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We describe the Sketch-and-Stitch method for bringing together a cognitive model and EEG to reconstruct the
cognition of a subject. The method was tested in the context of a video game where the actions are highly
interdependent and variable: simply changing whether a key was pressed or not for a 30th of a second can lead to
a very different outcome. The Sketch level identifies the critical events in the game and the Stitch level fills in the
detailed actions between these events. The critical events tend to produce robust EEG signals and the cognitive
model provides probabilities of various transitions between critical events and the distribution of intervals be-
tween these events. This information can be combined in a hidden semi-Markov model that identifies the most
probable sequence of critical events and when they happened. The Stitch level selects detailed actions from an
extensive library of model games to produce these critical events. The decision about which sequence of actions to
select from the library is made on the basis of how well they would produce weaker aspects of the EEG signal. The

resulting approach can produce quite compelling replays of actual games from the EEG of a subject.

1. Introduction

The goal of this research is to track moment-by-moment what
someone is thinking and doing over an extended period using the high
temporal resolution of EEG. We will describe a method for achieving this
goal that merges bottom-up information from classification of the EEG
signal with top-down information from cognitive modeling. A great deal
of research has studied classifying EEG signals and the results have been
applied to a number of domains such as brain-computer interfaces (Lotte
et al.,, 2018), emotion recognition (Kim et al., 2013), understanding
human memory (Noh et al., 2014), estimating workload (Brouwer et al.,
2012), among others. With few exceptions (e.g. Su et al., 2018), this
research involves tasks where the experimenter has control over the
presentation of stimuli and examines activity in predefined intervals,
typically locked to the presentation of these stimuli. However, in many
realistic situations such as driving a car one does not have such experi-
mental control and the sequence of events emerges as an interaction
between the subject and the environment. Furthermore, the intervals
between actions in such situations can be much shorter than the typical
intervals used in most classification efforts.

To explore the tracking of mental state in such a context we chose
video game play. There has been work on EEG and video games (e.g.
Kerous et al., 2018), but typically focused on using traditional BCI
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methods to serve as a controller for the game. These applications typi-
cally leverage three types of EEG signals: (1) Signals sensitive to the
occurrence of rare events, such as the presentation of a letter that the
individual is thinking of (i.e., the P300); (2) Signals sensitive to how
objects that the individual is attending to are presented (i.e., the SSVEP);
and (3) Signals sensitive to planned and imagined movement (i.e., the Mu
rhythm). These studies demonstrate the potential of inferring control
signals from EEG, yet they do not involve highly dynamic tasks with
significant perceptual-motor demands.

There has been little focus on recognizing events that occur in free-
flowing games. One exception is a study by Cavanagh and Castellanos
(2016) who trained a neural classifier on controlled pre-game exemplar
events. These events included the presentation of unexpected stimuli in
an oddball detection task, and the presentation of positive and negative
feedback in a gambling task. Both types of events—the occurrence of
unexpected events and the delivery of rewards and punishment—also
occur in many video games. Cavanagh and Castellanos found that clas-
sifiers trained using data from the control tasks could be used to cate-
gorize positive and negative events that occurred during Escape from
Asteriod Axon, an 8-bit video game with continuous play. This demon-
strates the transferability of EEG signals traditionally studied in simple
laboratory tasks to a real-time game. A point of departure from the cur-
rent study, however, is that Cavanagh and Castellanos directly provided
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the classifier with subsets of epochs of video-game play that contained
critical events. Thus, the classifier did not need to detect epochs that
contained critical events, nor did it fill in the sequence of actions and
states between those events.

Video games offer an excellent opportunity to test methods for
tracking human cognition because one can collect a record of what the
subject did and what the game did on each game tick. Additionally, video
games offer an opportunity to bridge the gap between -carefully
controlled laboratory studies that seek to isolate one or a small number of
EEG signals, and the far more complex tasks that people routinely
perform like driving a car in traffic.

This paper describes a method that attempts to reconstruct the actual
game play from the EEG signal. This is a high bar because even getting a
couple of actions out of synch can lead to disastrous reconstruction that is
not at all human-like. Nonetheless, we have had some success in
achieving the goal of reconstructing video game play from EEG signals
(for examples, see http://andersonlab.net/reconstruction/). This success
requires more than just an EEG classification algorithm. No matter how
good the classification method is, it will misclassify some things, leading
to an incoherent reconstruction of the full game (i.e., improbable or
impossible sequences of events). Rather than directly choosing actions
from the classifier, we use the output of the classifier to select sequences
of actions from a cognitive model (Anderson et al., 2019) that can play
the game like actual players. The result is a reconstruction of the game
that is coherent, human-like, and typically very similar to the game of the
player whose EEG signal we are working from.

1.1. Space Fortress game

The video game we studied was a variant of Space Fortress. This game
has a long history in the study of skill acquisition and training methods,
first being used in the late 1980’s by a wide consortium of researchers
(e.g. Donchin, 1989; Frederiksen and White, 1989; Gopher et al., 1989).
Part (a) of Fig. 1 illustrates the critical elements of the game. Players are
instructed to fly a ship between the two hexagons. They are firing mis-
siles at a fortress in the middle, while trying to avoid being hit by shells
fired by the fortress. The ship flies in a frictionless space. To navigate, the
player must combine thrusts in various directions to achieve a path
around the fortress. Mastering navigation in the Space Fortress envi-
ronment is challenging; while subjects are overwhelmingly video game
players, most have no experience in navigating in a frictionless
environment.

There have been EEG studies of Space Fortress. Maclin et al. (2011)
recorded EEG from subjects as they played Space Fortress while
concurrently performing a secondary task that involved counting rare
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auditory oddball stimuli. The amplitude of the P300 to rare stimuli in the
oddball detection task increased following training on Space Fortress,
while the amplitude of the P300 to stimuli in Space Fortress decreased.
These results indicate that with training, the primary task of playing
Space Fortress became less attentionally demanding, freeing resources
for the secondary task. In subsequent work, Mathewson et al. (2012)
found that event-related increases in frontal theta, an oscillation associ-
ated with attentional control, predicted individual differences in learning
rate. Together, these results show the importance of attention in Space
Fortress and that there is a reduction in attentional demands with
practice.

We used the Autoturn version of the game introduced in Anderson
et al. (2019). In this variant of the game, the ship is always aimed at the
fortress and subjects do not have to turn it. The ship begins each game
aimed at the fortress, at the position of the starting vector in Fig. 1a, and
flying at a moderate speed in the direction of the vector. To avoid having
their ship destroyed, subjects must avoid hitting the inner or outer
hexagons, and they must fly fast enough to prevent the fortress from
aiming, firing at, and hitting the ship. When subjects are successful the
ship goes around the fortress in a clockwise direction. They can destroy
the fortress by shooting missiles at it to build up its vulnerability and then
destroying it with a “kill shot” (two shots in rapid succession). If the
fortress is destroyed it leaves the screen for 1 s before respawning. If the
ship is destroyed it respawns after 1 s in the starting position flying along
the starting vector. Our version of the game eliminated much of the
complexity of scoring in the original game and just kept three rules:

1. Subjects gained 100 points every time they destroyed the fortress.
2. Subjects lost 100 points every time the ship was destroyed
3. To reinforce accurate firing, every fire costs 2 points.

