
Andrea Stocco
University of Washington

stocco@uw.edu
@TheRealDrDre2

Creating ACT-R Models
by Training

Confession of a recovered connectionist

Confession of a recovered connectionist

ACT-R: You must engineer all
the productions carefully ---
or else!

Confession of a recovered connectionist

ACT-R: You must engineer all
the productions carefully ---
or else!

Neural nets: You just set
the desired response, then
train the system feedback

> Less time spent building the model
– At least, less user time

> More time spent analyzing the model
– Explore a greater space of possible ways to do a task

> (Maybe) More realistic neuroimaging data?

Why would you want to train ACT-R?

Ideal workflow
> Define starting chunks (visual info, basic facts) and

correct responses (“press left index” for “circle”)
> Run the task many times

– Until model behaves accurately
> The model is adjusted based on response feedback

– Learning
> Examine what the model has learned

What would it look like?

> Networks mostly trained with gradient descent
> Easy to implement in networks, not so in ACT-R…

– Structure changes (new chunks and productions)
– Dynamics are important
– Tried to do some math, failed

> Solution tried here: Reinforcement learning
– Learn the optimal sequence of productions for a task

> Which productions do we start with?

How do we train ACT-R?

> Taatgen (2013) proposed that ACT-R is born with a
single, large set of small productions, called PRIMs
(for PRIMitive elements)

> Each PRIM basically just transfers one slot value from
one buffer to another.

> PRIMs = basic gating operations in BG

The PRIMs Solution

Stocco et al (2010):
> BG just gate

information from one
cortical region to
another

> BG has funnel
architecture with
massive bottleneck

The Basal Ganglia

1. Create a model with PRIMs and basic knowledge
2. Let the model run randomly until a correct response

is made
3. Reward correct responses (“Reward is enough”)
4. Repeat
… And see if something happens

Learning with PRIMs

> Productions access values through specific slot
names

> Creates problems of complexity
– Different chunks/models = different slot names

> Forced a unified format: all chunks have N slots, all
slots have meaningless names (slot1, slot2, slot3…)

Setting chunks up for PRIMs

> Productions just move
one slot value from one
buffer to another slot
value in a different buffer

Productions Buffer 1
… Slot 1
… Slot 2
… Slot 3{

Buffer 2

…
 S

lo
t 1

…
 S

lo
t 2

…
 S

lo
t 3

{

Production
From-Buffer1-Slot3-to-Buffer2-Slot1

> Productions just move
one slot value from one
buffer to another slot
value in a different buffer

Productions Visual

Retrieval

Manual

Imaginal

Goal

Fr
om

To

V
is

ua
l

Re
tr

ie
va

l

M
an

ua
l

Im
ag

in
al

G
oa

l

Productions

> Productions just move
one slot value from one
buffer to another slot
value in a different buffer

> Not all productions are
meaningful
– Copying a value onto itself
– Copying to Visual
– Copying from Manual

Visual

Retrieval

Manual

Imaginal

Goal

Fr
om

To

V
is

ua
l

Re
tr

ie
va

l

M
an

ua
l

Im
ag

in
al

G
oa

l

Example: Simon task

Congruent Trials

According to shape
According to location

Incongruent Trials

According to shape
According to location

> Basic lab task
> Similar to other common interference tasks

– Stroop, Flanker, Picture/Word
> Many ACT-R models have been written

Why the Simon task?

N = 3 slots; Rules in DM, Stimuli are placed in Visual

Example: Simon task

Circle Left Rule

Square Right Rule

Circle Left Black

Circle Right Black

Square Left Black

Square Right Black

Rules Stimuli

Slot1 Slot2 Slot3

The “model”
(define-model simon-train
 (sgp :er t
 :esc t
 :ul t
 :egs 0.5
 :alpha 0.05
)

 (chunk-type memory slot1 slot2 slot3)

 (add-dm (rule1 isa memory slot1 rule
 slot2 circle slot3 left)

 (rule2 isa memory
 slot2 rule slot2 square slot3 right)

 (congruent1 isa memory slot1 circle
 slot2 left slot3 black)

 (congruent2 isa memory slot1 square
 slot2 right slot3 black)
 (incongruent1 isa memory slot1 circle
 slot2 right slot3 black)
 (incongruent2 isa memory slot1 square

 slot2 left slot3 black)
)

