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A Decay-Based Account of Learning and Adaptation in Complex Skills
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How do humans adapt to parametric changes in a task without having to learn a new skill from scratch?
Many studies of memory and sensorimotor adaptation have proposed theories that incorporate a decay on
prior events, which leads the agent to eventually forget old experiences. This study investigates if a similar
decay mechanism can account for human adaptation in complex skills that require the simultaneous integra-
tion of cognitive, motor, and perceptual processes. In 2 experiments, subjects learned to play a novel racing
video game while adapting to parametric changes in the physics of the game’s controls. Human learning and
performance were modeled using the ACT–R cognitive architecture, which has been used successfully to
model learning and fluency across a wide range of skills in prior research. Anderson et al. (2019) introduced
the Controller module, a new component of the architecture that learns the setting of control parameters for
actions and allows the agent to execute the rapid and precise actions that are necessary for good performance
on complex tasks. Model simulations support including a moderate time–based decay on the weight of the
experiences that the Controller uses. This is implemented in the Controller module by discounting the influ-
ence of older observations which helps the agent to focus on recent experiences that better reflect the current
relationship between different settings of a control parameter and the rate of payoff from using that setting.
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Heraclitus said, “Change is the only constant in life.” Despite
this ever-changing nature of our lives, our success as humans
depends on using our past to adapt to the present situation. Psy-
chology has studied transfer in a wide range of domains such as
mathematical problem solving (Speelman & Kirsner, 2001), per-
ceptual categorization and discrimination (McGovern et al., 2012),
and sensorimotor learning (Goodwin et al., 1998). (Thorndike’s
(1906) identical elements theory can be applied to many transfer
situations – the proposal that transfer occurs to the extent that the

same elements are exercised in a new situation as were learned in
a prior situation. The challenge in applying this principle can be
determining what those elements are. For instance, Taatgen (2013)
argued that demonstrations of far transfer from working memory
training, which seemed to defy Thorndike’s principle, could be
explained by transfer of low-level information-processing elements.

Complementary to the broad range of studies on transfer, this
paper examines how people adapt existing skills when the situa-
tion changes. The need for such adaption pervades our lives. One
example, which is close to the experimental task we will investi-
gate, is driving a new car. The car might well have different brake
and gas pedal sensitivities. If we performed the exact same motor
movements as in our old car we would not succeed. We need to
adapt to the changes of the new car. We can do so with some suc-
cess, but it is also the case that we need some practice with the
new car to become as fluent as we were with the old car. Rather
than characterizing our adaption as learning new elements, a better
characterization seems that we are tuning the existing elements
that control our behavior in the new car.

To our knowledge, most studies on such parametric adaptation
have focused on sensorimotor perturbations (Braun et al., 2009) or
abstract associative tasks (Narain et al., 2014). Within the sensori-
motor adaptation literature, one theory that has been gaining trac-
tion is that sensorimotor perturbations facilitate structural learning,
such that exposure to a wide range of parameter values helps one
to abstract a higher–level task structure that can be applied to
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reduce learning time when faced with new parameter values
(Braun et al., 2009; Turnham et al. 2012). Similar theories of
meta–learning in the motor domain have also been proposed, such
as the variability of practice hypothesis (Newell & Shapiro, 1976).
Current theories of sensorimotor adaptation also include decay–
based processes, allowing an agent to eventually fully adapt to a
new environment. For example, the dual–rate theory proposes two
simultaneous learning processes, each with a different rate of
decay on motor memories (Smith et al., 2006).
The question remains about how these results apply to more

complex skills, like driving a new car, that require the integration
of many different components. Unlike the tasks in previous stud-
ies, success in complex tasks such as driving or playing tennis
relies on more than just tuning the control parameters of key
actions. One needs to learn how to embed them in a complex inter-
active task structure. Indeed, to understand how to tune these pa-
rameters one needs to understand how they relate to the relevant
internal and external states that occur in the game.
To understand the mechanisms that underlie transfer in complex

skills, it is useful to begin with a model of complex skill acquisi-
tion. Anderson et al. (2019) presented one such model and imple-
mented it within the ACT-R cognitive architecture (Anderson et
al., 2004; Anderson & Lebiere, 2014). Their model simulated
human learning and performance across two related video games
that had different goals, successfully predicting the learning of
each but a lack of transfer between them. Critical to performance
in either task was learning a fairly complex structure of parameters
to that controlled successful performance. Each task stayed con-
stant and so, once the parametric structure had been learned, it
could be used for the rest of the experiment. Complementary to
their study, this study asks participants to transfer among paramet-
ric variations of a video game that maintain the same task goal
structure. This allows us to study how people adapt their control
parameters to changes within a task and investigate whether the
model in Anderson et al. (2019) can be extended to apply to this
sort of adaptation.

Task—Space Track

Space Track was originally a video game developed by Ander-
son et al. (2019) as part of their study on the transfer of complex
skills. Just like driving, mastering Space Track is a complex skill
because it requires one to integrate perceptual, motor, and cogni-
tive components. Expertise arises from having gained an intuitive
understanding of the physics of the game and the ability to use that
knowledge toward planning sequences of key presses to overcome
various situations.
In Space Track, players control a spaceship in a frictionless

environment using three keys: thrust (W), rotate clockwise (A),
and rotate counterclockwise (D). Rotation only changes the orien-
tation of the ship and does not affect its trajectory. Upon thrusting,
the ship’s trajectory will be the vector resulting from the sum of
the ship’s previous velocity and the acceleration in the direction
that the ship is oriented toward. The ship’s previous velocity sig-
nificantly influences the resulting trajectory because of the lack of
friction; in the real world, friction quickly cancels out the previous
velocity once acceleration is no longer provided in that direction.
Figure 1 displays the task screen. Players earn 25 points by suc-

cessfully navigating the ship along each rectangular track segment

and lose 100 points when the spaceship crashes into the walls of
the track. Rectangular track segments overlap to form intersections
of varying angles (30 to 150 degrees) and directions (left or right
facing). The unpredictable nature of the upcoming path adds
another layer of difficulty, forcing participants to truly learn to
master the controls of the game instead of learning simple percep-
tual-motor associations. Further details about Space Track are
available in Appendix A.

Finding a good speed is crucial for performance – one needs to
fly fast enough to cover as much distance as possible but also slow
enough to avoid losing control of the ship and crashing. The speed
of the ship is determined by pressing a thrust key which adds ve-
locity in whatever direction the ship is moving. The amount of ve-
locity is controlled by how long the key is held down. A unit of
acceleration is added each game tick the thrust key is held down.
Our experiment changes the amount of acceleration between cer-
tain games in a sequence of 40 games. As we will see, this single
manipulation requires adapting the complex set of parameters that
subjects are learning to play the game.

Below we describe two experiments that involve variations on
the same basic design. Simultaneously fitting two experiments
gives us generality in our conclusions and add power to our mod-
eling. We will describe the results of the experiments followed by
an exploration of how to understand those results within a compu-
tational modeling framework.

Experiment 1

Participants in all experiments would participate only after giv-
ing online consent, and all procedures and methods were approved
by the Carnegie Mellon Institutional Review Board.

Figure 1
An Example Space Track Screen Rendered in Black and White

Note. Players control the spaceship to cover as much distance as possible
along the racetrack while avoiding crashing into the track walls (the
bolded edges of the rectangular segments). The overlap between two seg-
ments is marked by the lighter colored lines and are not relevant for
gameplay. PNTS = points earned in the current trial.
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Design

To create parametric changes in the task environment, we
manipulated the amount of thrust the ship receives for the same
duration that the thrust key is depressed. When the thrust key is
depressed, a vector of x pixels in the current direction of the ship
is added each game tick, which is 1/30th of a second. For the same
duration of key press, a game with higher thrust would cause the
ship to fly faster than a game with lower thrust. We created three
game types, each with a different acceleration. High acceleration
games (H) added .6 pixels/tick to the ship’s velocity vector for
each tick that the thrust key was depressed. Medium (M) and low
(L) acceleration games added .4 and .2 pixels/tick, respectively.
As mastery of the game relies on adequately predicting and con-
trolling the motion of the spaceship, players would have to retune
their control parameters when faced with a different acceleration.
With the three game types, we created five conditions as fol-

lows: LLLLM, HHHHM, LHLHM, and HLHLM for training, and
MMMMM as a control, where each letter stands for one block of
8 3 three-minute games (see Figure 2). For instance, a player in
the LLLLM condition would play 4 blocks (32 games) of low
thrust followed by 1 block (8 games) of medium thrust. This
allows us to investigate how subjects adapt to changes after differ-
ent amounts of experience in different conditions.
Note that all conditions end with a block of medium games.

