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From Information 
To Behavior
• Build on:

• Theories of individual
health psychology

• Predictive computational 
cognitive models of 
behavior change

• Psychologically Valid Agent-
based epidemiological models

• More accurately predict the 
dynamics of behavior change

• Response to NPIs government 
messaging, mass media, social 
media, information framing, etc



Cognitive Architectures and Human Behavior
• ACT-R provides constrained, 

principled framework to model 
complex human behavior 

• Modules for knowledge, action 
selection, working memory, 
perception and motor actions

• Integrates symbolic knowledge 
and statistical adaptivity

• Reflects individual differences 
and emergent cognitive biases

• Accounts for training effects by 
modeling learning processes
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Instance-Based Learning (IBL)
• Instance-Based Learning (IBL) 

models make decisions by 
generalizing previous situations

• Leverage cognitive mechanisms 
for memory (decay, rehearsal, 
priming) and pattern matching 
(partial matching, blending)

• Individual biases reflect distinct 
experience history (knowledge)

• Additional biases from cognitive 
mechanisms (e.g., recency bias) 

• Predict training effectiveness by 
diversity, size of instance base Event Representation (Context)
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Theory of Planned Behavior

• predict and explain wide 
range of health behaviors
and intentions

• Social norms reflect 
normative beliefs toward 
desired behavior

• Attitudes reflect intentions 
toward execution of behavior

• Control beliefs reflect 
perception of ability to 
control behavior



Social Norms

• Attitudes reflect input from agent’s global network
• Social/political affiliation and social network polarization
• Transfer from other norms e.g. drunk driving

• Attitudes are modulated by local context
• Prevalence of behavior in local environment
• Immediate peer pressure from direct contacts

• Formalized as chunks encoding competing actions
• Wear-mask vs not-wear-mask actions
• Competing actions rather than action-valence better fits IBL approach
• Competing base-level activation of alternative action chunks



Evolving Social (Media) Norms in CA and PA



Mask Wearing Predictions in 4 Large States

• Memory strength of 
norms abstracted from 
ratio of pro- and anti-
mask Twitter hashtags 
• Reflects power laws of 

recency and frequency
• 1 parameter estimated: 

blending temperature 
• suggests stronger social 

cohesion in NY and CA
• Validated against 

CovidStates data
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Mask Wearing Aggregate Validation

• Aggregate Twitter data and 
unweighted mask wearing 
probabilities
• Temperature parameter 

estimated near neutral 
value (1.2)
• Better fit than single states

• Limitations of noisy data
• National nature of twitter
• Unrepresentative sample
• Other behavior factors
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Control: Damped Oscillations of Infection Rate
• Damped oscillations in Rt 

observed at all levels
• Attitude Representation

• Context-free norm chunks
• Wear vs don’t wear

• Contextual (Rt) reactions
• “Fear” vs “hope”

• Chunk activation strength
• Context estimated from 

temporal aggregation
• Match context -> action

• Norm damping effect
• Contextual oscillations



Influence of Attitude on Rt

• Strengths of pro- and anti-mask 
attitudes represented as distinct 
activation of corresponding beliefs

• Stronger impact on asymptote of 
infection rate than initial response
• Due to effect of natural reactions 

(“hope” and “fear”) that are triggered 
regardless of attitude by the current 
state of the pandemic

• Population as heterogeneous mix of 
attitudes activated at different 
points, moving between curves



Dynamics of Attitudes and Infections
• Feedback delays in dynamical 

system control induce oscillations
1. High mask wearing compliance 

reduce initial infection rate
2. Lower infection rate leads to 

relaxing in mask wearing
3. Lower mask wearing probability 

leads to rising infection rate
4. Rising infection rates leads to 

increase in mask wearing
• Amplitude of oscillations 

decrease over time but can rise 
with external shocks (mandates, 
weather, events)
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Behavioral Attitudes: Increasing Polarization

• Mobility reduction 
decreases over time

• Differences tied to socio-
political orientation 
amplifies over time

• Fundamental task is 
decision making under 
uncertainty (safe vs risky)

