gactar

A tool for creating & running basic ACT-R models on multiple
implementations using a single declarative file format

Andy Maloney

Independent Researcher

Jennifer Schellinck
Renan Ozen
Brendan Conway-Smith
Robert L. West

Carleton University



Why gactar?

Situation: Different ACT-R implementations have been developed

e Are outputs consistent with models implemented in ACT-R 7.0?

Solution: “gactar” provides formal validation via transpilation

e taking source code written in one language and transforming into another
language that has a similar level of abstraction.

* Exposes potential divergences from theory or expected behaviours

amod -2 Lisp
- Python



Why transpiling?

- to assist congruence

- people want to use ACT-R in different languages and situations
- makes clear what the other versions don't do

- is Python ACT-R really doing what Lisp ACT-R is doing?

- a formal way of showing equivalence

- trust issues with the Python code



What is gactar?

I
ctions
ia

Producti
(Basal Ganglia)
P
m‘ ml
~I

Open-source project developed by Andy Maloney

* Data scientist, software engineer

https://github.com/asmaloney/gactar

* Collaboration is welcome!


https://github.com/asmaloney/gactar

Why gactar?

Accessibility for novice modelers
* Abstracts away programming to focus on modelling

 amod format is easy to read & understand

Production descriptions are restricted to a small set of actions to
prevent programming “outside the model”



Buffers

Goal

e Stores current goal

Retrieval

 Stores chunks retrieved from declarative memory

Imaginal

* keeps track of what you are doing



Chunks

Structure of chunks are declared in the config section of an amod file

[chunk name: slot namel slot name2 ...]

[count: first second]
[word: form category]
[property: object attribute value]



Productions

(production name) {
match {
(buffer condition)

(action)



match section describes chunk patterns that will

PrOd UCtlons fire the production when matched in some buffer

(production name) {
match {
(buffer condition)

(action)



match section describes chunk patterns that will

PrOd UCtlons fire the production when matched in some buffer.

do section prescribes action to take when production fires

(production name) {
match {
(buffer condition)

do {
(action)



Actions

clear (buffer name) +

print (string/var/number) +

recall (pattern)

set (buffer name). (slot name)

to (string/var/number)

set (buffer name)
to (pattern)

clear goal, retrieval
print ‘text’, ?var, 42
recall [car: ?color]

set goal.wall color to ?color

set goal to [start: 6 nil]



Productions

Example: increment

increment {
match {
goal [countFrom: ?x !?x counting]
retrieval [count: ?xX ?next]

do {
print ?x
recall [count: ?next ?]
set goal.start to ?next



DEMO

https://github.com/asmaloney/gactar



https://github.com/asmaloney/gactar

References

Maloney, A. (2021). gactar: A Tool For Exploring ACT-R Modelling.
https://dx.doi.org/10.13140/RG.2.2.25387.36642



https://dx.doi.org/10.13140/RG.2.2.25387.36642