One of these conditions (MMMMM) involves medium games
throughout. Comparing the final block between conditions allows
us to assess how much transfer there is from these other sequences
to a constant condition. Two of the other conditions involve varied
training (LHLHM and HLHLM) while the other two (LLLLM and
HHHHM) do not. Within the domain of sensorimotor learning,
practicing on varied task parameters has been shown to facilitate

adaptation to new task parameters as compared to consistent prac-
tice. For instance, when the transfer task is to toss a beanbag to a
target at a set distance, Kerr and Booth (1978) reported that partic-
ipants who trained on different target distances excluding the
transfer target perform better than those who trained on just one
target distance. Given that the type of practice affects transfer in
simple skills, we can also investigate if practice type has a signifi-
cant impact on transfer in complex skills.

Participants

One hundred participants (73 males), aged 19–65 years (M =
30.8 years), completed the experiment through Amazon Mechani-
cal Turk. Participants were paid $5 for the first session and $10 for
the second session plus a bonus of $0.03 per 100 points.

Procedure

The experiment consisted of two sessions. In the first session,
participants filled out a demographic questionnaire and read instruc-
tions regarding the controls and goals of the game. The instructions
also alerted participants to the possibility that they might encounter
ships with a different “feel” as indicated by a different color. The
participants then proceeded to complete the first 20 games. Before
each game, participants would be shown the color of the upcoming
ship. Note that no information about the nature of the differences
between ships (i.e., magnitude of acceleration) was provided at any
time. At the end of the first session, participants that passed a set of
inclusion criteria were then invited to the second session, which
consisted of another 20 games. During a game, if 20 seconds elapse
without the participant pressing a key, a pop up with a “ready to
restart” button will appear. These are inclusion criteria for the sec-
ond session:

Figure 2
Task Design of Experiment 1

Note Each row represents one condition, and each box represents one block of 8 games.
See the online article for the color version of this figure.
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1. No more than 3 resets due to inactivity.

2. Either at least 500 points in at least 3 out of the 20 games,
or that the average of games 17 to 20 is at least 100 points
higher than the average of game 1 to 4.

These criteria were put in place to maximize recruiting only play-
ers who were sufficiently attentive and showed signs of learning.
Using those criteria, 66 players who finished the first session were
excluded from participating in the second session (MMMMM: 11;
LLLLM: 9; HHHHM: 16; LHLHM: 17; HLHLM: 13). At the end
of the first session (game 20), players that were excluded scored
�1728.41 on average whereas players that completed both sessions
scored an average of 478 on game 20, indicating that the exclusion
criteria did distinguish between two distinct populations of players.
Recruitment continued until 20 participants per condition success-
fully completed both sessions.

Experiment 2

Design

The purpose of the second experiment was to examine if varied
practice would have a different effect on transfer when the transfer
target was beyond the range of practiced values. For experiment 2,
we used the High, Medium, and Low thrust game types to create
five conditions as follows: LLLLH, MMMMH, LMLMH, and
MLMLH for training, and HHHHH as a control. Unlike experiment
1, all training conditions now transfer to the High thrust after train-
ing, which is an acceleration outside the range of practiced thrusts
for those in a varied training condition. Furthermore, participants in
a varied training condition also experienced a smaller range of
thrusts (Low to Medium) as compared to those in experiment 1

(Low to High). Figure 3 provides a pictorial representation of the
new task design.

Participants

One hundred participants (71 males), aged 19–61 years (M =
32.1 years), completed the experiment through Amazon Mechani-
cal Turk. Participants were paid $5 for the first session and $10 for
the second session plus a bonus of $0.03 per 100 points. 63 players
who finished the first session were excluded from participating in
the second session using the same criteria as before (HHHHH: 15;
LLLLH: 11; MMMMH: 11; LMLMH: 15; MLMLH: 11). Similar
to experiment 1, excluded players scored �1581.35 on average,
whereas players that completed both sessions scored an average of
576 on game 20, again indicative of two distinct populations of
players. Recruitment continued until 20 participants per condition
successfully completed both sessions.

Behavioral Results

Figure 4 displays the points per game for each condition. On av-
erage, human participants (in red) in all conditions improve their
performance with increased practice on the task, but also show
some temporary drop in performance in some cases where there is
a change in acceleration between blocks (For a breakdown of
points into the number of crashes and segments cleared per game,
refer to Figure 5 and Figure 6, respectively.)

Our first question of interest is whether varied as compared to
consistent training facilitates transfer performance. Table 1 presents
the mean points across participants and all eight games in the final
transfer block. We factorized the four training conditions per
experiment (excluding MMMMM and HHHHH) into two factors:
varied versus consistent training and the acceleration immediately
preceding the transfer block. For experiment 1, a multiple regression

Figure 3
Task Design of Experiment 2

Note. See the online article for the color version of this figure.
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with these two factors revealed that the main effect of varied training
was not statistically significant (Varied: b = – 84.69, SE = 156.27,
p . .05). The main effect of preceding acceleration was also not
statistically significant, but the negative term suggests that switching
from a low block to the final medium block could result in worse
transfer than switching from a high block to a final medium block
(From–low: b = – 266.88, SE = 156.27, p. .05).
Experiment 2 yielded similar results. The main effect of varied

training was statistically insignificant (Varied: b = 75.62, SE =

152.35, p. .05). The main effect of preceding acceleration was also
negative but statistically insignificant (From–low: b = – 162.66,
SE = 152.35, p. .05). These results are presented in Table 2.

Taken together, these results suggest that in the context of com-
plex skill acquisition, the level of varied training in our experiment
does not facilitate transfer performance compared to consistent
training. We are hardly the first to report a small to null effect of
varied training on transfer performance. Previous studies have also
reported a null effect (Van Rossum, 1990; Tuitert et al. 2017), or a

Figure 4
Points per Game Across All Conditions for Human Players (in Red), the Best Fitting Model (in
Blue), and the Reference Model From Anderson et al. (2019) (in Green)

Note. Conditions from experiment 1 are presented on the left, and those from experiment 2 are presented on
the right. Dotted lines indicate start of a new block. Shaded areas reflect bootstrapped 95% confidence limits.
M = Medium; L = Low; H = High. See the online article for the color version of this figure.
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limited effect of varied training on transfer (Brady, 2008; Cardis et
al. 2018; Newell, 2003; Willey & Liu, 2018). However, it is possi-
ble that the amount of variation in acceleration is overshadowed
by the inherent amount of variability that players experience even
when playing games with the same acceleration, thus nullifying
any benefit from being having practiced multiple accelerations.
For instance, track corner angles per game are drawn at random
from a range of 30 to 150 degrees.
Another possibility is that the participants in the varied condi-

tions did not experience a sufficient degree of interleaving.

According to Schmidt’s schema theory, the development of a
schema (an abstract representation of a class of related motor
actions) is facilitated by an increased degree of variability in prior
experiences (Schmidt, 1975). Empirically, in some studies that
found an advantage for varied training, the key environment vari-
able would be changed between individual trials (Catalano &
Kleiner, 1984; McCracken & Stelmach, 1977).

To address this, we conducted a follow–up experiment with
four conditions: LHLHM, HLHLM (block–level varied training),
and two conditions that alternated every trial between high and

Figure 5
Crashes per Game Across All Conditions for Human Players (inRed), the Best Fitting Model (in
Blue), and the Reference Model (Iin Green)

Note. Conditions from experiment 1 are presented on the left, and those from experiment 2 are presented on
the right. Dotted lines indicate start of a new block. Shaded areas reflect bootstrapped 95% confidence limits.
M = Medium; L = Low; H = High. See the online article for the color version of this figure.
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low accelerations for the first 32 trials before switching to medium
acceleration for the final block of 8 trials (trial–level varied train-
ing). The recruitment and experimental procedures were the same
as those of experiment 1. Participants who received trial–level var-
ied training (M = 531.72, SD = 1095.51) did not perform differ-
ently from those who received block–level varied training (M =
543.51, SD = 602.81; t[60.63] = .060, p = .95). These results rein-
force our conclusion that at least within the context of our experi-
ment, it appears that varied training has little benefit for transfer
performance.

Aside from the null findings regarding the effect of varied train-
ing, the previous analyses suggest that entering the transfer block
from low acceleration might negatively impact points as compared
to entering from medium or high acceleration. Thus, we examined
in greater detail the effect of switching accelerations between
blocks and other task–related factors that could account for the
wide range of performance observed such as the total amount of
practice and the current acceleration of the ship.