(create-productions-from-template)

The “model”
(P FROM-IMAGINAL-SLOT1-TO-GOAL-SLOT1
 ?MANUAL>
 PREPARATION FREE
 PROCESSOR FREE
 EXECUTION FREE
 ?RETRIEVAL>
 STATE FREE
 ?IMAGINAL>
 STATE FREE
 ?GOAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 =GOAL>
 =IMAGINAL>
 SLOT1 =X
 ==>
 =GOAL>
 SLOT1 =X
)

(define-model simon-train
 (sgp :er t
 :esc t
 :ul t
 :egs 0.5
 :alpha 0.05
)

 (chunk-type memory slot1 slot2 slot3)

 (add-dm (rule1 isa memory slot1 rule
 slot2 circle slot3 left)

 (rule2 isa memory
 slot2 rule slot2 square slot3 right)

 (congruent1 isa memory slot1 circle
 slot2 left slot3 black)

 (congruent2 isa memory slot1 square
 slot2 right slot3 black)
 (incongruent1 isa memory slot1 circle
 slot2 right slot3 black)
 (incongruent2 isa memory slot1 square

 slot2 left slot3 black)
)

(create-productions-from-template)

(P FROM-IMAGINAL-SLOT1-TO-GOAL-SLOT1
 ?MANUAL>
 PREPARATION FREE
 PROCESSOR FREE
 EXECUTION FREE
 ?RETRIEVAL>
 STATE FREE
 ?IMAGINAL>
 STATE FREE
 ?GOAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 =GOAL>
 =IMAGINAL>
 SLOT1 =X
 ==>
 =GOAL>
 SLOT1 =X
)

(P FROM-IMAGINAL-SLOT1-TO-GOAL-SLOT1
 ?MANUAL>
 PREPARATION FREE
 PROCESSOR FREE
 EXECUTION FREE
 ?RETRIEVAL>
 STATE FREE
 ?IMAGINAL>
 STATE FREE
 ?GOAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 =GOAL>
 =IMAGINAL>
 SLOT1 =X
 ==>
 =GOAL>
 SLOT1 =X
)

(P FROM-IMAGINAL-SLOT1-TO-GOAL-SLOT1
 ?MANUAL>
 PREPARATION FREE
 PROCESSOR FREE
 EXECUTION FREE
 ?RETRIEVAL>
 STATE FREE
 ?IMAGINAL>
 STATE FREE
 ?GOAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 =GOAL>
 =IMAGINAL>
 SLOT1 =X
 ==>
 =GOAL>
 SLOT1 =X
)

(P FROM-IMAGINAL-SLOT1-TO-GOAL-SLOT1
 ?MANUAL>
 PREPARATION FREE
 PROCESSOR FREE
 EXECUTION FREE
 ?RETRIEVAL>
 STATE FREE
 ?IMAGINAL>
 STATE FREE
 ?GOAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 =GOAL>
 =IMAGINAL>
 SLOT1 =X
 ==>
 =GOAL>
 SLOT1 =X
)

(P FROM-IMAGINAL-SLOT1-TO-GOAL-SLOT1
 ?MANUAL>
 PREPARATION FREE
 PROCESSOR FREE
 EXECUTION FREE
 ?RETRIEVAL>
 STATE FREE
 ?IMAGINAL>
 STATE FREE
 ?GOAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 =GOAL>
 =IMAGINAL>
 SLOT1 =X
 ==>
 =GOAL>
 SLOT1 =X
)

(P FROM-IMAGINAL-SLOT1-TO-GOAL-SLOT1
 ?MANUAL>
 PREPARATION FREE
 PROCESSOR FREE
 EXECUTION FREE
 ?RETRIEVAL>
 STATE FREE
 ?IMAGINAL>
 STATE FREE
 ?GOAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 =GOAL>
 =IMAGINAL>
 SLOT1 =X
 ==>
 =GOAL>
 SLOT1 =X
)

(P FROM-IMAGINAL-SLOT1-TO-GOAL-SLOT1
 ?MANUAL>
 PREPARATION FREE
 PROCESSOR FREE
 EXECUTION FREE
 ?RETRIEVAL>
 STATE FREE
 ?IMAGINAL>
 STATE FREE
 ?GOAL>
 STATE FREE
 ?VISUAL>
 STATE FREE
 =GOAL>
 =IMAGINAL>
 SLOT1 =X
 ==>
 =GOAL>
 SLOT1 =X
)

…
…

And then… We let it run

The model (slowly) learns!

