

Motivation in ACT-R ICCM ACT-R Workshop July 27 2022

Yuxue(Cher) Yang <u>chery@uw.edu</u> University of Washington

Modeling Motivation

- Motivation is described as an **unobservable driving force** behind behaviors, which is **interacting with many cognitive functions**
- It's crucial to study motivations:
 - the mechanisms of behavior drives
 - individual differences
 - predict learning process
- Computationally, motivation is nothing but **decision-making analysis**. People evaluate cost-benefit tradeoffs in order to maximize gains and minimize costs while performing tasks.

UNIVERSITY of WASHINGTON

Expected Value of Control (EVC) Theory

Motivation in the Brain dorsal Anterior Cingulate Cortex (dACC)

A Net Value of Control Allocation

NIVERSITY of WASHINGTON

Stimulus Features

A Slot Value in Goal Buffer

VERSITY of WASHINGTON

ACT-R Architecture Review

- Well-known Cognitive Architecture
- Declarative system

- Procedural system

Motivation in Goal Buffer

- Old ACT-R: Goal was associated with a value to rank production: (U = PG -Time)
- **Current ACT-R:** Goal is not related to reward
- Next ACT-R: Revisit Goal + Reward
 - Keep track of **cost**, **R+**
 - Estimate **EVC**
 - Deliver R+ = M Cost
- Goal buffer is the **ACTIVE** force behind adaptive behaviors

Motivation in Goal Buffer

- **M** represents:
 - Subjective value of achieving goal
 - Time cost of the goal
- **M** accounts for
 - where intrinsic reward R_t come from, and
 - how **M** interacts with other cognitive functions by calculating expected R and Cost.

Low M

- M is 1
- The cognitive **Cost** is tracked by goal module
- A reward **R** (could be +/-) is delivered once the goal achieved
- When Cost > M and the goal has not been reached yet, the agent will gives up current goal and respond with whatever it has with no reward.

Low M - more quickly giving up the goal, even though it understands the potential rewards gained by achieving it.

- M is 10
- The cognitive **Cost** is tracked by goal module
- A reward **R** (could be +/-) is delivered once the goal achieved
- When Cost > M and the goal has not been achieved, the model gives up current goal and respond with whatever it has with no reward.

High M - the model is willing to spend more time in the task and obtaining the rewards, and the reward = M

Simple Model

ACT-R Model Abstract task

10 Competitive Productions (strategies) **P1** Start End **P2 P3 P4** ... P10

- 10 abstract strategies
 - Cost (:AT): P1 < P2 ... < P10
 - Reward (R): P1 < P2 ... < P10
- Which strategy is optimally selected by ACT-R?

Parameter	Value	Meaning
AT	0.01 - 0.1	Cost of control at T _o
R	0 - 10	Reward

Simon Model

ACT-R Model: Simon task

- Encoding Simon stimulus
- Retrieving Simon rule
- Responding
- Monitoring performance (M)
 - Check
 - Don't Check

Parameter	Value	Meaning
М	0.5 - 10	Motivation
VC	0 - 1	Task difficulty
AT	0.01 - 0.1	Cost of control at T _o

Main Take-away

- Proposed a mechanistic interpretation of motivation in ACT-R
- Computational model of motivation:
 - Goal module ≠ Imaginal Module
 - A scalar value: M in Goal Module
 - Translating M as the reward R_t that is triggered when the goal is accomplished.
 - ACT-R's utility learning mechanism then provides a way to adjust the specific combination of productions that are used to perform a task.

Take-away Continue...

- Abstract model demonstrates that our framework is consistent with the EVC theory
- Easy to implement in an existing model of common cognitive task Simon Task
- Account for many well-studied experimental effects:
 - Congruency effect
 - Post-error slowing
 - Task Difficulty
 - Fatigue ...

UNIVERSITY of WASHINGTON

Cognition & Cortical Dynamics Laboratory

Backup Slides

Results: Speed-Accuracy Tradeoff

Fatigue alleviated by extra incentives

- Session 1-6 → Fatigue
- Session 7 → Reward
- > Speed group
- > Accuracy group

Bokesem et al., 2006

Cost as a function of Control Intensity