Using performance data from both experiments, we fit a linear
mixed model to the average points per block for each participant

Figure 6
Segments Cleared Per Game Across All Conditions for Human Players (in Red), the Best Fitting
Model (in Blue), and the Reference Model (in Green)

Note. Conditions from Experiment 1 are presented on the left, and those from Experiment 2 are presented on
the right. Dotted lines indicate start of a new block. Shaded areas reflect bootstrapped 95% confidence limits.
M = Medium; L = Low; H = High. See the online article for the color version of this figure.
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using the natural logarithm of the block number (log[block]) and
acceleration. We hypothesized that performance would improve
with more practice, but at a decreasing rate as players approach a
performance ceiling. As higher accelerations entail more sensitive
controls and more difficult games, we also hypothesized that per-
formance would decrease with increasing acceleration. To account
for possible effects of prior skill and other individual differences
on performance, we included participant ID as a random effect.
Consistent with our hypotheses, we observed both a practice effect
of block number (log[block]: b = 395.53, SE = 13.11, p , .01)
and a difficulty effect of acceleration (b = – 871.58, SE = 58.89,
p, .01; refer to the left column of Table 3).
Given these practice and difficulty effects on performance, is there

an additional effect of switching between games of different accelera-
tion? In domains where optimal performance depends on precise sen-
sorimotor coordination, studies have found support for error–based
learning mechanisms that gradually updates one’s action parameters
with experience (Berniker & Kording, 2011; Izawa & Shadmehr,
2011; He et al. 2016). In the context of Space Track, these theories
entail that a player’s actions in a new acceleration would be initially
based on their experiences with the previous acceleration. Actions
that were optimal in one acceleration are likely to be suboptimal for
a different acceleration, which might cause players to suffer a tempo-
rary hit in performance when switching accelerations. We further
hypothesize that this cost to performance is asymmetrical, where

switching to a higher acceleration would impair performance, while
switching to a lower acceleration would have little to no effect on
performance. A player used to a low acceleration would likely end
up with too fast a ship when switching to a high acceleration game
and thus experience more crashes. In contrast, while a player used to
a high acceleration might find themselves with too slow a ship when
switching to a low acceleration game, it is much simpler and less
costly to speed the ship by issuing more thrusts.

To investigate the additional effect of switching accelerations on
performance, we conducted a linear regression on points after
adjusting for the previously estimated effects of practice, accelera-
tion, and individual prior skill (the adjusted points are displayed in
Figure 7). To test our hypothesis we used two predictors, one to
measure the effect of switching faster and one to measure the effect
of switching slower. The predictor values for switch–faster were .4
for a switch from L to H, .2 for a switch from L to M or from M to
H, and 0 otherwise. The predictor values for switch–slower were .4
for a switch from H to L, .2 for a switch from M to L or from H to
M, and 0 otherwise. While averaging over the games within each
block provides a sufficient summary for estimating practice and dif-
ficulty effects, it has the disadvantage of smoothing over the per-
formance changes observed within a block. After a change in
performance that follows from switching to a new acceleration,
players recover relatively quickly within the span of 8 games. Con-
sequently, performance changes attributable to switch effects might
become diluted or confounded when using block–average data. For
this analysis, we also excluded data from block 1 as switch type is
undefined for the first block. In sum, only points earned during the
first game of blocks 2 to 5 (i.e., games 9, 17, 25, and 33) were used
to estimate the effects of switching acceleration on performance.

Table 1
Mean Points on Final Transfer Block

Experiment 1 Experiment 2

Training variability From Low From High From Low From Mid

Consistent LLLLM HHHHM LLLLH MMMMH
440 707 430 593
(695) (421) (431) (432)

Varied HLHLM LHLHM MLMLH LMLMH
692 791 382 669
(276) (491) (508) (546)

Note. M = Medium; L = Low; H = High. Standard deviations are displayed in parentheses.

Table 2
Regression Models on Transfer Block Points With Varied
Training and Preceding Acceleration Effects

Factor Experiment 1 Experiment 2
(SE)

Varied 84.69 75.62
(156.27) (152.35)

From–low –266.88* –162.66
(156.27) (152.35)

Varied:From–low 167.97 –124.22
(221.00) (215.45)

Intercept 706.56*** 593.13***

(110.50) (107.73)
Observations 80 80
R2 0.07 0.06
Adjusted R2 0.03 0.02
Residual SE 494.2 (df = 76) 481.8 (df = 76)
F statistic 1.88 (df = 3; 76) 1.567 (df = 3; 76)

* p , .1. ** p , .05. *** p , .01.

Table 3
Linear Mixed Models on Average Points per Block With Practice
and Acceleration Effects

Factor Human players Model players
(SE)

log(block) 395.93*** 193.47***
(13.11) (8.37)

Acceleration –871.58*** –1,241.806***
(58.89) (30.44)

Intercept 423.93*** 811.69***
(38.46) (14.40)

Observations 1,000 5,000
Log likelihood –7,139.0 –36,204.7

* p , .1. ** p , .05. *** p , .01.
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Consistent with our hypothesis, switching to a higher acceleration
predicts an additional decrease in performance after accounting for
the practice and difficulty effects (Switch–faster: b = – 838.69, SE =
80.66, p , .01). Switching to a lower acceleration also predicts an
additional, albeit lesser, decrease in performance (Switch–slower:
b = – 218.42, SE = 95.95, p , .05; refer to the left column of Table
4). A comparison between this regression model and a restricted one
(switch–faster = switch–slower) confirms that the two coefficients
are different (F[1, 797] = 33.87, p , .001). Concretely, this implies
that players switching from a low to a high thrust game would earn
335.48 points less than players who had been playing high thrust
games. In contrast, players switching from high to low thrust would
only earn 87.37 points less than players who had been consistently
playing low thrust games.

While there are variations in how well participants adapt to a
change in acceleration, the overwhelming effect is one of positive
transfer. For instance, the 40 participants experiment 1 who played
high acceleration in the first block scored an average of�170 points,
while the 80 participants in experiment 2 who first played high in
their last block scored 519 points. Likewise, the 40 participants in
experiment 2 who played medium acceleration in the first block
scored 86.6 points on average while the 80 participants in experi-
ment 1 who first played medium in their last block scored 657
points. We now turn to a model that explains this overall positive
transfer plus the fixed effects described in the regression analyses.

Modeling Learning

Having characterized human learning and performance on the
task, we now turn to our work on modeling the processes by which
such learning occurs, with a particular focus on how people adapt
to parametric changes in the task environment. In a recent study,
Anderson et al. (2019) demonstrated that an ACT-R model pro-
duced a learning trajectory similar to what humans do (r = .96) in
a Space Track task where players played 40 games at a accelera-
tion of .3. Given the success of this approach, we used that model
as a reference model for our investigations. In the following sec-
tion, we will briefly describe the key features of the reference
model and the ACT-R cognitive architecture.

One advantage of testing theories of any psychological process
within a cognitive architecture such as ACT-R is the constraints
that the architecture imposes on the theory. In skill acquisition,

Figure 7
Violin and Box Plots of the Adjusted Points on the First Game of Blocks 2 to 5 by Switch Type

Note. Increasing acceleration corresponds to a positive switch type, while decreasing acceleration corresponds
to a negative switch type. Box plot whiskers are drawn up to the data points that fall within 1.5*IQR from the
upper and lower quartiles. Red circles indicate the average for a given switch type. The blue and orange lines
indicate the predicted values for games with decreased and increased accelerations, respectively. The dashed
line marks an adjusted point value of 0, which is expected if performance on a game is entirely accounted for
by the practice and acceleration effects estimated from the previous regression model. See the online article for
the color version of this figure.

Table 4
Linear Models on Block–Initial Residual Points With Switch
Effects

Factor Human players Model players
(SE)

Switch–faster –838.69*** –1,741.43***
(80.66) (55.94)

Switch–slower –218.428* –673.89***
(95.95) (66.55)

Intercept 0.9,478 77.81***
(14.61) (10.14)

Observations 800 4,000
Adjusted R2 0.118 0.195
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there are limits on various human cognitive processes such as
attention and response times that constrain how humans learn and
perform on a task. The ACT-R cognitive architecture incorporates
realistic performance constraints on the speed and accuracy of
perception and action, which are based on past literature and
successfully used by many models developed within the ACT-R
architecture.
ACT-R’s architecture comprises of modules and buffers (see

Figure 8). Modules are independent computational systems that
can run asynchronously, and they communicate with each other
via buffers that can hold a limited amount of information. A central
piece of the architecture is the Procedural module. The Procedural
module consists of production rules, which are general pattern-
action associations that are built up over experience. It takes as
input information from the buffers of other modules, pattern
matches those pieces of information to production rules, and subse-
quently issues commands to the other modules as per the matched
production rule. Thus, the Procedural module is heavily involved
in the coordination of activity across modules and buffers.
The Declarative module stores the game instructions as opera-

tors and places the most appropriate operator into the Retrieval
buffer when it receives a request from the Procedural module. A
single retrieval takes approximately 100ms in the Anderson et al.
(2019) model.
Other modules and buffers serve more specialized functions.

