencing the
results in such an experiment are complex on close inspection
(see Proctor & Schneider, 2018, for a review), Schneider and
Anderson (2011) argue that much can be explained in terms of
retrieval of the individual response rules. While their explanation
focused on associative strength in the ACT-R theory, there is a
role for overall frequency of items. Consider, for instance, the

experiment by Hale (1968) where subjects dealt with two, four, or
eight alternatives over 1,000 trials. This means that they would
have retrieved each of the responses 500 times in the two-
alternative case, 250 times in the four-alternative case, and
125 times in the eight-alternative case. Most experiments do
not have sessions of as many as 1,000 trials and many are within-
subject experiments in which the same subject experiences all set
sizes, frequently over different experimental sessions in a single
day. Still, all of these experiments involve massive experience
with few alternatives and, at least locally (within a session),
frequency decreases with set size.

Set size also changes spacing in that repetitions of the same item
will be closer together when set size is smaller. However, set size is
nearly uncorrelated with range which is the gap between first and
last presentation. Thus, this domain offers an opportunity to contrast
AMPE with its focus on range with other models that focus on
individual spacings.

We used the environmental data to examine what the im-
plications would be for Hick’s law if latency were an inverse of
odds as argued by A&M and as incorporated into ACT-R. We
looked at items whose frequency ranged from 167 to 500 in the
last 1,000 observations since 167 corresponds to the item
frequency with six equiprobable items and 500 corresponds
to the frequency with two equiprobable items. For Hicks-law
data, we used the first experiment of Schneider and Anderson
(2011) who varied the number of alternatives from 2 to 6 (see
Figure 9a). That experiment breaks the data out into cases where
an item is repeated on two consecutive trials from cases where it
is not. Their results are representative in finding a shallower
function relating number of alternatives to reaction time for
repetitions. We split the environment data into repetition trials
(this would be the first point on the x-axis in Figures 5 and 7) and
nonrepetitions.

Figure 9b compares latency predictions from the environment with
the Schneider and Anderson data assuming the following ACT-R
transformation from odds to reaction time, which is based on A&M’s
proposal:

Time = Intercept + Scale × Odds−power: (16)

While the Schneider and Anderson experiment has only six data
points, the environmental data enables plotting of many more points
yielding the smooth curves plotted as solid line in Figure 9b. The
parameters and fit are given in Table 3.

It should be noted that Schneider and Anderson’s experiment is
very far from the 1,000-trial sessions of Hale. They used micro-
sessions where each item is presented six times, creating microses-
sions of length 12, 24, or 36 depending of the set size. To investigate
whether this makes a difference we looked at micro patterns in the
environmental data. This amounted to

1. Focusing on windows of 12, 18, 24, 30, or 36 texts in the
environmental data, rather than windows of 1,000.

2. Identifying items that occurred six times in those windows,
which would correspond to set sizes of 2, 3, 4, 5, and 6 for
the different window sizes.

3. To get an effect of repetition, separating the items accord-
ing to whether they occurred last in the window.
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4. Calculating the empirical odds of occurrence in the next
text and then converting this to a prediction of time by
estimating best-fitting parameters.

The resulting fit (Figure 9c) is quite similar but somewhat better
(Table 3), reflecting that these frequency effects are similar at different
scales. Both predictions from the environment are somewhat bowed-
shape. This is not a necessary consequence of the environmental data

but a consequence of the best-fitting parameters (Intercept, Scale, and
power) that map environmental odds onto latency. Either the repetition
or nonrepetition data could separately be fit nearly perfectly.