To keep subjects from being discouraged early on, their score never
went negative. The replay site (http://andersonlab.net/reconstruction/)
offers examples of game play.

Anderson et al. (2019) found that subjects can achieve relatively high
and fairly stable performance within an hour of playing AutoTurn (much
faster than in original Space Fortress where subjects are also responsible
for turning their ship among other things). To maintain a constant
challenge of game play, a staircase procedure decreased the separation
between the inner and outer hexagons as subjects got better. Subjects
played 1-min games. During the first 10 games the inner corners were 40
pixels from the center and the outer corners were 200 pixels from the
center producing a width of 160 pixels. After the tenth game, the border
width was reduced by 10 pixels if the subject had 0 or 1 deaths in the
prior game and it was increased by 30 pixels (to a maximum width of 160

1 Fig. 1. (a) The Space Fortress screen, showing the
inner and outer hexagon, a missile fired at the fortress,
and a shell fired at the ship. The distance from the
center (fortress) to the corners of the outer hexagon is
200 pixels and the distance to the corners of the inner
hexagon is 40 pixels. The ship starts 120 pixels to the
left of the center, flying at 30 pixels per second, par-
allel to the upper left side of the hexagon. The dotted
lines illustrate an example path during one game. (b) A
schematic representation of critical values for firing
and flight control.
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pixels) if they had 2 or more deaths. In this way the death rate in the
game was maintained at about 1 death per 1-min game. For each 10
pixels the border is reduced, subjects get an additional 10 points for each
fortress they destroy. Navigation becomes more difficult as one has to fly
between narrower borders, with many deaths resulting from thrusting
into the inner hexagon, a rare event with the original 160 pixel width.

The game advances at 30 ticks per second. Only two keys are pressed
—a left-hand press of the W key to add thrust to the ship and a right-hand
press of the space bar to fire at the fortress. Exactly when a player thrusts
and fires is critical to performance. The difference of a single game tick
can mean the difference between destroying the fortress and being
destroyed. Critically, the impact of a key press depends on the past his-
tory of key presses as well: the consequence of a thrust depends on the
ship’s current position and flight path (determined by past thrusts) while
the consequence of a fire depends on how preceding fires have affected
the fortress’s vulnerability.

Good performance involved mastering two skills —destroying the
fortress and flying the ship in the frictionless environment. To destroy the
fortress one must build up the vulnerability of the fortress (displayed at
the bottom of the screen). When the vulnerability reaches 11, subjects
can destroy the fortress by quickly firing an additional missile at it. Each
fire increases the fortress’s vulnerability by one, provided the fires are
paced at least 250 ms apart. If the inter-fire interval is less than 250 ms
the vulnerability is reset to 0 and one must begin the build up of
vulnerability anew. While subjects could easily make sure the fires
building up vulnerability are at least 250 ms apart by putting long pauses
between them, this would reduce the number of fortresses destroyed and
points gained per game. Thus, subjects are motivated to pace the fires as
close to 250 ms as they can without going below that 250 ms. threshold
and producing a reset. In contrast to the fires that build up the vulnera-
bility, the fire to destroy the fortress must be less than 250 ms from the
last fire.

Since the ship is always aimed at the fortress, subjects do not need to
turn their ship as in the original version of Space Fortress. To navigate
around the fortress, they must press the thrust key at appropriate times
and for appropriate durations. The direction of the ship after a thrust is
determined by a vector sum of the current flight velocity and the accel-
eration they add in the direction of the fortress. The acceleration is
determined by how long they hold the thrust key down. Subjects’ average
ship speed is a little over 1 pixel per game tick (the ship starts out flying at
1 pixel per game tick). Every game tick the thrust key is held down adds
0.3 units of speed in the current orientation of the ship (i.e., towards the
fortress). As an example, suppose the ship is flying at 1.2 pixels per game
tick, the angle between aim and ship direction (Thrust Angle in part b of
Fig. 1) is 120°, and the thrust key is held down for 4 game ticks. The
thrust will produce a force of 1.2 pixels in the direction the ship is
aimed.! The resulting trajectory would still have a velocity of 1.2 pixels
per game tick (more if the thrust angle was less than 120°, less if it was
more), and would now be in a direction that bisected the thrust angle.
Thrusts at the wrong time or for the wrong duration can lead to death of
the ship, which happens if the ship hits the inner or outer hexagons or if
the ship flies so slowly the fortress can shoot it.

1.2. Overview of Sketch-and-Stitch reconstruction

We developed the Sketch-and-Stitch method to infer a trace of the
subject’s cognition. While we apply the method here to a video game
because that provides a demanding test, the underlying approach could be
applied to any task. The method involves first developing a sketch of the
critical mental events that happen occasionally during an extended task. To
do this the method uses a combination of multivariate pattern analysis
(MVPA) for identifying EEG patterns associated with the events and hidden

! This is only a close approximation because the flight of the ship and its
orientation update after each tick of thrust.
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semi-Markov models (HSMMs) for locating events in time. We have
applied combinations of these MVPA and HSMMs to parsing of fMRI data
(e.g. Anderson et al., 2010, 2012) and to the processing of EEG and MEG
data (e.g. Anderson et al., 2016, 2018), but nothing as time-critical as
reconstructing video game play. After describing the approach taken in this
paper, we will highlight its key features and innovations relative to past
applications that enabled it to succeed in the task.

Having produced a hypothesis about when the critical events
happened in a game, the Sketch-and-Stitch method then stitches in a
detailed reconstruction of the subject’s cognition that led to these critical
events. In this video game these detailed steps of cognition are directly
associated with a detailed trace of actions providing a rigorous ground
truth for judging the success of the effort. Stitching uses sequences of
actions from runs of a simulation model that can produce human-like
sequences of cognition. In our case, that simulation model is the ACT-R
model described in Anderson et al. (2019) which produced a
high-quality match to subject game play. Such a model (because it is
stochastic like subjects) can be used to create a large library of candidate
sequences for stitching between critical events. The Sketch-and-Stitch
method selects among these candidate sequences according to how well
they would produce EEG signals that match the subject.

2. Methods

This Methods section describes the source of all the information that
goes into our application of the Sketch-and-Stitch procedure. The results
section will describe and assess how well this information can be used to
reconstruct game play.

2.1. Subjects

A total of 25 subjects were recruited from the CMU population of
students and researchers between the ages of 18 and 40. 5 subjects were
excluded because of poor performance (1 subject) and equipment prob-
lems (4 subjects), leaving 20 subjects (11 male, 9 female). All were right-
handed. None reported a history of neurological impairment. Subjects
were paid $75 for participation in the experiment that lasted less than 2
h.

All participants signed informed consent and the experimental pro-
cedure and data handling was approved by the ethics committee of
Carnegie Mellon University.