The Game State buffer is part of the Visual module, and stores in-
formation about the visual game state – for example, the position
and the orientation of the ship. The Goal buffer stores information
about various control parameters, like the desired speed to fly at.
ACT-R also possesses a Manual module that is based on the EPIC
model (Kieras & Meyer, 1997); the Manual module is responsible

for executing keypresses and is constrained with an average of
250ms lag between consecutive keypresses.

Human participants do not begin learning from scratch but are
informed by explicit instructions about the controls and goals of
the task. Through instruction following, ACT-R models also uti-
lize task knowledge to accelerate learning in the initial stages.
Such task knowledge is represented in ACT-R’s declarative mem-
ory as operators, which are triplets of state-action-newstate. To-
gether, these operators represent the overall strategy a player
might use, constituting a decision tree where each node corre-
sponds to a state and each branch is the outcome of an action.

As instructions are represented as declarative knowledge, they
need to be interpreted by production rules. In ACT-R, it takes
roughly 100ms for retrieval and 50ms for the execution of a produc-
tion, which totals to 150ms for the interpretation of a step of declara-
tive instruction. Multiple operators need to be retrieved to determine
what action to execute next (see Appendix B). To execute a physical
action (e.g., a keypress), additional time is needed for motor prepara-
tion and execution. Thus, if the model is interpreting these operators,
the total time to get from the start of a strategy to a physical action
could be more than half a second. While a model that relies solely
on instruction following is able to play Space Track from the start, it
will perform poorly due to its slow response time.

For the model to successfully earn points on a fast-paced task, it
needs to improve its response time. Human players demonstrate
improvement in performance with experience and this is partially
governed by increased automaticity and faster deployment of
knowledge. Instead of having to retrieve declarative knowledge at
each step of the strategy, people are able to eventually respond
directly to the situation. ACT-R models capture this by production
compilation (Taatgen & Anderson, 2002), a process that gradually
eliminates the retrieval of declarative instruction and replaces it by
rules that directly respond to the state of the environment.

Control Tuning

Figure 8 shows a new module (the Controller module) that was
added to the ACT–R architecture in Anderson et al. (2019). This
module was responsible for learning various parameters that con-
trol actions such as how long to thrust. Since this module is new
and critical to understanding the results in our experiment, we will
describe it in some detail. More information on how the Controller
module interacts with the other ACT–R modules can be found in
Appendix D.

The basic strategy of the model (see Figure B1) is to fly as fast
as is safe down a rectangle. While doing so it prepares to make a
“hard turn” at the intersection by turning the ship to an angle that
bisects the angle between the two rectangles. When it gets to the
new rectangle it presses thrust until it is flying down the new rec-
tangle. Then it performs any flight adjustments before preparing
for the next turn. Successfully executing this strategy requires
learning the optimal values for 5 control parameters:

1. Ship speed. The ideal speed of the ship when flying down
a rectangle.

2. Press point. To make a hard turn, the model needs to
learn where the ship should be in the overlap between
two rectangular segments before initiating the thrust.

Figure 8
The Module Structure of ACT-R

Note. Boxes represent independent modules that process information in
parallel. This is updated from the corresponding figure in Anderson et al.
(2019) to reflect the addition of the Controller module. ACT-R = Adaptive
Control of Thought - Rational. See the online article for the color version
of this figure.
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3. Stop angle. As the thrust key is held down during a hard
turn, the ship changes its flight direction toward that of
the new rectangle. The model cannot wait until the direc-
tions match up because it takes time to lift its finger.
Hence, it needs to learn how close to the desired angle the
flight direction should be to lift its finger.

4. Tap thrust duration. At various points, the model must
issue brief taps to adjust the ship speed or the flight direc-
tion and it needs to learn the duration for such thrusts.

5. Aim. The model does not have to be precise in achieving
a desired aim for the ship, but it needs to learn how close
is good enough.

For each control parameter, the model samples values within a
preset range and evaluates the payoff for the sampled values
according to relevant feedback. As point-related events in Space
Track are temporally sparse, the model samples a particular con-
trol value for some period of time (n) and divides the total payoff
by the period to arrive at the average rate of payoff (yi):

yi ¼ payofftotal
n

(1)

While it is possible to sample enough and collect highly accu-
rate average payoff rates for all possible values of a control param-
eter, this is a highly inefficient method of learning the optimal
control value. By generalizing across past experiences, an agent
can converge upon the optimal value without such exhaustive sam-
pling by positing a relationship between values and payoffs.
Humans have demonstrated the ability to perform such generaliza-
tion, as revealed by relatively successful extrapolation and interpo-
lation on function learning tasks (DeLosh et al., 1997; Kalish et al.
2004).
Lucas et al. (2015) argue that humans tend to assume simple

functions when positing relationships between two continuous
dimensions. The ACT-R controller assumes a quadratic function
relating payoff to reward, as this is a simplest polynomial function
that possesses a unique maximum, which provides an estimate of
the optimal control value. The quadratic function is estimated via
quadratic regression (more details can be found in Appendix C),
and is then transformed into a probability distribution using the
softmax equation:

PðxiÞ ¼ eVðxiÞ=TX
j

eVðxjÞ=T
(2)

where xi and xj refer to control values, V refers to the quadratic
function which predicts the rate of return for a given control value,
and T refers to a temperature parameter that decreases over time.
At high temperatures the model tends to choose a wide range of
values and at low temperatures it tends to concentrate its choices
on the best performing values. Many models from reinforcement
learning have successfully varied the temperature from high to
low to capture the tendency to explore less with increasing experi-
ence (Christakou et al., 2013; Decker et al. 2016). In the ACT-R
implementation T is an inverse function of experience: T = A/time.
Thus, the model initially explores a range of values updating its

estimate of their payoff. The model ideally eventually converges
to a true estimate of the relationship between payoff and control
values and just uses the highest performing value. (See Figure 9
for an illustration of the process described above.) Note that this is
a strategy designed for a constant environment. When the environ-
ment changes its former estimate of an optimal value may no lon-
ger be correct.

Ratio of Source Weights

For all the models that will be discussed, the rate of payoff for
each sampled control value is computed as a weighted combina-
tion of the number of segments cleared and the number of crashes:

payoff ¼ WgoodsegmentsþWbadcrashes (3)

where Wgood is a positive weight given to segments cleared and
Wbad is a negative weight given to crashes. The size of these two
weights determines the contribution of each source of feedback to
the estimated payoff.

While Space Track implements a 1:4 ratio for points earned per
cleared segment (þ25) to points lost per crash (�100), players
could plausibly deviate from this ratio when calculating the payoff
for control values. For example, different ratios of source weights
potentially relate to differences in risk attitudes; a 1:1 ratio player
could favor higher ship speeds, which allows them to clear more
track segments at the risk of crashing more often than a more cau-
tious player.

The reference model (from Anderson et al., [2019]) weights
both sources equally (þ1 per cleared segment, �1 per crash). To
investigate how the average human player weights these sources,
we tested two other ratios: a 1:4 ratio that reflects the point alloca-
tion according to the instructions, and a 1:8 ratio that reflects a
greater penalty on crashing than warranted by the point allocation.
This increased emphasis on crashes is aligned with the more gen-
eral principle of loss aversion - in uncertain situations, people pre-
fer to avoid losses over acquiring gains of equivalent value
(Kahneman & Tversky, 1979).

Decay andMaintenance

The mechanisms described above assume that all experiences
are factored equally into computing the optimal control value.
However, it is plausible that the influence of older experiences
decay with time, thus leading the agent to prioritize information
from recent experiences. Decay has been studied and described in
various human faculties. For one, gradual decay is characteristic
of human memory; as (a translation of) Ebbinghaus (1885/1913)
puts it, “(left) to itself, every mental content gradually loses its
capacity for being revived.” Decay has also been studied in the
motor domain; studies of human motor skill have demonstrated
that error-driven adaptation gradually decays back to baseline
when feedback is removed (Codol et al., 2018; Ingram et al. 2013;
Smith et al. 2006).