We took each of the mathematical models fit to the environmental
data in Table 1, used their predicted odds for the 1,000-text
windows, and estimated a best-fitting Intercept, Scale, and power
for each. Their fits are illustrated in Figure 9d–i and measures of fits
and parameters are in Table 3. The AMPE model fits the data much
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Figure 9
Hicks Law: Data and Models
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(b) Time Inferred From Environment
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(c) Times Inferred from Micro-Environment
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(d) Time Inferred From GPE

Repetitions
Non-Repetitions
Data

2 3 4 6
Number of Alternatives (Log Scale)

0

200

400

600

800

R
ea

ct
io

n 
T

im
e 

(m
s)

(e) Time Inferred From ACT-R
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(f) Time Inferred From P&A
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(g) Time Inferred From PPE
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(h) Time Inferred From MCM
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Note. (a) Data From Schneider and Anderson (2011). (b)–(i) Fits of Memory Models. GPE = general performance equation; ACT-R = Adaptive Control of
Thought–Rational; P&A = Pavlik and Anderson; PPE = predictive performance equation; MCM = multiscale context model; AMPE = Anderson & Milson
Performance Equation. See the online article for the color version of this figure.
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better than any of the other mathematical models and also does a bit
better than predictions taken directly from the environment. One
common feature of all the other models that produce spacing effects
(P&A, PPE, and MCM) is that they fail to capture even the shallow
increase for repetitions.

General Discussion

The idea that forgetting in memory may be adapted to the
environment can be traced at least back to Renda (1910; see
Bean, 1912). Recently, a number of ideas have been advanced as
to what the brain mechanisms might be that implement such
adaptive forgetting (e.g., M. C. Anderson & Hulbert, 2021; Ryan
& Frankland, 2022). This article has not addressed the issue of brain
mechanisms, but rather has focused on the statistical structure of the
environment as the driver of this adaptive forgetting. Besides
the forgetting effects of recency, this article has also extended
the adaptive perspective to effects of frequency and range and
addressed how memory availability emerges in response to the
interaction of these three factors in the environment.
Although the match between the statistics that can be collected

from the environment and human memory is remarkable, one can
question whether there is a causal relationship going from the
environment to memory. It could be that human memory is just
one of those environments that shows the remarkable regularities that
other environments show—that is, this is just have a case of correla-
tion and not causation. It could be that the environments we are
studying are shaped by human memory and so causation goes in the
other direction (although it is hard to make that argument for the case
of Reddit). Quite possibly the causal structure is bidirectional with the
environment shaping memory and our memory shaping what we put
in the environment. As Lewontin (1983) puts it, organisms construct
their own ecological niches. If the mirroring of memory in the
environment were perfect, such causal worries would not matter
for using the structure of the environment to guide memory models.
To prove that the environment causes memory one would have to

manipulate the environment and look for changes in memory. If one
thinks this causation occurs on a long evolutionary scale, such an
experiment seems impossible. If one thought that such shaping

occurred within a lifetime, such an experiment might be possible. To
our knowledge the only experiment (R. B. Anderson et al., 1997)
addressing this possibility did find that one could change the rate of
forgetting in an experimental session by changing the likelihood
with which items were encountered.

We are inclined to believe that the causation has occurred on a
long evolutionary scale. Evolutionary forces should shape memory
as much as possible to make more available what is more likely to be
needed. Human memory has robust similarities to the memories of
other mammals (Garfield, 1989) and we are inclined to believe that
the shaping of memory might be quite old in evolutionary history.
On the other hand, these forces might not produce a memory that
perfectly reflects the statistics in modern environments, which
would limit the relevance of environmental studies like those in
this article. It has been questioned (Shettleworth, 2009) whether the
environments Anderson and Schooler (1991) studied (and equally
the environments studied in the current article) reflect the environ-
ment in which our memory systems have evolved. The work of
Schooler et al. (2000) and Stevens et al. (2016) are partial answers to
this challenge and suggest at least some of these patterns reflect
prehuman environments. The A&M model offers a possible expla-
nation of what is behind the robust regularities across all of these
environments. Many environments would offer different types of
events that would vary in their frequency, tend to become less
frequent with time, and occasionally come back in full force.

Using Environmental Structure to Understand Memory

Much more data are available about environmental patterns than
can ever be obtained in an experimental study of memory. Our
choices of patterns to analyze in this article were strongly influenced
by the earlier choices of A&M and Anderson and Schooler (1991).
There may be many other informative patterns that we have not
identified and memory researchers have not imagined. Still, we were
led to recognize the importance of range and develop the AMPE
model which is at least as successful as memory models that
emphasize individual spacings. New analyses of the environment
could lead to models yet better than AMPE.