2.2. Game play

After subjects studied game instructions,? they played 60 1-min
games choosing to move on to the next game at their own pace. The
games varied in length from 1800 to 1820 ticks with a mean 1819 game
ticks (each game tick a 30th of a second, making most games a little
longer than 1 min). Our analysis will focus on the first 1800 game ticks,
or exactly 1 min. The game records the state of the screen (where the ship
is if alive, the direction and speed of movement, whether shells or mis-
siles are on the screen, and whether a key is depressed) at each game tick.
This serves as the ground truth both for training the decoder and for
testing its predictions.

2.3. EEG analysis

The EEG was recorded from 128 Ag-AgCl sintered electrodes (10-20
system) using a Biosemi Active II System (Biosemi, Amsterdam,
Netherlands). The EEG was re-referenced online to the combined com-
mon mode sense (CMS) and driven right leg (DRL) circuit. Electrodes
were also placed on the right and left mastoids. Scalp recordings were
algebraically re-referenced offline to the average of the right and left

2 Instructions were available for review between games.
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mastoids. The EEG and EOG signals were filtered with a bandpass filter of
.1-70.0 Hz and were digitized at 512 Hz. The vertical EOG was recorded
as the potential between electrodes placed above and below the left eye,
and the horizontal EOG was recorded as the potential between electrodes
placed at the external canthi. The EEG recording was decomposed into
independent components using the EEGLAB FastICA algorithm (Delorme
and Makeig, 2004). Components associated with eye blinks were auto-
matically identified and manually confirmed. All but the marked ICAs
were projected back to the EEG signal.

The EEG signal was recorded continuously for the entire experimental
session and broken into 1-min games. There was also a complete record
of what happened in each game. Portions of the game periods were
identified as bad signals were excluded. Individual channels within an
epoch were flagged based on having extreme values for mean absolute
deviation, drift, or range. Flagged channels were interpolated. Epochs
that still contained channels with extreme values after these steps were
flagged and rejected. This resulted in loss of the signal for an average of
1.7 s per game for games used in the decoding (52.5% of the games had
no lost signal; the worst game had 21.8 s of lost signal). This reflects a
realistic complication in decoding where useful signal can be lost for
some fraction of time.

After the processing above to produce the 512 Hz data, the EEG was
down-sampled to 30 Hz to match the game ticks. This had the added
benefit of making the data of a more manageable size. A 1-s window
around each game tick (14 game ticks before, the game tick, and 15 game
ticks after) was used to classify whether a game tick contained a critical
event. This means that each game tick had associated with it a vector of 30
x 128 = 3840 electrode readings, representing regional effects, frequency
effects (below 30 Hz), and their interactions. Because the vector associated
with a game tick requires a complete signal for 1 s, game ticks at the
beginning and end of a game do not have corresponding vectors nor do
game ticks in or near lost signal. Thus, 29 ticks at the beginning and end of
the game have no vectors as well as an average of 71.6 ticks in the vicinity
of lost signals, leaving an average of 1718.4 vectors per game. The avail-
able vectors for each game were z-scored to standardize them across
games. To reduce dimensionality and filter out noise, the vectors for all
games and subjects were subjected to a PCA analysis and the 1000 top
dimensions were kept.” Thus, we had an average of 1718.4 1000-element
vectors per game. These are what were used for all classification analyses.

2.4. Classification

All reconstructions efforts focused on the last 55 games where per-
formance is relatively stable. We excluded an additional 20 games of the
remaining 1100 games because of particularly bad EEG signal or low
activity by the subjects (1 game without good signal throughout, 8
further games where subjects failed to destroy a fortress without resetting
or being killed, and 11 games with 12 or fewer critical events). This left
1080 games, which will serve as the focus of analyses.

We performed 4 classification analyses using the same 1000-element
vectors produced by the PCA for game ticks in the 1080 games —to
identify key presses, to identify critical events, to identify ship position,
and to identify vulnerability changes. In each case we used the same
leave-one-game-out approach: For a given target game of one subject, the

3 We compared the time course of the activity of each ICA to the vertical EOG.
ICAs that were correlated with the vertical EOG (r greater than 0.4) were flagged
and examined by a researcher.

4 This was a PCA performed on a 1,855,876 x 3840 matrix, producing a
1,855,876 x 1000 matrix. Because each row in the matrix has both spatial and
temporal components, the PCA combines elements of a spatial and a temporal
PCA. The first 1000 dimensions capture .990 of the variance. We reconstructed
the data from these 1000 dimensions and compared the power spectra of the
reconstructed data with the original data. The portion of the variance preserved
shifts from 0.999 to 0.856 as we go from 1 to 15 Hz.
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training was done with all remaining games for that subject and all games
for all other subjects. A linear discriminant classifier was trained to label
the vectors of EEG activity with the category associated with the game
tick that the vector describes. To reflect the fact the sensor activity of the
subject may be most relevant, that subject’s other games are weighted 15
times more than the games of other subjects. This was repeated for each
game to get results for all 1080 games. We have neither explored
different weightings of that subject to other subjects nor different clas-
sification methods. Thus, while the classification results are quite good,
they probably are not the best possible, but they are good enough to
enable the Sketch-and-Stitch method to achieve fairly high performance.

2.5. Model

We used the same ACT-R model as described in Anderson et al.
(2019). To summarize the model: it starts with a declarative represen-
tation of the instructions about when to do what. This produces slow
performance initially, but over time the model builds action rules that
directly perform the actions in the appropriate situations (bypassing the
need for declarative retrievals). Critical to its performance in Autoturn
are learning when to thrust and when to fire. A Controller module has
been implemented within ACT-R that explores a range of values for when
to fire and when to thrust and converges on appropriate settings, which it
comes to exploit. The creation of action rules and the learning of control
values for action underlie the improvement with practice in the model.
The behavior of the model is similar to subjects because it uses estab-
lished ACT-R settings (on the basis of prior experiments) for the timing
and variability of mental steps and motor execution. While this model
was developed only for the 160-wide pixel border separation, it gener-
alizes to the narrower borders in this experiment because the model
monitors for closeness to the borders.

We simulated 100 subjects by running the model 100 times for 60
games under the same game conditions as humans: As the model got
better, the borders narrowed. If the model suffered more than one death in
a game, the borders expanded. In addition, to collect enough games at each
width to have a library for reconstruction, for each possible width 50
model runs of 60 games were executed at a fixed width. In all runs the
model was learning and got better with later games. Since the first 5 games
of subjects were excluded in the reconstruction efforts, we similarly
excluded the first 5 games from each of these runs, yielding a library of 50
x 55 = 2750 games at each border width. There are 13 possible widths
from 40 to 160 pixels, making for a library of 2750 x 13 = 35,750 model
games to serve as a basis for reconstructing the 1080 subject games.

3. Results
3.1. Behavioral results: subjects and models

Fig. 2 shows how various measures changed over the course of the 60
games for the experiment participants and the 100 simulated subjects.
Part (a) tracks the width of the space between the two hexagons. This is
held constant at 160 pixels by the experiment for the first 10 games, after
which the staircase process sets in. The width then decreases until it is
bouncing around an average of about 100 pixels. Points and kills (Parts b
and c) increase rapidly over the first 10 or so games and then increase
more gradually. Ship deaths drop rapidly over the first 10 games before
rising to about 1 death per game, which is the goal of the staircase pro-
cedure (Part d). Unlike human subjects, the model flies fairly safely from
the beginning. Once the staircase procedure sets in both humans and the
models show the expected rate of about 1 death per game.”