It is important to note that our use of the term “decay” does not
entail a specific mechanism that underlies the declining influence
of older experiences; our theory does not distinguish between
decay as the disappearance of experience traces from memory
storage (Loftus & Loftus, 1980) or as the decreased capacity for
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memory retrieval (Averell & Heathcote, 2011). Both accounts of
decay would be consistent with our theory.
While there are multiple possible ways to implement decay in

an agent, one commonly used function is to discount experiences
as an exponential function of time (Heathcote et al. 2000; Rubin
et al., 1999):

m ¼ ht (4)

where h is a maintenance parameter that determines the rate of
decay (ranges from 0 to 1), t is the number of seconds since the
start of the game, and m is a weighting factor applied to average
rate of payoff associated with a prior experience. Smaller values
of maintenance (h) entail that less information is maintained from
prior experience at every subsequent time step, which reflect faster
rates of decay.
The reference model has no decay and so effectively sets h to 1,

which reflects an agent that equally weights all experiences regard-
less of how much time has passed since an observation. Given the
lack of acceleration changes in the experiment in Anderson et al.
(2019), it is reasonable to expect that there is little to no advantage
to setting h to a value less than 1.
However, when there are changes in the task environment, it is

likely that the same control value results in different payoffs as
time progresses. Thus, when there are changes in the environment,
less maintenance of older experiences possibly endows an agent
with greater adaptability. Less relevant experiences from a previous

environment would be weighted less, which allows the agent to
focus on learning what is best for the current state of the system.

In our experiment, players have to adapt to changes in accelera-
tions, potentially by adjusting their estimates of what the optimal
control values are. For instance, a tap thrust of .1 seconds at a low
acceleration increases the the ship’s velocity by a smaller amount
than a tap thrust of .1 seconds at a high acceleration. To maintain
the same average speed when switching from a low to a high
acceleration, a player would then need to reduce their estimate of
the optimal tap thrust duration.

Approach

To investigate the mechanisms that underlie adapting to changes
in acceleration, we compared the performance of models that var-
ied along multiple dimensions to the performance of the average
human player. While we mainly focused on the ratio of source
weights and maintenance, we also tested variations on a pair of
task-specific components of the model.

The first variation concerned a strategy for slowing the ship
down if it was flying too fast. The ship can be slowed down by
rotating the ship by 1808 with respect to its current velocity, and
then thrusting in the new orientation to reduce its speed. An analy-
sis of frame by frame changes in ship speeds and keypresses
revealed that participants would indeed sometimes execute such a
maneuver to sharply decrease their ship speed, particularly when

Figure 9
How the Controller Module Learns

Note. (a) Choices are initially uniformly distributed between a range of preset values. (b) While trying out a chosen
value, the Controller module records the associated weighted number of segments cleared and number of crashes
experienced. It does this for all sampled values. (c) Quadratic regression over samples. (d) The Controller module
converts the quadratic estimated from the sampled values into a probability distribution via the softmax equation.
The next choice is drawn from the new distribution. See the online article for the color version of this figure.
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approaching track corners. We call this alternative strategy
“slowdown.”
The second variation concerned the range of tap thrust dura-

tions. The original model searched for an ideal value in the range
from 67 ms to 167 ms. However, at our higher accelerations very
brief tap thrusts were optimal. Therefore, the alternative involved
making the minimum duration 10 ms and having the model instead
explore the range from 10 to 167 ms.1

We tested variations across these four dimensions: source
weight ratio, maintenance, slowdown, and minimum thrust time.
For each combination of values, we simulated 100 runs for each of
the 10 experimental conditions. These simulations were compared
participant behavior for every condition (i) and game number (j),
yielding 400 squared differences between the average model mea-
sure and the corresponding average participant measure:

e2i;j ¼ ðpM;i;j � pH;i;jÞ2 (5)

SSE ¼
X10
j¼1

X40
i¼1

e2i;j (6)

The sum of these squared differences was then divided by the
average squared standard error of the participant mean to produce
a measure of goodness-of-fit:

SE2
total ¼

X10
j¼1

X40
i¼1

VarðXi;jÞ
20

(7)

SE2
avg ¼

SE2
total

400
(8)

fit ¼ SSE
SE2

avg

(9)

While points are the primary indicator of performance on the
task, two players could conceivably achieve the same total points
through different strategies. For instance, a player might adopt a
riskier approach to the game, flying faster to clear more track seg-
ments but also crashing more often than a more cautious player.
We thus chose to compare the fits between models and participants
using a composite measure computed from both the number of
segments cleared and the number of crashes:

fittotal ¼ fitrectangles þ fitcrashes (10)

Model Comparisons

We fit the 36 models created by crossing the three weightings of
crashes by 3 decay choices by 2 slowdown options by 2 minimum
thrust times. Figure 10 provides a characterization of where the
best model lies by showing how various choices improved the fit
over the reference model (for a full comparison across all 36 mod-
els, see Appendix F). From the reference model, the largest
improvement in fit came from including the ability for the model
to slow down (7135). At the next step, changing the ratio of source
weights provided the greatest improvement. While the 1: 8 model

yielded a better fit than the 1: 4 model (3782 to 3823), the rela-
tively small difference in fit warranted further investigations along
both branches of modifications. Along the weight = 8 branch, the
most effective improvement came from adding an exponential
decay with the maintenance parameter set to .995 (2596). Note
that both the presence of decay and the value of the maintenance
parameter are important; setting the parameter to .5 drastically
impairs the fit (45559). From the h = .995 model, the remaining
unexplored modification was to reduce the minimum thrust time
available to the controller from 0.067s to 0.01s. However, this
modification slightly impaired the model’s fit (2972).

Following the weight = 4 branch, the most effective improvement
also resulted from adding h = .995 (2644). Unlike the weight = 8
branch, further reducing the minimum thrust time to 0.01s improved
the model’s fit (2358). This model also has the best fit of all 36
models (the next best is also shown in Figure 10, the one with
�8 wt, .995 decay, slowdown, 0.067s minimum thrust time), which
suggests that the best fitting model thus far possesses the following
features:

1. The ability to slow the ship down if the ship speed is
higher than some threshold

2. Weighting feedback from segments cleared to crashes in
a 1 to 4 ratio which corresponds to their weighting in
determining score

3. Applying an exponential decay to past experiences at the
rate of 0.995time

4. The possibility of issuing a tap thrust of 10ms þ baseline
motor processing time costs

While the best model includes exponential decay, the compari-
son between the h = .5 and h = .995 models suggest that too much
discounting is both detrimental to performing well on the task and
uncharacteristic of the mechanisms that underlie human adapta-
tion. Further model simulations over a range maintenance values
confirms this hypothesis.

Referring to Figure 11, models with maintenance values at .5 or
even .9 provide fits that are an order of magnitude worse than the
model without decay (h = 1). Models with maintenance values in
the range of .99 to .999 all demonstrate better fits than the refer-
ence model, but the improvement is relatively smaller. Of the
models tested, the best fitting model set h to .992, which is lower
than the model we identified previously (h = .995). While this
appears to be a minute difference in parameter values, this differ-
ence has large implications for the weighting of experiences. For a
model where h = .995, an experience that starts with a weight of 1
when it is first observed would be weighted at .995180 = .406 by

1 A recent unrelated experiment using the Space Track task but run at 60
frames per second revealed that participants were indeed capable of
pressing and releasing the thrust key in the same game tick (�16ms). While
we did not record finger movements, we assume that for a recorded key
press duration of one game tick, the participant’s finger was making some
movement with a downward trajectory just sufficient to engage the key for
less than one game tick. It should also be noted that when the key press
duration is set to 10 ms in ACT–R, because of motor noise, the key can fail
to be depressed (like a finger movement failing to engage the key) if the
final duration is 0 ms or less.
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the end of a three-minute game. When h = .992, the same experi-
ence would only be weighted at .992180 = .236 at the end of the
same period.
A visual inspection of the performance of the best–fitting model

as compared to the reference model (refer to Figures 4, 5, and 6)
confirms that the h = .992 model does a much better job of simu-
lating the group level variations observed in human performance,

particularly following a switch in acceleration between blocks.
Further discussion of the model’s ability to capture within and
across participant variability can be found in Appendix G. Apply-
ing the regression analyses used with the empirical data to the best
model’s points, we found practice, acceleration, and switch effects
that were similar to those estimated from the empirical data (refer
to Tables 3 and 4), which further suggests that human adaptation

Figure 10
Model Fits to Participant Data

Note. Fits were computed using the squared difference between models and humans adjusted by the squared standard error of the mean. Smaller num-
bers reflect better fits. Each branch describes the modification made to the parent model. The best model is indicated in a blue box. See the online article
for the color version of this figure.