Predictive mathematical models like AMPE are needed even if
predictions could in principle be derived by Monte Carlo simula-
tions like that of the A&M model. Given the combinatorics of
possible patterns, a typical experiment or real-world situation in-
volves a combination of conditions that hardly ever will occur in the
environment or in Monte Carlo simulations of the environment. It is
useful to have a system of equations that can deliver a precise
prediction for any situation.

The AMPEmodel predicts that memory availability is the result of
three factors: currency, desirability, and stability. The first two are like
the concepts of memory recency and strength which play a role in
manymodels ofmemory. The addition ofmemory-specific stability is
required to explain spacing and an analog of stability can be found in
models that address spacing. The AMPE equation is a simpler than all
the models that address spacing except PPE which is of similar
structure. Walsh et al. (2018) emphasize the ease of using PPE.

Limitations of the AMPE Model

To return to the discussion of Simon’s critique in the introduction,
a rational analysis should not be used to replace process models but
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Table 3
Fit to Schneider and Anderson (2011)

Version

Measures of fit Model parameters

RMSE r2 Intercept Scale Power

(a) Environment
1,000-text windows 47.4 0.908 386.1 41.4 1.40
Micro windows 38.6 0.939 345.2 35.4 1.27

(b) Models
GPE 93.3 0.826 0.0 199.8 0.22
ACT-R 53.2 0.885 349.7 13.9 1.52
P&A 90.0 0.699 450.1 0.01 3.22
PPE 51.3 0.893 430.6 16.2 1.66
MCM 151.3 0.068 0.0 433.9 0.12
AMPE 27.9 0.968 235.8 81.5 0.89

Note. RMSE = root mean square error; GPE = general performance
equation; ACT-R = Adaptive Control of Thought–Rational; PPE = predictive
performance equation; MCM = multiscale context model; AMPE = Anderson
& Milson Performance Equation; P&A = Pavlik and Anderson.

THE ENVIRONMENTAL BASIS OF MEMORY 19



to guide the construction of process models. While the concepts of
currency, desirability, and stability all have analogs to processes in
memory models, AMPE is not a process model of memory. Rather it
is an attempt to approximate in closed mathematical form what the
power A&M model implies. It remains to realize it as a process
model just as the original rational analysis was mapped onto the
ACT-R theory of declarative memory. Such a process model would
contain more computational constraints that would shed light on
how memory plays out in specific situations just as computational
constrains have impacted ACT-R accounts of memory (e.g.,
Anderson et al., 1998).
While the applications of the AMPE model have been successful,

our definition of two key aspects of the model, what constitutes an
event and range, have been specific to these applications. More
general definitions would be required to incorporate them into a
general cognitive architecture like ACT-R. Availability in AMPE
decays as a function of intervening events not time. Models that
focus on time do not have the problem of defining what to count as
an event, but they do have problems when memory does not decay
as a smooth function of clock time. While we treated events as
proportional to time in the fits in Table 2b, the experiments in
Table 2c reveal that one cannot use this simplifying assumption in
all cases. While it might be nice to assume that events are specific to
particular context like an experimental session, the passage of days
without such context does result in some loss of memory.
Raaijmakers’s (2003) SAMmodel attempted to account for spacing
effects and forgetting in terms of context changing over time.
Despite the difficulties of that particular model, the drift of context
in some form may offer a successful alternative to either pegging
memory loss to passage of time or interfering events.
In AMPE range is the factor that determines Mi (Equation 11)