5 The instructions provide information about the importance of thrust angle
(see Fig. 1b) for flight —not too large or one will slow down and not too small or
one will speed up too much. The model starts with a perfect encoding of this
information whereas some subjects only gradually appreciate this.
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Fig. 2. Mean values (line) and standard errors (area around lines) per game for subjects and models as a function of game (a) border width; (b) points before bonuses
for kills at narrow borders; (¢) number of fortress destructions; (d) number of deaths.

In later games subjects fly at a range of widths. For instance, on the
last game, different subjects are flying at ranges varying from 70 to 160
pixels. Subjects vary in how tight a space they manage to fly in, but 13 of
the subjects manage to reach a width of 70 pixels at some point and all
but 1 reach 90 pixels (the other reaching 110 pixels). The 100 simulated
subjects show a similar range with 43 reaching 70 pixels, and all but 9
reaching 90 pixels. The best subject reached 40 pixels while 3 of the 100
simulated subjects reached 40 pixels. Fig. 3 shows how performance
varies as a function of width (omitting the first 5 games where the rapid
changes were taking place). Subjects earn somewhat more points with
greater widths (Fig. 3a). There is relatively little effect on number of
fortresses destroyed with width (Fig. 3b) but a large effect on number of
deaths (Fig. 3c). Speed is somewhat greater with wider borders (Fig. 3d).
The model also has these trends.

As Figs. 2 and 3 show and as is elaborated at length in Anderson et al.
(2019), this model does a good job at capturing many aspects of human
game play. The rest of this Results section has 4 further subsections
(second through fifth subsections) concerned with using this model and
the EEG data to reconstruct game play: The second subsection describes a
classifier for identifying key presses from the EEG signal and assesses
whether this classifier’s output can be used to reconstruct game play. The
third subsection describes how a classifier for critical events can be
combined with the model to create a sketch of the critical events in the
game. The fourth subsection describes how two other classifiers can be
combined with the model to stitch in the key presses between the critical
events. The fifth subsection will evaluate how well this Sketch-and-Stitch
combination does at reconstructing game play.

3.2. Response-based classification

A direct model-free approach to reconstructing game play would be to
try to recognize when the left (thrust) and right (fire) fingers are pressed.

A fair amount of research has shown good discrimination between
imagined left- and right-hand movements for application in BCI (Lotte
et al., 2018) and classification of actual key presses by hand is also good
(Krauledat et al., 2004). If we could correctly identify when the fingers
are pressed we would be able to recreate the game play. Two features of
the current task make it more challenging than the typical left-right
discrimination. First, it requires not just a binary discrimination but
rather a 4-way discrimination because the game includes ticks when
neither finger is pressed (the majority: 68.2%) and when both fingers are
pressed (rare: 0.2%). Second, the discrimination among these four cat-
egories must be made separately for every game tick (30th of a second).

Table 1 shows the classification performance on game ticks that have
associated EEG vectors. Part (a) of the table shows the results when each
game tick is assigned the label that makes the EEG vector most likely.
Clearly, considerable discrimination can be achieved as indicated by the
large values on the main diagonal. The overall accuracy is 47% and the
average pair-wise area under the curve (AUC) is 0.78. A d-prime
(Wickens, 2002) measure of discriminability is .90.° Only 25 of the 1080
games have negative d-primes. Excluding ticks with no or both keys
pressed, a binary discrimination of ticks with fires from ticks with thrusts
is better as would be expected (d-prime 1.54; 77.8% accuracy, 0.861
AUQ). Part b of Table 1 shows the 4-way classification results using the
posterior probability that weights the likelihood by the prior probability
of the category. The d-prime measure in this case is 1.03.

The categorization uses a combination of spatial and frequency in-
formation over a 1-s interval surrounding a game tick and so the full

6 The d-primes reported in this paper for an n-class categorization are the
averages of n 2 x 2 classifications of the ability to discriminate each of the n
categories from their absence. The average pairwise AUC are the averages of the
AUCs from n(n-1)/2 AUC discriminations between pairs of categories.
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Fig. 3. Mean values (line) and standard errors (area around lines) per game for subjects and models as a function of border width (a) points before bonuses for kills at
narrow borders; (b) number of fortress destructions; (c) number of deaths; (d) speed of ship. Because of the few cases of 40 pixels (1 game for subjects, 4 for models),
these data are averaged in with 50 pixels (16 games for subjects, 20 games for models).

Table 1
Classification of game ticks according to key press activity.
(a) Classified by Likelihood Game Tick Labeled as
None Fire Thrust Both Total
Keys Pressed during Game Tick None 566,338 285,646 255,966 155,085 1,263,035
Fire 105,799 261,162 66,504 82,210 515,675
Thrust 10,169 7082 41,927 10,128 69,306
Both 383 911 992 1652 3938
Total 682,689 554,801 365,389 249,075
(b) Classified by Posterior Probability Game Tick Labeled as
None Fire Thrust Both Total
Keys Pressed during Game Tick None 1,197,618 62,745 2613 59 1,263,035
Fire 392,235 122,988 405 47 515,675
Thrust 62,227 3023 4038 18 69,306
Both 3023 874 33 8 3938
Total 1,655,103 189,630 7089 132

patterns are complex. Fig. 4 shows the average temporal pattern for three
central electrodes and the full electrode patterns 5 ticks before and 10
ticks after the event.” At this level of aggregation the most prominent
feature is that left frontal activation tends to drop after a fire and rise after
a thrust. The difference between fire and thrust at the central electrode
FZ 10 ticks after a thrust is highly significant (t(19) = 6.04, p < .0001).
There is also greater right lateralized central negativity prior to a thrust
and slightly greater left lateralized negativity prior to a fire, which would
be the expected lateralized readiness potential opposite the hand press-
ing the key (e.g. Smulders et al., 2012). For instance, the difference

7 The EEG signal in this and subsequent figures is the same as used for the PCA
extraction of factors used in classification. Thus, there was no baseline
correction.

between fire and thrust at the right central electrode F4 5 ticks before the
thrust is highly significant (t(19) = 6.30, p < .0001). Notwithstanding
these clear patterns that appear in average data, on single trials there is
no electrode comparison on any game tick that provides even as much as
53% correct binary classification. The higher accuracy achieved by the
classifier depends on more complex patterns.