Figure 11
Model Fits to Participant Data

Note. Models only varied in the degree of maintenance. Note that lower fit scores entail a closer fit to partici-
pant data. See the online article for the color version of this figure.
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and complex skill acquisition is described by the learning mecha-
nisms like those implemented in our model.

Decaying Past Experiences Facilitates Adaptation

Having established that the behavior of our human players is
best described by a learning mechanism that applies a moderate
decay to experiences, we now examine the implications decay has
for adaptation and task performance by comparing the model with
decay (h = .992) and the model without decay (h = 1). Note that
both models in this comparison are identical in all other model
dimensions (i.e., sharing the same optimal choices for source
weight ratio, slowdown, and minimum thrust time) except for the
degree of maintenance/decay.
Compared to a player without decay, a player with decay adapts

faster to changes in the task environment. This is especially appa-
rent in the LLLLH condition. Both models perform similarly dur-
ing the extended low thrust period (games 1 to 32), but differ in
their behavior following a drastic change from low to high thrust
on game 33 (refer to Figures 12a, b, and c). While both models,
like subjects, are adversely affected by the increase in acceleration
on game 33, as indicated by the sharp decrease in points between
games 32 and 33, the model with decay adapts faster to the change
and scores higher than the model without decay immediately fol-
lowing the switch.
This increased rate of adaptation is reflected in the dynamics of

the control parameters. For the purposes of illustrating these dy-
namics, we will focus on the Stop angle parameter (refer to Ap-
pendix E for details on all 5 control parameters across the 10

conditions). Recall that the stop angle is the angle at which the
player decides to stop thrusting when making a hard turn around
corners. As there is a lag between that decision and actually lifting
the finger off the thrust key, the ship’s trajectory will be off if the
decision is issued only when the angle of the ship’s trajectory
matches the desired angle. As the acceleration increases, each
additional tick of thrust changes the ship’s trajectory more, and
thus the stop angle needs to increase to achieve the same target tra-
jectory. As Figure 12d shows, following game 32, the model with
decay increased its estimate of the optimal stop angle at a faster
rate than the model without decay did.

While discounting past experiences does facilitate faster adapta-
tion to a new environment, decay also causes the player to be over-
sensitive to random fluctuations in the rate of return for various
settings of control parameters (see Figure 9). Even when the accel-
eration remains unchanged for a long period, the rate of payoff for
a particular control value (e.g., stop angle) continues to vary
between observations; for example, noise inherent in the motor
system affects how precisely each keypress is executed, which in
turn affects the likelihood of the ship crashing in a given situation.
Due to the stochasticity of the processes that underlie such varia-
tion, it is impossible to deterministically predict the effect of these
sources of variation on the rate of payoff. Thus, an optimal con-
troller should learn to average over these sources of variation to
estimate the optimal control value for its current acceleration.

For the decay model, the bias toward learning from recent expe-
riences that facilitated adapting to new environments is now a dis-
advantage. This disadvantage is most evident in the control
conditions (MMMMM and HHHHH). Although both the decay

Figure 12
(a) Points per Game in the LLLLH Condition for the Model With Decay (Maintenance = 0.992, In
Red) and the Model Without Decay (Maintenance = 1, in Blue); (b) Number of Crashes per
Game; (c) Number Of Segments Cleared Per Game; (d) Estimated Optimal Stop Angle Per Game

Note. Shaded areas reflect bootstrapped 95% confidence limits. the dotted lines indicate a switch from low to
high thrust. L = Low; H = High. See the online article for the color version of this figure.
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and non–decay models rapidly decrease in crashes early on (games
to 1 to 6), the two models diverge thereafter. For the HHHHH con-
dition, the decay model asymptotes on points, crashes, and number
of segments cleared around game 6, but the non–decay model con-
tinues improving until about game 20 (see Figures 13a, b, and c).
Similar to above, these differences are reflected in the dynamics

of the stop angle controller, particularly in the HHHHH condition.
As Figure 13d shows, the model without decay quickly settles on
a larger optimal angle than the model with decay.
The dynamics of the model’s control parameters also provide a

possible account for the asymmetric costs of switching accelerations.
Recall that for human players, switching to a new block from a
lower acceleration impairs performance while switching to a new
block from a higher acceleration has little effect. Model players also
demonstrate this asymmetry between switch–faster and switch–
slower effects (F[1, 3997] = 208.6, p , .001); refer to Table 4). In
terms of control learning, a larger change in acceleration correlates

with a larger amount of change required in the optimal stop angle,
press point, and tap thrust duration (refer to Appendix E). For the
same magnitude of change required, switching to a higher accelera-
tion hurts performance because applying the control values learned
in a lower acceleration results in over–executing key actions. For
example, if a player currently in a high acceleration game used a
long tap thrust duration that was optimal for previous low accelera-
tion games, they would over–thrust and have to turn the ship around
to slow it down. Switching to a lower acceleration is much less pun-
ishing, since it is easier to compensate for under–executing key
actions; if a player executed too short of a thrust, they could simply
tap the thrust key again to increase the speed of the ship.

General Discussion and Future Work

The current study investigated how human players adapted to
parameteric changes in the context of learning and mastering a

Figure 13
(a) Points per Game in the HHHHH Condition for the Model With Decay (Maintenance = 0.992,
in Red) and the Model Without Decay (Maintenance = 1, in Blue); (b) Number of Crashes per
Game; (c) Number of Segments Cleared per Game; (d) Estimated Optimal Stop Angle per Game;
(e) Etimated Optimal Stop Angle per Game for Two Individual Models

Note. Shaded areas reflect bootstrapped 95% confidence limits. The dotted lines indicate a switch from low to
high thrust. See the online article for the color version of this figure.
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complex skill – navigating the spaceship in Space Track. Notably,
most players were able to quickly adapt to changes in the ship’s
acceleration, and the amount of adaptation was affected by the
acceleration on the game before the change.
Of the ACT–R models tested, the model that incorporated a

constant time-based decay on past experiences best captured how
human players come to master Space Track and adapt to these
parameteric changes in acceleration. As different accelerations
likely result in different payoffs for the same control setting, a
player that discounts old experiences from a previous acceleration
would update their estimated payoffs for the same control value
faster when adapting to a new acceleration. This in turn allows the
player to converge faster on the new optimal control value which
facilitates adaptation to changes in the task environment.
More generally, adaptation to changes in the environment is

facilitated by prioritizing information learned from recent experi-
ences as recent experiences would better reflect the state and
reward structure of the current environment. This principle is well-
established in models of learning and adaptation across a wide
range of domains: retention and forgetting (Anderson & Milson,
1989; Anderson & Schooler, 1991), category learning (Elliott &
Anderson, 1995), sensorimotor learning (Berniker & Kording,
2011; Trewartha et al. 2014), and reinforcement learning (Niv
et al., 2015).
However, decay may not always be adaptive. Due to the large

degree of freedom in Space Track, two different instances of an
action with the same control values could result in two different
payoffs. The relationship between control values and payoffs is
probabilistic rather than deterministic such that changing the
acceleration entails shifting the means of probability distributions.
In such a system, a player with a high rate of decay on experiences
would fail to abstract away from the specifics of each instance,
and consequently fail to settle on a stable estimate of the mean
payoff for each control value.
The decay rate in our framework bears a close relationship with

the the learning rate parameter in reinforcement learning models.
While a high learning rate entails adapting faster to a change in the
action-reward contingencies, it also entails being oversensitive to
sources of irrelevant variability. An agent with a high learning rate
would excessively increase the estimated value of a bad option fol-
lowing just one rewarding outcome or overdevalue a good option
after one particularly punishing experience. In fact, some rein-
forcement learning models of human learning and choice behavior
do report low to moderate values of the learning rate parameter
(Collins et al., 2014; Pedersen et al., 2017). These findings parallel
the results of our model simulations, where human learning and
adaptation is best described with a moderate decay rate.
Instead of maintaining the same learning rate across the entire

experiments, participants might modulate their learning rates in
response to changes in the environment. Within the reinforcement
learning framework, human learners have been found to increase
their learning rate when the task environment is volatile (Behrens
et al., 2007; Cook et al., 2019). When the agent is exposed to
unchanging environments, the learning rate might be expected to
decrease, allowing the agent converge on a stable, optimal parame-
ter setting. Conversely, when the agent detects a change, or is
primed to expect a change, the learning rate would increase, allow-
ing the agent to become sensitive to the change and adapt quickly
to it. Research from reversal learning further suggests that learners

incorporate prior expectations about when such changes might
occur with their recent experiences to increase learning rates even
before a significant change occurs (Costa et al., 2015; Izquierdo
et al. 2017).