which is used in the definition of decay (Equation 12) and
desirability (Equation 13). In fitting the environmental data, range
was the number of texts spanning the first and last appearances of
an item. We noted earlier that if there were a bunch of appear-
ances early, a long empty gap, and a bunch of appearances late it
seems wrong to treat the whole period as the range. Defining
range becomes more problematic in dealing with behavioral data
where there are long gaps between sessions. In fitting the model to
the data in Table 2c, we summed the ranges for each day but
ignored the intervening days. A general use of the AMPE model
requires a general definition of how events bunch together to
constitute relevant periods and how to combine these into an
estimate of range.
While there are difficulties in coming up with a fully general

definition of range, we believe it is an important concept to bring
into the memory literature. It may capture effects in memory better
than spacing (which is equally challenging to define generally). All
three of the spacing models we considered (P&A, PPE, and MCM)
have the property that the net decay rate of an item can increase if
more studies are crammed into the same interval. Depending of the
situation and parameter estimates this can produce bizarre predic-
tions like worse memory with more practice. If one uses range as in
AMPE, this can never happen under any parameterization. There are
many demonstrations that, for purposes of long-term retention,
cramming one’s study into a short range is inferior to distributing
it over a longer period, but to our knowledge there are no demon-
strations that cramming more study in any fixed interval is worse
than less study in that fixed interval.
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Appendix A

Details of Spacing Models

The main text presented only the central predictive equations for
each mathematical model. The three spacing models have further
mathematical specifications of these central equations:

Appendix A.1 Pavlik and Anderson

Each occurrence of an item has its own decay di. The decay for the
first presentation was fixed:

d1 = a : (A1)

But later presentations would have greater decays to the extent
that the item was active at the point of presentation:

dn = a + c ×
Xn−1
j=1

t
−dj
j : (A2)

Appendix A.2 PPE (Predictive Performance Equation)

PPE requires calculation of elapsed time Ti and the decay rate di.
The elapsed time is a weighted average of the times tj that an item
has occurred:

Ti =
XNi

j=1

wj × tj wherewj =
t−xjXNi

j=1

t−xj

:
(A3)

As x increases the most recent time dominates the weighted
average (when x = 1, this calculates the harmonic mean). As x
gets very large Ti becomes the time of the most recent time and PPE
becomes no different than GPE in this regard. The lags, lagj,
between successive presentations determine the value of the
decay di:

di = b + m
Ni−1

×
XNi−1

j=1

1
logðlagj + eÞ ; (A4)

where e is the base of the natural logarithm.When x is very large and
m = 0, the predictions of PPE become identical to those of GPE.

Appendix A.3 MCM (Multiscale Context Model)

The traces decay according to the rule

xiðt + ΔtÞ = xiðtÞ × e−Δt=τi : (A5)

The xi‘s all start at one and decay according to their rates. When
the item is presented again the individual traces are incremented by
adding to the ith trace an amount that is a function of the average
strength of the first i traces:

Δxi = 1 −

Xi

k=1

γkxk

Xi

k=1

γk:
(A6)

The original MCM model had a different multiplicative scaling of
Δx depending on whether an item is recalled or not. In the case of
strings occurring in texts, there is not a recall step. Therefore, we
assumed a simpler update rule. This has the added advantage of
making themodel computationally tractable for high frequency cases.

The parameterization of the model concerns the determination of
the decay rates τi and the relative weights of the traces γi. They
propose that the decay parameters are monotonically increasing,
resulting in slower decays, and the weights are monotonically
decreasing, resulting in less emphasis on the slower decaying traces.
Motivated by the potential to produce a power function as a sum of
weighted exponentials over a large ranges of magnitudes they have
used N = 100. The decay parameters and weights are power
functions of i:

τi = μ × νi ; (A7)

γi =
ω× ξiXN
j=1

ξi
:

(A8)

With the constraints that ν > 1 and ω < 1 to produce the desired
ordering.