How well could one use these key classifications to reconstruct the
games? As a test we took the posterior most probable class for each game
tick® and ran the resulting action sequence through the game. The
average score was 13 points per game in contrast to 1218 points achieved
by the subjects who generated the EEG signal. Could one do better with a

8 Game ticks without an EEG vector were assigned to the category of no key
activity, which is the most common category.
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Fig. 4. (a) EEG activity around a tick with the fire key (right hand) depressed. (b) EEG activity around a tick with the thrust key (left hand) depressed. There are 30
game ticks per second. Shaded areas represent a standard error of the mean calculated from the standard deviation of the subject means. Scalp profiles are for —133 ms

and +333 ms (—4 and +10 game ticks).

better classifier? To simulate a classifier that was “10 times” more ac-
curate we generated a sequence of key activity that chose the true key
presses for each game tick with probability .9 and otherwise the keys of
the current classifier. The activity generated in this manner (which
matches the actual press pattern 97.2% of the game ticks) averages 92
points a game. We created a classifier that was “100 times” better by
using the true key presses 99% of the time. The sequence of key activity
generated in this manner (which matches the actual press pattern 99.7%
of the game ticks, unrealistically good) still fell short of human perfor-
mance with 818 points per game. Although only about 5 or 6 game ticks
(out of 1800 ticks in a 1-min game) were being missed, these mistakes
could include fires that created resets and threw the vulnerability count
off. They could also include extra or lost thrusts that changed the di-
rection of the ship. Once the vulnerability or direction was off, later ac-
tions did not have the same effect in the reconstructed game as in the
original game. In conclusion, even with improvement in accuracy greater
than seems possible with improved classification, it does not seem
possible to reconstruct game play from direct action classification.

3.3. Creating the critical sketch

Higher classification performance can be achieved if rather than
trying to classify every action one just tries to classify the critical events
that happen during the game. Five critical events could occur in the
course of game play:

1. Kills. The fortress is destroyed and the player gains 100 points.

2. Fortress Respawns. The fortress is respawned after a second and the
player can resume firing.

3. Deaths. The player’s ship is destroyed and the player looses 100
points.

4. Ship Respawns. The ship is respawned a second after death and the
player can resume thrusting and firing.

5. Resets. If the interval between fires is less than 250 ms and the
vulnerability is less than 11, the fortress vulnerability will be set back
to zero and the subject must begin building vulnerability anew.’

The 1080 1-min games in the pool averaged 9.38 kills, 0.86 deaths,
and 1.15 resets. The numbers of critical events with EEG vectors are 9742
kills, 9731 fortress respawns, 819 deaths, 805 ship respawns, and 1159
vulnerability resets. In total, these are far less numerous than the thrust
key and fire key events (row sums in Table 1).

9 If the vulnerability were 11 or above, the same interval between fires would
produce a fortress destruction.

Fig. 5 shows the EEG activity around the critical events, which pro-
duce much stronger signal changes than the key presses in Fig. 4. Part (a)
shows the 1-s around a kill. There is a posterior positivity that reaches a
maximum 100 ms before the kill, then a general negativity 100 ms after
the kill, and then an anterior positivity about 300 ms after the kill. Part
(b), which is a continuation of Part (a) shows the activity around the
respawn of the fortress. There is return to an anterior positivity about
300 ms after the fortress reappearance. Parts (c) and (d) show the activity
around a death and the respawn of the ship. There is negativity in
anticipation of the death, which switches to strong central positivity
peaking 400 ms after the death. The positivity remains but becomes left
lateralized after the ship respawns. Part (e) shows the response to a reset
where there is a strong central negativity 300 ms after the reset followed
by an even stronger central positivity 500 ms after the reset. One feature
common to kills, deaths, and resets (Parts a, c, and e) is a post-event
positivity, although that positivity varies somewhat in its timing and
distribution across the scalp. The magnitude of this positivity varies with
the rareness of the event, with the most common kills showing the
smallest response and the least frequent deaths showing the largest
response, as we would expect from a P300 (Polich, 2012). The delay in
the positivity for resets relative to the other two events may reflect the
fact that resets are not anticipated until they occur.

The same classification method described earlier was used to distin-
guish these 5 events from other game ticks as used for response classi-
fication. Given that critical events are rare, to prevent the classifier from
being overwhelmed by non-events we limited the number of non-events
in training the classifier by randomly choosing two non-critical game
ticks for each critical game tick in the game. Once trained on other games
the classifier was applied to all game ticks in the target game. Part (a) of
Table 2 shows classification of all game vectors by likelihood of the data
(d-prime = 2.00) and Table 2b shows classification by posterior proba-
bility (d-prime = 2.18). The average accuracy in Table 2a is 59.6% and in
Table 2b, which is thresholded to favor the majority null category, the
average accuracy is 98.5%. The average pairwise AUC, which does not
depend on threshold choice, is 0.942.

While this is considerably better than classification of key presses
(Table 1), these classification results by themselves would not produce
particularly good game reconstructions. In Part (a) of Table 2, 97.5% of
all labels are false alarms to game-ticks that do not involve the ascribed
event. In Part (b) of Table 2 the false labels are reduced to 70%, but now
84.4% of all critical events are missed. In addition to these problems,
identification of critical events alone does not provide the detailed
behavior of the subject that produced them.

While the classifier is not adequate in itself, it can be combined with
statistical information from model runs to reconstruct fairly accurate
critical sketches from the EEG signal as illustrated in Fig. 6. From the
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Fig. 5. (a, b) EEG activity around the destruction of the fortress and its respawn with the scalp profiles ranging from —4 to 4 pV. (c, d) EEG activity around the death of
the ship and its respawn with the scalp profiles ranging from —10 to 10 pV. (e) EEG activity around a reset of the vulnerability with the scalp profiles ranging from —6
to 6 pV. Shaded areas represent a standard error of the mean calculated from the standard deviation of the subject means.

large library of model games it is possible to obtain reliable estimates of
the probabilities of one event following another and how far apart these
events are. These transition probabilities and event distributions can be
used to parameterize a HSMM. Fig. 7 shows the distributions in the
model between other events and the probability that one event will

follow another. These distributions and probabilities also vary with the
width between the borders (see Fig. 3), with the most dramatic effect
being on the probability of a death.

We used an HSMM to efficiently combine these model-based statistics
and the conditional probabilities from the EEG classifier to estimate the
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Classification of Game Ticks according to Critical Events (F refers to Fortress and S refers to ship).

Game Tick Labeled as

(a) Classified by Likelihood Fortress Kill Fortress Respawn Ship Death Ship Respawn Reset Null
Event During Game Tick F. Kill 7695 425 132 136 195 1159

F. Respawn 475 6687 63 451 235 1820

S. Death 49 40 591 12 68 59

S. Respawn 31 123 1 569 11 70

Reset 74 73 25 17 749 221

Null 164,756 390,063 13,312 76,326 97,403 1,087,838

Game Tick Labeled as

(b) Classified by Posterior Probability Fortress Kill Fortress Respawn Ship Death Ship Respawn Reset Null
Event During Game Tick F. Kill 2470 1 26 0 4 7241

F. Respawn 2 103 2 12 0 9612

S. Death 8 0 457 0 20 352

S. Respawn 1 0 0 141 0 663

Reset 3 0 5 0 227 924

Null 3275 153 1792 1644 1271 1,821,545

35,750 Model Gameplay Data
Game: 1800 ticks of game state

A4

Game State Statistics

For every critical event type, gather statistics of
event transition probabilites and event duration