• Well-studied problem can 
lead to dynamic effects 
such as cognitive biases

Table 1a. The 60 estimation set problems and the aggregate proportion of choices in risk in each of the experimental
conditions

Problem H

Risky

L

Safe Proportion of risky choices (R-rate)
Average number of
samples per problemPh M Description E-sampling E-repeated

1! " 0.3 0.96 " 2.1 " 0.3 0.20 0.25 0.33 10.35
2 " 0.9 0.95 " 4.2 " 1.0 0.20 0.55 0.50 9.70
3 " 6.3 0.30 " 15.2 " 12.2 0.60 0.50 0.24 13.85
4 " 10.0 0.20 " 29.2 " 25.6 0.85 0.30 0.32 10.70
5 " 1.7 0.90 " 3.9 " 1.9 0.30 0.80 0.45 9.85
6 " 6.3 0.99 " 15.7 " 6.4 0.35 0.75 0.68 9.85
7 " 5.6 0.70 " 20.2 " 11.7 0.50 0.60 0.37 11.10
8 " 0.7 0.10 " 6.5 " 6.0 0.75 0.20 0.27 13.90
9 " 5.7 0.95 " 16.3 " 6.1 0.30 0.60 0.43 10.95
10 " 1.5 0.92 " 6.4 " 1.8 0.15 0.90 0.44 11.75
11 " 1.2 0.02 " 12.3 " 12.1 0.90 0.15 0.26 11.90
12 " 5.4 0.94 " 16.8 " 6.4 0.10 0.65 0.55 11.15
13 " 2.0 0.05 " 10.4 " 9.4 0.50 0.20 0.11 10.35
14 " 8.8 0.60 " 19.5 " 15.5 0.70 0.80 0.66 12.10
15 " 8.9 0.08 " 26.3 " 25.4 0.60 0.30 0.19 11.60
16 " 7.1 0.07 " 19.6 " 18.7 0.55 0.25 0.34 11.00
17 " 9.7 0.10 " 24.7 " 23.8 0.90 0.55 0.37 15.10
18 " 4.0 0.20 " 9.3 " 8.1 0.65 0.40 0.34 11.15
19 " 6.5 0.90 " 17.5 " 8.4 0.55 0.80 0.49 14.90
20 " 4.3 0.60 " 16.1 " 4.5 0.05 0.20 0.08 10.85
21 2.0 0.10 " 5.7 " 4.6 0.65 0.20 0.11 8.75
22 9.6 0.91 " 6.4 8.7 0.05 0.70 0.41 9.15
23 7.3 0.80 " 3.6 5.6 0.15 0.70 0.39 10.70
24 9.2 0.05 " 9.5 " 7.5 0.50 0.05 0.08 14.60
25 7.4 0.02 " 6.6 " 6.4 0.90 0.10 0.19 8.90
26 6.4 0.05 " 5.3 " 4.9 0.65 0.15 0.20 13.35
27 1.6 0.93 " 8.3 1.2 0.15 0.70 0.50 8.90
28 5.9 0.80 " 0.8 4.6 0.35 0.65 0.58 10.60
29 7.9 0.92 " 2.3 7.0 0.40 0.65 0.51 10.60
30 3.0 0.91 " 7.7 1.4 0.40 0.70 0.41 9.95
31 6.7 0.95 " 1.8 6.4 0.10 0.70 0.52 11.00
32 6.7 0.93 " 5.0 5.6 0.25 0.55 0.49 10.95
33 7.3 0.96 " 8.5 6.8 0.15 0.75 0.65 11.10
34 1.3 0.05 " 4.3 " 4.1 0.75 0.10 0.30 11.35
35 3.0 0.93 " 7.2 2.2 0.25 0.55 0.44 12.80
36 5.0 0.08 " 9.1 " 7.9 0.40 0.2 0.09 14.60
37 2.1 0.80 " 8.4 1.3 0.10 0.35 0.28 10.90
38 6.7 0.07 " 6.2 " 5.1 0.65 0.20 0.29 10.90
39 7.4 0.30 " 8.2 " 6.9 0.85 0.70 0.58 12.65
40 6.0 0.98 " 1.3 5.9 0.10 0.70 0.61 13.50
41 18.8 0.80 7.6 15.5 0.35 0.60 0.52 9.00
42 17.9 0.92 7.2 17.1 0.15 0.80 0.48 10.80
43! 22.9 0.06 9.6 9.2 0.75 0.90 0.88 9.90
44 10.0 0.96 1.7 9.9 0.20 0.70 0.56 10.05
45 2.8 0.80 1.0 2.2 0.55 0.70 0.48 19.40
46 17.1 0.10 6.9 8.0 0.45 0.20 0.32 9.15
47 24.3 0.04 9.7 10.6 0.65 0.20 0.25 11.80
48 18.2 0.98 6.9 18.1 0.10 0.75 0.59 9.00
49 13.4 0.50 3.8 9.9 0.05 0.45 0.13 8.85
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Copyright # 2009 John Wiley & Sons, Ltd. Journal of Behavioral Decision Making, 23, 15–47 (2010)