Appendix B

Fitting Environmental Data

The data were fit to the log probabilities as displayed in the
“Recency and Frequency” and the “Once and Twice Occurring”
figures (parts a of Figures 5–8). For each model, probabilities were
predicted for a 1000 × 1000 × 225 array where the dimensions were
(a) delay since the most recent presentation, (b) delay since the
second most recent present (if there was more than one

presentation), and (c) number of presentations. There were many
empty cells in this array because of impossible combinations. The
1000 × 1000 × 225 array of probability predictions was then
collapsed into probabilities for the points fitted in the figures. For
any specific point, we calculated a weighted average of all the
specific cells in the 1000 × 1000 × 225 array that went into that

(Appendices continue)
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point. The weights were the frequencies of those cells in the data
divided by the total frequency of the cells being collapsed. This
weighted-average probability was then converted into a log
probability.
In the case of the mathematical models, the predictions for the 1000 ×

1000×225 arraywere calculated by following the equations of themodel.
For the GPE and ACT-R models, these cells in the 1000 × 1000 × 225
array represented the full set of possible predictions. Other models
made predictions for a cell that could differ a little depending on the
times of presentations that were earlier than the last two. The

predictions for these models were based on prototype cases where
all of the earlier presentations were evenly spaced. Note that this
approximation is irrelevant to the predictions for the “Once and Twice
Occurring” data because there are no occurrences before the last two.

In the case of the Monte Carlo models, the generated probabilities
were obtained by simulating many items and then averaging all the
predicted probabilitiies for the cases that fit in the different cells of the
1000× 1000× 225 array. Statistics reported in Table 1 are based on the
conditions for which there was greater than 5,000 observations in the
data and greater than 1,000 cases in the Monte Carlo simulation.

Appendix C

Evidence for Assumptions in the A&M Model With Power Decay

The modified A&M model assumes (a) distributions of desirabil-
ity and decay rate, (b) power law decay, and (c) occasional revivals
of items to their original level of desirability. Besides the overall fit
in Figures 7 and 8, there is evidence in the environment specific to
each of these assumptions:

Distributions of Item Desirability and Decay Rate

Burrell (Burrell & Cane, 1982) chose a gamma distribution for the
desirabilities because it provides the conjugate prior for a Poisson
distribution and it gave results that roughly matched the distribution
of library borrowings. Anderson and Milson’s (1989) assumption of
an exponential distribution of decays was because it was the
simplest distribution that stretched from 0 to infinity. While these
exact distributional assumptions are somewhat arbitrary, they do
produce a distribution of frequency of occurrences that matches up
with the environment. Figure C1a shows the distribution of how
often strings occur in 1,000-text windows, comparing the observed
distribution with the predicted frequencies of the A&M model and
with the best-fitting negative binomial, which is the expectation of
the Burrell model. Even though the A&Mmodel was not fit to these
distributional statistics it does capture the nearly linear relation on
the log–log scale that the data show. The accelerating downward
trend of the Burrell model is a necessary consequence of it pre-
dicting a negative binomial distribution. In contrast, because the
A&Mmodel also has a distribution of decays, it has more items with
very high or very low probabilities and thus straightens the negative
binomial curve.

Power Law Decay

The linear relationship for frequency in Figure C1a is also the
expectation of assuming a Zipf’s law relationship for relative
frequency of strings, which has been observed in many domains
and is probably the result of many different complex systems
(Mandelbrot, 1959; Simon, 1955). However, Zipf’s law does not
predict the strong effects of when the items occur, most dramatically
the decay of probability. This is what motivated the assumption of
decay in both the Burrell model and the A&M model. A major
change from the Burrell model and from the original A&Mmodel is
the assumption that this decay has the form of a power function. The
success of this modified A&M model is evidence for the power

assumption, but we investigate here whether there is more direct
evidence of power decay. To get a purer reflection of the underlying
decay function, we focused on items in the 1,000-text window that
did not occur in the first 700 texts and occurred at least once in the
next 100 texts. This pattern suggests that there was a revival just
before the first appearance in the 100 text window.C1 Then we
calculated the probability of appearing in the 200 texts subsequent to
their first appearance. A corresponding probability was obtained
from Monte Carlo simulations of the A&M exponential and power
models. As Figure C1b shows, the data and the power simulations
have the expected near linear relationships on the log–log scale,
while the exponential simulations shows the expected accelerated
decrease.