Y

Critical Event Transition Matrix
Critical Event Time Distributions

A4

Semi-Markov Modeling Procedure

A

Estimate maximal likelihood sequence of
critical events

A

Predicted critical event sequences
for each game

1080 Games of 30Hz EEG Data
Game: 1800 ticks x 128 sensors

\
Tick Data --> Signal Vectors

For each tick, generate Signal Vector
Surrounding 30 time points * 128 Sensors
Perform PCA, choose first 1000 components

\

1080 Games of 30Hz Signal Vector Data
Game: 1771ticks x 1000 PCA components

A4

Leave One Game Out Classifier Training

For each game, train Event classifier
on remaining games

\J

1080 Games of predicted Events
Game: 1771 ticks of Event Probabiilities

Fig. 6. Information from model and subject combined to create the critical sketch. On the left, runs of the model generate large numbers of game records from which
critical sketches are produced. The statistics from these critical events are used to parameterize a semi-Markov model. On right, signal vectors derived from an actual
games EEG are passed through a classifier trained on other games to determine the likelihood of critical events in a game. These probabilities are passed through the

semi-Markov model to produce a critical sketch.

most likely sequence of critical events in a game. Any sequence of events
can be denoted a;, ay, ..., a, occurring at game ticks t, to, ..., t, where
is the start of the game (hence t; is the first game tick), a, is the end
(hence t, is the last game tick), and the rest are fortress kills and
respawns, ship deaths and respawns, and resets. The following propor-
tionality describes the probability of any such sequence relative to the
probability of other sequences:

n—1

Prob(ay,ay, ...,a,) ~ Htrans(a,-,aiﬂ) X f(tir1 — tilai, aivr) o
i1

X P(EEG(t; + 1 : t;1)]ais)

where trans(a;, ai;1) is the probability of transition between the events a;

and a;;1, f(ti1 —ti|lai, ai11) is the probability of the t;,; — t; game ticks
between the events a; and a1, P(EEG(t; +1, ti11)|ai+1) is the conditional
probability of the EEG signal for this period if it ends in a;;1. The con-
ditional probabilities come from the classifier. Their use can be made
much more efficient and robust by using the fact that, if the signals at
different ticks were independent:

P(EEG(t; + 1 : ti1)|ai1) = P(EEG(tiy1)|aiy) X H P(EEG(x)|Null)
x=ti41
P(EEG(tiy1)lais1)

= PEEG ) Hl t;1P(EEG(x)|Null) (2)

The product involving the conditional probabilities P(EEG(x)|Null)
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Fig. 7. Probabilities of transitions (given as “p = ) between events and distribution of intervals between events in the simulations. The statistics displayed are
averaged over border widths from 40 to 160 pixels (the actual sketching procedure uses statistics specific to a width).

will be the same for all sequences of critical events and can be ignored in
determining which sequence has the highest proportionality. The only
thing that matters is the conditional probability of the EEG signal on
game tick t;,, if critical event a;;; happened, relative to the probability of
the signal if there were no critical event. Therefore we can rewrite Pro-
portionality 1 as

n—1

Prob(ay,ay, ...,a,) = Htrans(ahaHl) X f(tip1 — tilai, air)
i=1

o P(EEG(ti11)|ai1)
P(EEG 1,11 Null)

3

The probability of any particular sequence will only involve about 20
critical events and thus only 20 ratios of conditional probabilities of the
EEG on particular game ticks. These ratios are many game ticks apart (on
average about 100 game ticks or about 3 s). While the ratios for adjacent
game ticks are highly correlated due the temporal correlation of the EEG
signal, the ratios at these distances are not. Thus, the independence
assumption underlying a HSMM will be approximately correct. The
HSMM-MVPA applies to all game ticks, including the 4.7% that do not
have a corresponding signal vector. For these game ticks the ratios were 1
for all critical events. Thus, for these stretches of time without signal, the
only information about possible events comes from the transition prob-
abilities and distribution of delays between events.

We used the Viterbi algorithm (Rabiner, 1989) for hidden
semi-Markov models to find the assignment of events that maximized
Prob(a;,ay,...,a,). This produced for each game a set of inferred events
and the game ticks at which they occurred. For each game the match
between the assigned events and the actual events was calculated as a
sum of a recall and a precision measure (Buckland and Gey, 1994)
calculated from locations of kills, deaths, and resets (since the respawns

10

of the fortress and ship were tied to the kills and deaths). The measure of
recall focused on the events that occurred in the game and identified the
closest predicted event. If that event type matched and was within 2.5 s it
was scored according to how many game ticks it was away —thus the
maximum score was 75. If the closest event was further away or failed to
match it was also scored 75. The average of these recall scores for a game
can vary from O (perfect match of all events) to 75 (worst possible). The
measure of precision applied the same scoring procedure but now started
with all predicted events and found the closest actual event. These recall
and precision measures were identical for 379 of the 1080 games, but
were somewhat different for the rest because of differences between the
actual game versus the reconstruction in number critical of events or
their timing. Even when they are different they do tend to be correlated
(r = 0.624). The average measure of recall was 14.1 and the average
measure of precision was 11.8 for a total average match rating of 25.9 out
of 150.

Fig. 8 shows the distribution of the recall and precision scores.
Summing recall and precision the average match rating is 25.9. To pro-
vide a chance measure one can use the average rating between actual
events and predicted events of other games, which is 95.2. 847 games are
best matched by the game constructed from their EEG signal rather than
any other reconstructed game. 9 games have all critical events predicted
perfectly to the game tick. The mean rank of the reconstruction of a game
out of the 1080 reconstructions is 7.7. The range of possible rankings is
1-1080 —if reconstructions were randomly assigned to games the ex-
pected ranking (chance) would be 540.5.

Fig. 9 shows a pair of games to illustrate the range of prediction. Part a
is the 276th best-matched game with a rating of 10.6. All events but the
last kill are closely predicted — the model does not complete its last kill by
game’s end. Part b is 787th best-matched game with a score of 36.4. 8 of
the actual events (6 kills and 2 deaths) are identified relatively
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Fig. 8. Distributions of recall and precision ratings on a scale where 0 is perfect match between game and reconstructed critical events and 75 is the maximum possible

mismatch score.
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Fig. 9. Reconstructions of critical events for two games.

accurately. However, one death, one reset, and 2 kills are missed while
one kill and one death are predicted that did not occur.

Table 2 reported how well the classifier labeled game ticks. We
constructed a similar matrix from the results of the Viterbi algorithm
looking at how well it classifies each game tick. Table 3 presents those
results, which have a d-prime of 2.75, superior to both matrices in
Table 2 1°. All 20 subjects are classified better using the Viterbi algorithm
than just the classifier (either method in Table 2). Moreover, the Viterbi
algorithm results include classification of game ticks without a signal
vector (the 1000 PCA values which are not available when there is lost
EEG). Also, Fig. 9 shows that even if the Viterbi algorithm does not
identify the exact game tick it often identifies a nearby game tick (e.g. the
cases in the figure where the predicted and observed kills are slightly
offset). Most important and not reflected in Table 3, the resulting posi-
tioning of events render a coherent interpretation of game play, which is
to say that one can create sequences of key presses that would produce
these critical events. While this is a better result, it leaves us short of
being able to reconstruct the detailed behavior of the subject. For that we
need stitching, which we will describe next.