DOI: 10.1002/bdm

I. Erev et al. A Choice Prediction Competition 19



Impact of Messaging on Behavior Adoption

• Previous behavior 
presented as risky

• Alternative behavior 
slightly less desirable

• Messaging competes 
with experience

• No confirmation bias 
storage of expectation

• Standard parameters



Integrating 3 Levels of Modeling
• Pro- and anti-mask wearing norms

• Driven by prevalence of social norms but context-free

• Attitude-driven reactions
• Context is estimate of pandemic expansion or contraction (~Rt)
• Driven by affective reactions such as hope and fear

• Decision-making under risk and uncertainty
• Driven by combination of risk messaging and direct experience
• Reflects sampling dynamics, e.g., risk aversion and confirmation bias

• Combine reactive, affective and reflective decision making
• Generate expectation -> capture habituation effects
• Generate action to meet context and expectation
• Activation strength of each structure modulates its effect

• Reflect individual dispositions and exposure to information environment
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Integrating Multiple Factors
• Modeling previously unseen pattern:

• starting from a stable plateau (Rt~1) of 
February-March

• gradual (quasi-linear, not exponential) 
increase in late March

• plateau about 40-50% above original level in 
early April

• decrease symmetric to original increase in 
late April through May

• Pattern reproduced at national, state and 
local levels

• Largely independent of local characteristics

• Pattern present in cases, hospitalizations 
and deaths with usual time lag



Cognitive and Biological Mechanisms 
• Using four concurrent biological and cognitive mechanisms
• Two external (pharmaceutical/biological) mechanisms

• gradual introduction of vaccines that proportionally reduces Rt 
from a roughly linear decrease in the Susceptible population

• sigmoid increase of factor ~0.4 in R0 (and consequently Rt) 
resulting from the spread of the more contagious British variant

• Two internal (cognitive/behavioral) mechanisms:
• fairly sudden relaxation of behavior triggered by the introduction of 

vaccines and seasonal/official relaxation
• Expressed in first level of cognitive model, i.e. norms, in terms of 

proportional increase of Ad activation level
• gradual tightening in behavior resulting from the original increase 

in cases
• Expressed at the second level of the cognitive model, i.e., higher Af

activation resulting from closer match to increasing Rt
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Phases of Model Behavior
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Effects of Vaccination, Strains and Behavior 

Early, slow increase in vaccinations 
and British variant, stabilized by 

cognitive dynamics

Near-exponential explosion of British 
variant and behavior relaxation 
overcomes gradual vaccination

Behavior tightening and 
increasing vaccinations stabilize 

against British variant

Vaccinations approaching herd 
immunity and behavior tightening 

overcome British variant saturation



Future Work
• Integrate 3 model levels & 

time scales of dynamics
• Improve fidelity of belief 

stance representations
• Integrate effect of diverse 

stances in model dynamics
• Integrate external events in 

control dynamics
• Extend model to account 

for vaccination decisions
• Integrate behavior model 

into large-scale ABM
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