Revivals

A rather strong assumption of the A&M model is that when
items are revived they return with their original desirability and
decay rate. To investigate this, we needed windows longer than
1,000 texts to obtain prima facie evidence for two distinct revivals.
Using sources that allowed 2000-text windows, we identified cases
without occurrences of a string in positions 1–300, 701–1,300, and
1701:2000, but at least one occurrence in both positions 301–500
and 1,301–1,500. We took these as cases where the item had a
revival somewhere in positions 301–500, decayed away, and had
another revival somewhere in positions 1,301–1,500.C2 We
counted the number of further mentions in the 200 texts after
these first mention in the two windows. Figure C1c plots how
number of further occurrences in the 200 strings after the first
occurrence in positions 301–500 predicted number of occurrences
after first occurrence in positions 1,301–1,500, both in the data and
the A&M model. We also obtained predictions from a model
identical to the A&Mmodel except that the item got a new random
desirability and decay upon revival. This is plotted as Power
A&M-New. As predicted by the assumption of a return to original
desirability, frequency in the first period predicts the frequency in

(Appendices continue)

C1 In the simulations of the power AM model, a revival did occur in that
100-text block 84 percent of the time compared to 9% of the time in prior
100-text blocks.

C2 In the simulations of the power AMmodel, revivals did occur in each of
the 200-text blocks 89% of the time versus 17% of the time in other 200-text
blocks during the no-occurrence periods.
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the second period (the relationship in the other direction is almost
identical). The figure shows that this relationship does not hold if
the revivals have new desirabilities and decays. The function for
the Power A&M model might seem quite shallow—an item that
has 12 extra appearances in the first period averages much fewer in
the second period. The shallowness reflects that items that having a

high number of extra occurrences in a period is likely to be an
overestimate of true desirability, as confirmed by the shallow slope
in the model where we know desirability and decay are constant for
an item. The slope for the model is somewhat steeper than in the
data, which would be consistent with items in the environment
sometimes reviving with a different desirability.
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Figure C1
Patterns in the Environment That Reflect the Distinct Assumptions of the A&M Power Model
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(c) Appearances after Two Revivals
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(b) Decay after a Revival
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Note. (a) Frequency of strings in 1,000-text window, compared to the power A&Mmodel and Burrell’s
original model. (b) Probability of a string occurring at various delays after an imputed revival, compared
to A&Mmodels with power decay and with exponential decay. (c) Number of appearances after a second
imputed revival as a function of number of appearances after the first revival, compared to power A&M
models with old versus new desirability and decay after a revival. A&M=Anderson and Milson. See the
online article for the color version of this figure.
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Appendix D

Experiments on the Spacing Effect

Below is a brief description of each experiment fit in Table 2.
Figures 11–19 illustrate the fits of the AMPE model. For reference,
we point out corresponding figures in Walsh et al. (2018) when they
exist.

Begg and Green (1988) investigated memory for once-presented
items at delays of 52 or 104 and a twice-presented items 52 and
104 items ago. Their results were 36%, 26%, and 62%, recall for the
three conditions. With only 3 data points this is something that all of
PPE, P&A, and AMPE can fit perfectly.
Bregman (1967) compared a massed condition where items were

presented 16 times in a massed manner (4 times each 11 items), an
intermediate condition (2 times each 11), and a spaced condition
(1 time each 11). All conditions were followed with a presentation
33 items later and then after another nine items. Figure D1 shows the
classic spacing result of worse memory for spaced items at the fixed
pace (Test/Study 1–15), then best memory after a longer delay (Test/
Study 16), and then after relearning on another brief interval (Test/
Study 17). Compare with Figure 3 in Walsh et al. (2018).
Glenberg (1976) compared recall at delays that varied from 2 to

64 items after lags from 1 to 40 items. He found the classic result that
short delays favored short lags and long delays favored long lags
(Figure D2). Recall for very short lags is depressed in all
conditions—something that P&A modeled with poorer encoding.
This seems not to be used in Walsh et al.’s implementation of the
P&A model and was not used in the AMPE model. As consequence

AMPE captures only the reduced effect of delay at long lags and not
the depression in recall at short lags for the brief delays. It
nonetheless fares comparably to the other models.