3.4. Stitching in detailed game play

Stitching involves finding sequences of key presses (fires and thrusts)
in simulated games that would produce the same timing of critical events
as in reconstructed sketches like those in Fig. 9. It is unlikely to find a

10 Table 3 is most comparable to Table 2b, which incorporates information
about the frequency of the events.

11

complete simulated game whose critical sketch perfectly matched a
reconstructed sketch. Even though there were 2750 simulated games for
each border width, no simulated game had a critical sketch matched the
critical sketch of any other simulated game or actual subject game (which
makes the fact that 9 of the Viterbi-reconstructed critical sketches
perfectly matched the actual games quite remarkable). Rather than
looking for complete games that matched, the stitching procedure just
searched for segments of simulated games that could reproduce segments
of the reconstructed sketch. Given that the effects of firing and thrusting
are nearly independent,'! the procedure selected thrust patterns and fire
patterns from the simulated games independently.

Thrusts determine the flight path of the ship. The overall path in a
game can be divided into a number of segments that begin with the ship
flying in a starting configuration and ending either in a death or termi-
nating with the end of the game. Fig. 10 illustrates how thrusts are chosen
from the model games for a segment in a critical sketch. For critical
sketches of games with no deaths, there is no shortage of simulated
games without deaths for that border width that can serve as candidate
segments (which will all span the full game). Beginning segments of these
games also provide thrust sequences for segments in critical sketches that
go from respawning of the ship after a death to the end of the game. The

11 There are rare possibilities for an interaction: A fire sequence can change the
consequences of a thrust sequence when the fires destroy the fortress and saves
the ship from being shot when it is flying too slowly. A thrust sequence may
change the consequences of a fire sequence because it controls the distance of
the ship, which determines when a shot hits the fortress, potentially turning a
vulnerability reset into an increment or vice versa.
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HSMM-MVPA Labeling of Critical Events (F refers to Fortress and S refers to ship).
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Game Tick Labeled as

Classified by Viterbi Algorithm Fortress Kill Fortress Respawn Ship Death Ship Respawn Reset Null
Event During Game Tick F. Kill 4937 11 13 1 2 5164
F. Respawn 7 4937 3 13 2 5166
S. Death 13 2 348 1 1 542
S. Respawn 1 13 0 348 0 545
Reset 5 3 0 0 184 1050
Null 6211 6213 766 763 957 1,908,989
35,750 Model Gameplay Data 1080 Games of 30Hz EEG Data
Game: 1800 ticks of game state Game: 1800 ticks x 128 sensors
. : . s
Extract Candidate Flight Sequences Tick Data --> Signal Vectors
Thrusts and resulting ship positions from ship Su’:guiz(i::guggyt?nigeprgitrstssig??ila\geecrgggrs
spawn to ship death or end of game. Perform PCA, choose first 1000 components
80,000+ candidate sequences of thrusts and 1080 Games of 30Hz Signal Vector Data
corresponding ship positions Game: 1771ticks x 1000 PCA components
Thrust Sequence Selection Procedure  |«g——— Leave One Game Out Classifier Training

For every subject ship-spawn to
death/endgame sequence identified by the
Sketch output of Figure 6, select candidate

model sequences that match duration. Choose
candidate that maximizes ship position
probabilities.

Thrust sequences for all ship-spawn to
death/endgame sequences.

For each game, train Ship Position classifier
on remaining games

1080 Games of predicted positions
Game: 1771 ticks of ship position probabilities

Fig. 10. Ilustration of how a thrust sequence is selected for a predicted sequence of critical events that goes from a ship spawn to a death or game end. On the left,
runs of the model generate large numbers of flight segments. On right, a classifier trained on other games assigns probabilities to flight positions in actual subject
games. Thrust sequences from the model are chosen for segments of the critical sketches that are associated with the most probable positions.

challenge is to find segments from the model that match segments in
critical sketches that go from the appearance of the ship to a death. There
are nearly 1800 possible numbers of game ticks that can pass until death
(the case illustrated in Fig. 10). Even if they were equally likely (which
they are not), ten times more simulations than the current 35,750
simulated games in the library would be required to come close to
guaranteeing model runs with a death at each game tick for each width.
As it was, model ship deaths did not occur at 32% of possible game ticks
in the inferred critical sketches. We relaxed the criterion and selected any
deaths within 5 ticks of the desired duration. This reduced the number of
missing cases to 2%. 42 cases were still not covered and for these we
expanded the difference until there was a case. With these relaxations,
there were on average 21 candidate segments ending in death for each
death in a critical sketch. Unlike the case with the earlier action classifier,
these segments involved plausible sequences of thrusts that produced a

12

plausible flight pattern even if it ended in a death.

The EEG signal was used to select among the candidate model thrust
segments, exploiting information that the signal provides about where
the ship is on the screen. Part (a) of Fig. 11 shows the average scalp
activity when the ship is in different 30-degree sectors. We trained a
classifier to recognize which sector the ship was in plus when the ship
was off the screen due to a death. We then assigned each game tick to the
category that maximized the probability of the EEG signal associated
with that tick. This resulted in a d-prime for discrimination among the 13
categories of 0.57, an accuracy in choosing among the 13 categories of
17.2%, and an average pairwise AUC of 0.738. Part (a) of Fig. 11 appears
to show greater left-right discrimination than top-down, although the
classification uses richer 1-s patterns than these single snapshots. A bi-
nary discrimination between the two left sectors from the two right
sectors shows a d-prime of 1.33 (74.7% accuracy; AUC of 0.825) while a
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Fig. 11. Scalp profiles when ship is in various 30-degree sectors of the hexagon space. (b)Disparity between assigned angle and actual angle using different criteria for

reconstructing ship position.

binary discrimination between two top sectors from the two bottom
sectors shows a d-prime of 0.87 (65.3% accuracy; AUC of 0.75).

We used this classifier for ship position to select among different se-
quences of game thrusts produced by the model. We fed the candidate
sequences of thrusts in these segments into the game engine to produce
flight paths and chose the sequence whose flight path had the greatest
summed log probability from the classifier. Part (b) of Fig. 11 shows the
distribution of offsets between the angle of the reconstructed flight and
the actual angle in the line called Informed Stitching. For comparison,
the figure also shows the results of three other bases for positioning the
ship:

. Key Classifier. We took the thrusts and fires predicted by the clas-
sifier using the posterior criterion (Part b of Table 1) and fed them
into the game engine as if they came from the subject. The game
engine then flew the plane and we used the resulting ship positions
given by the game engine.

. Position Classifier. The posterior most probable ship positions ac-
cording the position classifier (Part a of Fig. 11). Note that, because
these positions are not produced by the game engine, they typically
do not correspond to a possible flight pattern.

. Random Stitching. Feeding into the game engine thrusts from seg-
ments of the right length without regard to the EEG signal of the
subject.

For Informed Stitching the average angular disparity between
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reconstructed ship and actual ship is 40°; for Random Stitching it is 55°,
for the Position Classifier it is 68°, for the Key Classifier it is 71°
(randomly placing the ship on the screen would produce an average
angular disparity 90°).