Although the ability to vary learning (and decay) rates appears
to be both advantageous and already present in human learners, it
is not immediately apparent what the role of such an ability should
be in complex tasks like Space Track or driving. Even when prac-
ticing only with one level of acceleration (or type of car), these
experiences are definitely less “stable” as compared to those typi-
cally studied in the reversal and reinforcement learning literatures.
A potential line of research is to investigate the role of variable
learning rates in complex tasks by extending the single–decay
model proposed in this article.

Another potential line of research concerns the phenomenon of
savings. Savings is a motor learning phenomena whereby people
display faster readaptation to a previously experienced situation as
compared to a completely new environment (Huang et al., 2011;
Krakauer et al. 2005; Smith et al. 2006). Our current model does
not directly account for such a phenomenon; the weight of an ex-
perience will eventually decay to a value close to zero after a few
minutes of gameplay regardless of whether a switch in accelera-
tion occurs. If the learner could instead create a separate controller
for each context (i.e., acceleration) and pause the decay on experi-
ences in one context when switching to another context, then
when the learner switches back to the old context, it can reactivate
the old controller without having to relearn the optimal control
settings.

While the study primarily investigates if and how a decay-based
mechanism facilitates adapting to changes during complex skill
acquisition, our model comparisons also reveals that players tend
to weight negative events more severely than positive ones. As
players are rewarded depending on how many points they earn, it
is reasonable that some players would weight avoiding crashes
over clearing track segments in a ratio that reflects their relative
contribution to points. Alternatively, as humans have been shown
to demonstrate loss aversion in the face of equally valued gambles
(Kahneman & Tversky, 1979), it is also reasonable that some play-
ers would place an even greater emphasis on avoiding crashes.
Future work could explore whether subjects’ weighting of crashes
and rectangles cleared would respond to changes in how the two
are weighted.

The study also identifies a potential role for control tuning in
explaining performance costs that arise from shifting between dif-
ferent task dynamics. The nature of these costs differ from those
often discussed in the task–switching literature, where switches
occur between tasks with different goals (Allport et al., 1994;
Wylie & Allport, 2000), or tasks with different complexity of pro-
cedures (Luwel et al. 2009; Schneider & Anderson, 2010). Rather,
these switches are more similar to those discussed in the sensori-
motor adaptation literature, where a gradually adapting motor sys-
tem tunes its output according to the error it experiences (Berniker
& Kording, 2011; He et al. 2016). These costs in Space Track arise
from the discrepancy between actions that were tuned to a previ-
ous task dynamic and what is optimal for the current task dynamic.
A larger change in task dynamics incurs greater performance costs
because previously learned actions are more suboptimal in the
new environment. This penalty is amplified when switching to
faster and more sensitive task dynamics as players have less
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reaction time (RT) and need more corrective actions to compen-
sate for over–executions as compared to under–executions of key
actions.
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Appendix A

Space Track

Here is a pointer to the version of Space Track that was used in the
two experiments: http://andersonlab.net/demos/spacetrack-v4/.

The in–game track is composed of rectangles. The skeleton
of the track comprises straight line segments of 363 pixels in
length connected from end to end. Rectangle segments are
drawn by extending the line segments such that each line seg-
ment lies in the middle of a rectangle. Rectangles are 473 pix-
els long and 110 pixels wide.

There are always two rectangles on the screen: the “cur-
rent” rectangle that the ship occupies, and the “next” rectangle
along the track. No points are earned when the ship enters the
overlapping area between the two rectangles. 25 points are
awarded when the ship has exited the “current” rectangle and is
in the “next” rectangle, which then becomes the new “current”

rectangle. If the game detects that the ship is not in either rec-
tangle, the ship is determined to have crashed and the player
loses 100 points.

When the ship exits the “current” rectangle and is in the
“next” rectangle, the game creates a new “next” rectangle. A
new line segment is generated that forms an angle between 308

to 1508 or �308 to �1508 with the current line segment. The
new rectangle is then drawn around the new line segment.

In addition to the track layout, our implementation of Space
Track also shares the following key features with the version
described in Anderson et al. (2019):

1. The game runs at 30 frames per second, and each game
tick is 1/30th of a second (or �33ms)
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A DECAY-BASED ACCOUNT OF COMPLEX SKILL ADAPTATION 19

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://doi.org/10.1037/0003-066X.35.5.409
https://doi.org/10.3758/s13423-015-0808-5
https://doi.org/10.1348/000712609X402801
https://doi.org/10.1348/000712609X402801
https://doi.org/10.1080/00222895.1977.10735109
https://doi.org/10.1167/12.11.4
https://doi.org/10.3389/fncom.2014.00121
https://doi.org/10.1080/02701367.2003.10609108
https://doi.org/10.1080/00222895.1976.10735077
https://doi.org/10.1080/00222895.1976.10735077
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.1523/JNEUROSCI.2978-14.2015
https://doi.org/10.3758/s13423-016-1199-y
https://doi.org/10.1037/0278-7393.25.5.1161
https://doi.org/10.1037/h0076770
https://doi.org/10.1080/17470211003624010
https://doi.org/10.1371/journal.pbio.0040179
https://doi.org/10.1371/journal.pbio.0040179
https://doi.org/10.1016/s0001-6918(01)00039-7
https://doi.org/10.1016/s0001-6918(01)00039-7
https://doi.org/10.1037/a0033138
https://doi.org/10.1016/S0010-0277(02)00176-2
https://doi.org/10.1523/JNEUROSCI.1489-14.2014
https://doi.org/10.1523/JNEUROSCI.1489-14.2014
https://doi.org/10.1371/journal.pone.0181041
https://doi.org/10.1371/journal.pone.0181041
https://doi.org/10.1152/jn.00635.2011
https://doi.org/10.1152/jn.00635.2011
https://doi.org/10.1016/0167-9457(90)90010-B
https://doi.org/10.1016/0167-9457(90)90010-B
https://doi.org/10.1016/j.actpsy.2017.11.008
https://doi.org/10.1007/s004269900003
https://doi.org/10.1007/s004269900003
http://andersonlab.net/demos/spacetrack-v4/


2. The task screen’s dimensions are 710 x 626 pixels.

3. At the start of each game, the ship moves along the the
first rectangle in the direction of the x-axis at a speed of 1
pixel per tick.

4. Each game tick a turn key is held for rotates the ship by 68.

The key difference between our implementation and the
one in Anderson et al. (2019) pertains to the acceleration. In
the original implementation, each game tick the thrust key was
held for increased the ship’s velocity vector by .3 pixels per
tick. In the current study, the accelerations were set to .2, .4, or
.6, depending on the acceleration of the block (low, medium, or
high, respectively).

Appendix B

Model Operators

Figure B1
Flowchart of Operators for a Model Without the Ability to Slow Down

Note. Arrows represent transitions between states. Yellow operators test conditions to determine the next state.
Blue operators perform actions. See the online article for the color version of this figure.
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Figure B2
Flowchart of Operators for a Model With the Ability to Slow Down

Note. Arrows represent transitions between states. Yellow operators test conditions to determine the next state.
Blue operators perform actions. See the online article for the color version of this figure.
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Appendix C

Quadratic Regression

For a finite range of control values, we assume that there exists
an optimal value and that the rate of payoff decreases with
increasing distance from that optimal value. The quadratic
function is a simple function that satisfies these two assump-
tions, and thus we chose to model the process of learning a
relationship between control values (x) and their rates of pay-
offs (y) using quadratic regression.

In quadratic regression, the goal is to estimate parameters a, b,
and c that define the best-fitting quadratic function, and to use
that function to determine the control value with the highest
estimated rate of payoff:

ŷ ¼ ax2 þ bxþ c (C.1)

The parameters are estimated using the following matrix
equation:

a
b
c

2
4

3
5 ¼

X
x4i

X
x3i

X
x2iX

x3i
X

x2i
X

xiX
x2i

X
xi n

2
664

3
775

�1 X
x2i yiX
xiyiX
yi

2
664

3
775 (C.2)

where [xi, yi] represent a control value–rate of payoff dyad dur-
ing the ith experience. Recall that the model samples a particu-
lar control value for a period of n ticks, and divides the total
payoff observed by n to arrive at the average rate of payoff (yi):

yi ¼ payofftotal
n

(C.3)

For each sample, information about the sampling period, the
sampled control value, and the average rate of payoff are stored
as a set of summary statistics:

stats ¼
n
n;
X

xi;
X

x2i ;
X

x3i ;
X

x4i ;
X

yi;
X

xiyi;
X

x2i yi
o

(C.4)

which are then used in equation C.2. Such a method is com-
putationally simple, as it only requires storing eight terms per
sample regardless of the length of the period. Furthermore,
only one set of statistics need to be stored at any given point
in time; the updated statistics are computed by adding the
current sample’s statistics to that of the previous set of
statistics:

statsupdated ¼ m � statssample þ statsprevious (C.5)

where m is the weighting factor from Equation 4. When m = 1,
all experiences are weighted equally. When m, 1, past experi-
ences are decayed as a function of time.