Rumelhart (1967) either presented items five times at lags of 2, 4,
7, or 11 (pure conditions) or at a mixture of lags (mixed conditions).
All conditions had a final test at a lag of 11. Subjects were forced to
guess from one of three alternatives on each trial and this is the
reason they are about 1/3 correct on the first presentation (this was
the first study opportunity). Therefore, in modeling these data we
included a simple guessing model which had a 1/3 chance of being
correct if the item was not recalled (Figure D3).

Young (1971) compared twice-presented items at various lags
from 1 to 18 items then tested at a delay of 11 items and once-
presented items tested at delays from 1 to 11 and the results are
given in Figure D4. There might be a peak for the twice-presented
items around 7–9, which would be consistent the idea that retention
at an interval does best when the spacing matches that interval.
Both Raaijmakers (2003) and P&A fit only the twice-presented
items and produced a matching peak. While AMPE would also
produce a peak if fit to just the twice-presented data, it does not if
the once-presented items are also included as in Walsh et al.
(2018). Despite this, its fit is better than those reported by
Walsh et al. (2018) for PPE or P&A.

Bahrick (1979) reports an experiment where items were presented
either three times or six times either all in 1 day, at 1-day separation,
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Figure D1
Results (a) and AMPE Predictions (b) for Bregman (1967)
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(a) Bregman(1967): Data
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(b) Bregman(1967): Prediction
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Note. Items receive 15 test-study trials at three levels of test and then are tested at a long delay
(last two points). AMPE =Anderson &Milson Performance Equation. See the online article for
the color version of this figure.

(Appendices continue)
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or at 30 days separation and then tested at a 30-day retention interval
(RI). Bahrick and Phelphs (1987) then reported a further test of the
six-repetition items 8 years later. The results generally show the
superiority of 30 day spacing for long-term retention (Figure D5).
Compare with Figure 11 in Walsh et al. (2018)

Cepeda et al. (2008) varied the lag between learning sessions
from 0 to 105 days, and the delay to final test at a RI from 7 to 350
days. Their results can be taken as identifying an optimal spacing for
different RIs (Figure D6). Compare with Figure 5 in Walsh et
al. (2018)
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Figure D3
Results (a) and AMPE Predictions (b) for Rumelhart (1967)
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(a) Rumelhart(1967) Pure: Data
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(b) Rumelhart(1967) Pure: Prediction
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(c) Rumelhart(1967) Mixed: Data
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(d) Rumelhart(1967) Mixed: Prediction
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Note. Growth in recognition accuracy for items studied at various lags. AMPE = Anderson &
Milson Performance Equation. See the online article for the color version of this figure.

Figure D2
Results (a) and AMPE Predictions (b) for Glenberg (1976)
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(a) Glenberg(1976): Data
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(b) Glenberg(1976): Prediction
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Note. Effect of different lags between two studies on recall at various lags. AMPE=Anderson
& Milson Performance Equation. See the online article for the color version of this figure.
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Cepeda et al. (2009) reported 2 experiments involving three
sessions where the first two offered study opportunities at different
lags and the third session was a retention test at different at a delay
of 10 days in Experiment 1 and 6 months in Experiment 2. The data

and predictions for tests in the second session are shown in Parts a
and b of Figure D7. The data and predictions for the final retention
test in Session 3 are in Parts c and d. Compare with Figure 4 in
Walsh et al. (2018)
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Figure D5
Results (a and c) and AMPEPredictions (b and d) for Bahrick (1979) and Bahrick and
Phelphs (1987)
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(a) Bahrick (1979) Studied 3x: Data
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(b) Bahrick (1979) Studied 3x: Prediction
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(c) Bahrick (1979) Studied 6x: Data
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(d) Bahrick (1979) Studied 6x: Prediction
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Note. Parts (a) and (b) are for items studied three times at various lags and then tested at a lag of
30. Parts (c) and (d) are for items studied six times at various lags and then tested at a lag of 30 and
again at a long of 8 years. AMPE = Anderson & Milson Performance Equation. See the online
article for the color version of this figure.

