
Andy Maloney

Independent Researcher

Jennifer Schellinck

Renan Ozen

Brendan Conway-Smith

Robert L. West

Carleton University

gactar
A tool for creating & running basic ACT-R models on multiple

implementations using a single declarative file format

Situation: Different ACT-R implementations have been developed

• Are outputs consistent with models implemented in ACT-R 7.0?

Solution: “gactar” provides formal validation via transpilation

• taking source code written in one language and transforming into another

language that has a similar level of abstraction.

• Exposes potential divergences from theory or expected behaviours

amod Lisp
 Python

Why gactar?

- to assist congruence

- people want to use ACT-R in different languages and situations

- makes clear what the other versions don't do

- is Python ACT-R really doing what Lisp ACT-R is doing?

- a formal way of showing equivalence

- trust issues with the Python code

Why transpiling?

Open-source project developed by Andy Maloney

• Data scientist, software engineer

https://github.com/asmaloney/gactar

• Collaboration is welcome!

What is gactar?

https://github.com/asmaloney/gactar

Accessibility for novice modelers

• Abstracts away programming to focus on modelling

• amod format is easy to read & understand

Production descriptions are restricted to a small set of actions to
prevent programming “outside the model”

Why gactar?

Goal

• Stores current goal

Retrieval

• Stores chunks retrieved from declarative memory

Imaginal

• keeps track of what you are doing

Buffers

Structure of chunks are declared in the config section of an amod file

[chunk_name: slot_name1 slot_name2 ...]

[count: first second]

[word: form category]

[property: object attribute value]

Chunks

(production_name) {

match {

(buffer condition)

}

do {

(action)

}

}

Productions

(production_name) {

match {

(buffer condition)

}

do {

(action)

}

}

Productions match section describes chunk patterns that will

fire the production when matched in some buffer

(production_name) {

match {

(buffer condition)

}

do {

(action)

}

}

Productions match section describes chunk patterns that will

fire the production when matched in some buffer.

do section prescribes action to take when production fires

Command Example

clear (buffer name)+ clear goal, retrieval

print (string/var/number)+ print ‘text’, ?var, 42

recall (pattern) recall [car: ?color]

set (buffer name).(slot name)

to (string/var/number)

set goal.wall_color to ?color

set (buffer name)

to (pattern)

set goal to [start: 6 nil]

Actions

Example: increment

increment {

match {

goal [countFrom: ?x !?x counting]

retrieval [count: ?x ?next]

}

do {

print ?x

recall [count: ?next ?]

set goal.start to ?next

}

}

Productions

DEMO

https://github.com/asmaloney/gactar

https://github.com/asmaloney/gactar

Maloney, A. (2021). gactar: A Tool For Exploring ACT-R Modelling.
https://dx.doi.org/10.13140/RG.2.2.25387.36642

References

https://dx.doi.org/10.13140/RG.2.2.25387.36642