Table B1
Branching Operators in Figures B1 and B2

(a) Flight of ship avoids sides of rectangle? While flying down a rectangle, players need to monitor whether the ship’s current flight path will result in
crashing into one of the rectangle’s lengths. This operator checks for this condition and branches to making a correction to the path if necessary.

(b) Oriented to correction angle? If a correction is necessary, the player computes a target angle at which a thrust should be issued to change the tra-
jectory of the ship. This operator checks if the difference between the ship’s orientation and the target correction angle exceeds the aim threshold.
If so, the player corrects the ship’s orientation before issuing a tap thrust.

(c1) Ship speed > Ideal speed? For models that cannot slow down, this operator checks if the ship speed exceeds some speed threshold. If it is, the opera-
tor branches to preparing for a hard turn at the corner between two rectangles. If the ship is too slow, the operator branches to speeding the ship up.

(d1) Oriented to flight angle? If the ship is too slow, the player will prepare to increase the ship speed. Before issuing a thrust, the desired flight angle is
set to the direction of the rectangle. This operator checks if the difference between the ship’s orientation and the target flight angle exceeds the
aim threshold. If so, the ship’s orientation is corrected before a tap thrust is issued.

(c2) Ship speed within ideal threshold? For models that can slow down, this operator checks if the ship is flying within some speed threshold. If it is, the
operator branches to preparing for a hard turn at the upcoming corner. Otherwise, the operator branches to making adjustments to the ship’s speed.

(d2) Oriented to flight angle? If the ship is too slow, the flight angle is set to the direction of the rectangle. If the ship is too fast, the flight angle is set
to 1808 with respect to the current flight path to prepare for a slow down thrust. This operator checks if the difference between the ship’s orienta-
tion and the target flight angle exceeds the aim threshold. If so, the ship’s orientation is corrected before a tap thrust is issued.

(e) Oriented to turn angle? To make a hard turn at the corner, the ship needs to be oriented to the angle bisector of the two rectangles. This operator checks
if the difference between the ship’s orientation and the target angle exceeds the aim threshold. If so, the player will correct the ship’s orientation.

(f) Reached press point? This operator checks if the ship has traveled far enough into the overlapping area between the two rectangles. If so, the player
will begin to hold the W key for a sustained thrust.

(g) Flight path difference < Stop angle? During a hard thrust, holding the thrust key changes the ship’s flight path towards the direction of the new rectan-
gle. As there is some lag between the decision to lift a finger and the actual release of the key, the decision to release the thrust key needs to occur
before the ship’s flight path is aligned with the direction of the new rectangle. This operator checks if the angular difference between the ship’s flight
path and the direction of the new rectangle is less than a stop angle threshold. If so, the player issues the command to lift the finger off the thrust key.

Note. Bold text referers to operators that correspond to the flowchart Figures B1 and B2.
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Appendix D

How ACT–R Uses Control Values

This section briefly describes how the Controller module inter-
acts with the central production system. For clarity, the produc-
tions described here are simplified versions of those actually
used in the ACT–R model.

At the start of the experiment, Production 1 makes a request
to the Controller module to set up 5 controllers in the
Controller buffer, one for each control parameter.

Production: 1 Set up controllers

if The goal is to start playing then
for each control parameter do
Request Controller module to create controllers where
CONTROL-SLOT = control parameter
GOOD-SLOT = type of good events (i.e., segments
cleared)
BAD-SLOT = type of bad events (i.e., crashes)
MIN = minimum control value
MAX = maximum control value
BAD-WEIGHT = relative weight of bad versus good
outcomes

end for
end if

The good and bad events are recorded in the Imaginal
buffer. The count of these events are passed to the controllers

at the end of each update interval independently of the central
production system. The control values determined by the con-
trollers are then passed to the Goal buffer. When the value of a
state variable (in the Game State buffer) fulfills certain condi-
tions with the corresponding control value in the Goal buffer, a
production will fire to move the model into the next state
according to Appendix B.

The example production below fires when the ship’s current
speed is below the threshold set by the ship speed controller.
Upon firing, it prepares the ship for a speed up thrust by setting
a target flight angle that is parallel to direction of the current
track segment and changing the goal state to turn the ship to
face that target angle.

Production 2: Ship is too slow, align ship with segment
direction

if The goal is to do a retrieved step
and The retrieved action is to check the ship’s speed
and The ship’s speed is less than the controller’s ship speed
then
Set the target direction as the direction of the current track
segment
Change goal to turn to direction

end if

(Appendices continue)
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Appendix E

Control Parameters

Figure E1
Best Values of Ship Speed Learned by the Model With (in Blue) and Without Decay (in Red) on
Past Experiences

Note. Conditions from Experiment 1 are presented on the left and those in Experiment 2 are presented on the
right. M = Medium; L = Low; H = High. See the online article for the color version of this figure.
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Figure E2
Best Values of Press Point Learned by Models

Note. M = Medium; L = Low; H = High. See the online article for the color version of this figure.
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Figure E3
Best Values of Stop Angle Learned by Models

Note. M = Medium; L = Low; H = High. See the online article for the color version of this figure.
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Figure E4
Best Values of Tap Thrust Duration Learned by Models

Note. M = Medium; L = Low; H = High. See the online article for the color version of this figure.
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Figure E5
Best Values of Aim Learned by Models

Note. M = Medium; L = Low; H = High. See the online article for the color version of this figure.
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Appendix F

Comparison of Model Fits

Appendix G

Comparisons of Within and Across participant Variability

While the model displays a close fit to the group level perform-
ance of human players, it is interesting to examine if the model
is also able to capture the range of variability in performance
observed in the human players. Note that the model simulations
presented here were all generated with the same set of model

parameters. This differs from the modeling approach of
Anderson et al. where model performance was an average of
simulations using different sets of model parameters. For
instance, their models spanned five different rates of produc-
tion learning, which enabled a wide range of performance. In

Figure F1
Model Fits to Participant Data

Note. This figure expands upon Figure 10 and presents fits for all 36 combinations of values
across source weight ratio (3 values), maintenance (3 values), slowdown (2 levels), and tap
thrust duration (2 levels). See the online article for the color version of this figure.

(Appendices continue)
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contrast, the variability across simulations in this study results
only from random processes inherent to the model (e.g., motor
noise) and randomness in the game environment (e.g., random
order of track angles).

Figure G1 compares the within participant variability
between human and model players; for each participant (and
simulation), we computed the standard deviation across points
per block. Recall that players show a period of adjustment
when switching accelerations, and especially when switching
to a higher acceleration. From the figure, this is reflected in
both the human and model curves as an increase in the standard

deviation measure when transitioning from a lower to a higher
acceleration block. This figure also shows that model perform-
ance within each block does appear to be more variable than
that of human participants, particularly during the high acceler-
ation blocks.

Figure G2 compares the across participant variability between
human and model players; for each game, we computed the stand-
ard deviation across the points scored by each player. One might
imagine that both model and human participant variability would
decrease with game number because the slower learners would be
able to catch up with the faster learners in the later games. From

Figure G1
Plot of Standard Deviations of Points Within Each Block of 8 Games

Note. Shaded regions indicate 95% confidence intervals. M = Medium; L = Low; H = High. See the online arti-
cle for the color version of this figure.

(Appendices continue)
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the figure, models do show a slight increase in across partici-
pant variability as game number increases, but that contrasts
with the slight decreasing trend observed in human partici-
pants. Both human and model players also display an increase
in across participant variability when switching to a higher
acceleration, but the effect appears to be more drastic for mod-
els than it is for humans. Both discrepancies could be due to
the consistently poor performance of a few model simulations
that get stuck in a nonoptimal selection of control values. The

performance gap between these poor performing models and
the other models only widens with experience or when forced
to adapt to increased accelerations. With human participants
however, it appears that even those who perform poorly man-
age to get better with experience.
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Figure G2
Plot of Standard Deviations of Points per Game Across Participants

Note. M = Medium; L = Low; H = High. See the online article for the color version of this figure.
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