Figure D4
Results (a) and AMPE Predictions (b) for Young (1971)
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(a) Young (1971): Data

Once Presented
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(b) Young (1971): Prediction
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Note. Recall of items presented once or twice at various lags. AMPE = Anderson & Milson
Performance Equation. See the online article for the color version of this figure.
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Figure D6
Results (a) and AMPE Predictions (b) for Cepeda et al. (2008)
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(a) Cepeda (2008) : Data
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(b) Cepeda (2008) : Prediction
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Note. Retention results at various delays for items studied twice at various
lags. AMPE = Anderson & Milson Performance Equation. See the online
article for the color version of this figure.

Figure D7
Results (a and c) and AMPE Predictions (b and d) for Cepeda et al. (2009)
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(a) Cepeda (2009) Session 2: Data
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(b) Cepeda (2009) Session 2: Prediction
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(c) Cepeda (2009) Session 3: Data
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(d) Cepeda (2009) Session 3: Prediction
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Note. Parts (a) and (b) are for the second study session and Parts (c) and (d) are for the third
retention test. AMPE=Anderson &Milson Performance Equation. See the online article for the
color version of this figure.
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Pavlik and Anderson (2005) had subjects perform test-and-study
trials varying numbers of times at varying lags on 1 day and then had
then perform four further test-and-study trials at lags of 98 inter-
vening items either 1 or 7 days later. Altogether there were 162

different conditions crossing different numbers of test-studies (1, 2,
4, or 8) on day 1, lags (2, 14, or 98) between these studies, and 1
versus 7 days retention. However, Walsh et al. (2018) collapse
over days. They also collapsed various observations on Day 1
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Figure D9
Results (a and c) and AMPE Predictions (b and d) for Rawson and Dunlosky (2013)

0 2 4 6 8 10
Day of Test/Study

0

0.2

0.4

0.6

0.8

P
ro

ba
bi

lit
y

(a) Rawson & Dunlosky(2013) Exp 1: Data
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(b) Rawson & Dunlosky(2013) Exp 1: Prediction
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(c) Rawson & Dunlosky(2013) Exp 3: Data
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(d) Rawson & Dunlosky(2013) Exp 3: Prediction
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Note. Parts (a) and (b) are for the first experiment that manipulated study lag in the first session.
Parts (c) and (d) are for the third experiment that crossed study lag in the first session with study lag in
later sessions. See the online article for the color version of this figure.

Figure D8
Results (a) and AMPE Predictions (b) for Pavlik and Anderson (2005)
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(a) Pavlik & Anderson (2005): Data
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(b) Pavlik & Anderson (2005): Prediction

Note. Initial learning of items in the first session at point starts at x = 1. The relearning of items in the second session is plotted starting at x = 4 if
there were two tests in session 1, at x = 6 if there were four tests in session 1, and at x = 10 if there were eight tests. AMPE = Anderson & Milson
Performance Equation. See the online article for the color version of this figure.
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(e.g., performance on the second test-study when there would be 2,
4, or 8 test-studies). We fit AMPE to the same 64 collapsed data
points that Walsh et al used (though we did apply the model to the
two RIs and then averaged the results). Compare Figure D8 with
Figure 7 in Walsh et al. (2018).
Rawson and Dunlosky (2013) reported 3 experiments examining

the effects of different lags within a day. Figure D9 shows the data
for the first and third experiments, which have the most conditions.
In Experiment 1, subjects studied the items twice at 0, 1, 3, or 7

intervening items on a day 1 and then studied twice at lags of 7 on
days 3, 8, and 10. In Experiment 3, subjects studied items at 0 and 7
lag on day 1 and crossed with that at 0 and 7 lag on subsequent days.
Compare with Figure 8 in Walsh et al. (2018).
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