Does it work?

Inspecting the model

Does it work?

Two modeling families
> Declarative interference

– (Altmann 2001, van Maanen
2009)

> Procedural interference
– (Lovett 2005, Stocco 2017)

Interesting results 1:
Where does interference come from?

Interesting results 1:
Where does interference come from?

● Retrieve response associated
with the shape

● Use the retrieved response in
the manual module

Interesting results 1:
Where does interference come from?

● Retrieve response associated
with the shape

● Use the retrieved response in
the manual module

● Use the location of the
stimulus as response

● Put shape in WM
● Use WM to retrieve response
● Use the retrieved response in

the manual module

Interesting results 1:
Where does interference come from?

● Retrieve response associated
with the shape

● Use the retrieved response in
the manual module

● Use the location of the
stimulus as response

● Put shape in WM
● Then retrieve associated

response
● Then put response in manual

● Put shape in WM
● Use WM to retrieve response
● Use the retrieved response in

the manual module

Interesting results 1:
Where does interference come from?

● Retrieve response associated
with the shape

● Use the retrieved response in
the manual module

● Use the location of the
stimulus as response

> Ketola et al. 2020 proposed
using functional
connectivity between ACT-R
regions to evaluate models

> Used Altmann 2001 and
Lovett 2005 Stroop models

Interesting results 2:
Functional connectivity predictions

> Ketola et al. 2020 proposed
using functional
connectivity between ACT-R
regions to evaluate models

> Used Altmann 2001 and
Lovett 2005 Stroop models

> Very sparse compared to
real connectivity

Interesting results 2:
Functional connectivity predictions

Interesting results 2:
Functional connectivity predictions

> Less time spent building the model ✅
– At least, less user time

> More time spent analyzing the model ✅
– Explore a greater space of possible ways to do a task

> (Maybe) More realistic neuroimaging data? ✅

Why would you want to train ACT-R?

> The Simon task is basic
> To deal with realistic tasks,

we need more complex
productions:
– Test multiple conditions
– More retrieval cues

> Possible solution: Expand
productions to include values

Caveat #1: Realistic tasks

Visual

Retrieval

Motor

Imaginal

Goal

Fr
om

V
is

ua
l

Re
tr

ie
va

l

M
ot

or

Im
ag

in
al

G
oa

l

> The Simon task is basic
> To deal with realistic tasks,

we need more complex
productions:
– Test multiple conditions
– More retrieval cues

> Possible solution: Expand
productions to include values

Caveat #1: The road ahead

Visual

Retrieval

Motor

Imaginal

Goal

Fr
om

V
is

ua
l

Re
tr

ie
va

l

M
ot

or

Im
ag

in
al

G
oa

l

…

nil…
value1…
value2 …
value3 …

value n …

> So far, I have avoided the biggest simplification
> The Simon example avoids creating new memories

– All buffers are initialized with empty chunks
– No strict harvesting on imaginal and goal

> Why?
– During learning, the model produces a lot of garbage

memories

Caveat #2: Handling memory

> Many unsuccessful trials create useless knowledge
(GOAL-CHUNK0-4

 SLOT1 CIRCLE

 SLOT2 RULE

 SLOT3 CIRCLE)

> Garbage that is accidentally retrieved is more likely
to be retrieved again, even when R(t) is negative!

Garbage memories

> Not sure how much it will scale up
– but so far, fingers crossed!

> Problems with memory are tantalizing
– You want to forget a lot early on… Reminds me of debate

about childhood amnesia
– Debate on whether memory is affected by reward

> Need to dance around the procedural model a lot
– Might want to try out some redesigns
– We might not need “productions”

Final Thoughts

Thanks!

Future picture of me,
Creating ACT-R models in 2023

Special thanks to
the UW crew:
> Holly Hake
> Teddy Haile
> Jim Treyens
> Cher Yang