The stitching procedure found sequences of fires in the same way as
illustrated in Fig. 10 for thrusts. However, the required fired sequences
were typically shorter than the thrust sequences: sequences that would
span the time in the critical sketch from either a fortress respawn or a
reset (either starting the vulnerability at 0) to a kill or a reset. There
tended to be many candidates from the model for reconstruction of fire
sequences. The stitching procedure selected a model fire sequence from
these candidates that would produce a similar pattern of EEG activity as
the subject. Part (a) of Fig. 12 illustrates how the EEG signal changes with
the build up of vulnerability.

Another classifier was constructed to discriminate among 17 cate-
gories of game ticks:

1-11 Game ticks with fires that raised the vulnerability to 1 through 11.
In the averaged Fig. 10a these would be the game ticks associated
with the first 11 vertical lines.

12 Game ticks with fires that raised the vulnerability to more than 11
but were too slow to destroy the fortress (not shown in part a of
Fig. 12).

13 Game ticks with fast fires that killed the fortress after reaching a
vulnerability of at least 11 (the last vertical line numbered 12 in
part a of Fig. 12).

(b) Prediction of Fire Vulnerability
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Fig. 12. (a) EEG warped to the period of an average kill (4.12 s — only games with exactly 12 fires included). The black lines show the fires that increase the
vulnerability to 11 with the last fire being the fire (12) that destroys the fortress. They are numbered with the vulnerability they produce. The EEG profiles between
vulnerability changes have been warped to the average vulnerability intervals. The scalp profiles are for 0.4 s, 2.25 s, and 4.0 s. (b) Distance from an assigned fire to a
fire with a matching vulnerability in the actual game. Negative values mean that the fire came before the matching actual fire and positive values mean it came after.
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14 Game ticks with fast fires that reset the vulnerability to 0 before
reaching a vulnerability of at least 11 (not shown in part a of
Fig. 12 —typically the fire will be about 150 ms before the reset
which is time 0 in part e of Fig. 5).

15 Game ticks with both the ship and fortress present without a fire
(almost 75% of all ticks are in this category).

16 Game ticks with the fortress absent because of a kill. (ticks
covering 0-0.5 s in part a of Fig. 5 and -0.5 to O sec. in part b of
Fig. 5).

17 Game ticks with the ship absent because of a death (ticks covering
0-0.5 s in part c of Fig. 5 and -0.5 to O sec. in part d of Fig. 5).

Focusing only on the ability to discriminate among the first 15 cate-
gories, which are the game ticks that occur in a fire sequence, the d-prime
for discriminability is 0.91, the accuracy in choosing among the 15 cat-
egories is 24.4%, and the average pairwise AUC is 0.787. The recon-
struction procedure selected the fire sequence from the model library
with the greatest summed log probability of the EEG signal for its game
ticks.

Part (b) of Fig. 12 illustrates the accuracy in shot placement. It plots
the time between a shot with an inferred effect on vulnerability and the
closest actual shot that had the same effect on vulnerability. Part (b) of
Fig. 12 plots the distribution of offsets for:

1. Key Classifier. We took the thrusts and fires predicted by the clas-
sifier using the posterior criterion (Part b of Table 1) and fed them
into the game engine as if they came from the subject. We used the
resulting vulnerabilities produced by the game engine.

2. Vulnerability Classifier. Game ticks assigned that vulnerability by
the classifier. As this was not run through the game engine the
sequence of vulnerabilities often was not a possible sequence.

3. Random Stitching. Feeding into the game engine fires from seg-
ments of the right length to match the critical sketch without regard
to the EEG signal of the subject.

4. Informed Stitching. Selecting the segment that produced the best
match to the EEG signal of the subject and feeding that into the game
engine.

The Key Classifier locates 3% of the fires within 0.1 s of a fire with the
same vulnerability change, Vulnerability Classifier 15% of the fires
within a 0.1 s of a fire with the same vulnerability change, Random
Stitching 32%, and Informed Stitching 43%.

While Informed Stitching, which uses both the game library and the
classifier, does best of the 4 alternatives at both at identifying ship po-
sition (Part b of Fig. 11) and vulnerability (Part b of Fig. 12), it is more
important to have a coherent segment of the right length (Random
Stitching) than it is the use the results of the stitching classifiers alone
(Position and Vulnerability Classifiers). This reflects the importance of
aligning the thrusts and fires with the identification of the critical events.
If the reconstructed deaths are aligned with the actual deaths, the ships
will be set back to the starting position at the same time. If the recon-
structed kills are aligned with the actual kills, the vulnerability buildups
will start at the same points.

3.5. Summary evaluation of reconstruction accuracy

The combination of EEG classification and the model can do well at
reconstructing the critical events (Figs. 8 and 9) and capturing where the
ship is in space (Fig. 11) and what the fortress vulnerability is (Fig. 12).
To provide a summary measure of the overall correspondence between
actual games and their reconstructions we used an equally weighted sum
of three factors:

1. The z-score of the rating of the critical events (Figs. 8 and 9). As noted
earlier, the reconstruction scores well on this measure with 818 of the
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1080 games best predicted by their reconstruction and a mean
ranking of the reconstruction is 8.4.'%

2. The z-score of the angular disparity between the position of recon-
structed ship and the actual ship averaged across the game ticks.
While much better than chance this detail is less well reconstructed,
with only 106 of the 1080 games best predicted by their recon-
struction and a mean rank of 176.2 out of 1080.

3. The z-score of the difference between the vulnerability of the recon-
structed ship and the vulnerability of the actual ship averaged across
the game ticks. 803 of the games are best matched by their recon-
struction and the mean rank is 14.2.

While we weighted these three equally in coming up with a combined
measure, they seem ordered as above in how compelling the recon-
struction is as a match to the original game. By this combined measure
846 of the games are best predicted by their reconstruction and the mean
ranking of the reconstruction is 6.1. The highest ranked seem quite
compelling as reconstructions of the original games. Only one was worse
as a reconstruction of the game than the majority of the reconstructions
of other games.

The focus in this paper has been reproduction of the details of game
play. A less detailed reproduction may be adequate for many purposes.
For instance, one might just want to assess how well the person is playing
the game. One can used these detailed reconstructions for such summary
evaluations. Fig. 13 shows the correspondence between the final scores of
reconstructed and actual games, for which the correlation is 0.848. For
comparison we investigated the correlation with the games produced
with the Random Stitching and Key Classifier (used in Figs. 11 and 12).
The correlations were 0.853 with the output of Random Stitching and
0.019 with the output of the Key Classifier. The fact that there is little
difference between informed and random stitching indicates that the
correlation in Fig. 13 really depends on getting the kills, deaths, and reset
right and not on the details of the actions in between. Given the poor
performance of the Key Classifier in playing the game, its low correlation
with participant score is not surprising. Earlier we described hypothetical
Key Classifiers that were 10 and 100 times more accurate than our
classifier. Their correlations were 0.243 and 0.687, still less that the
product of stitching a sequence of action to match the critical sketch.

4. Discussion

The success of the Sketch-and-Stitch approach depends critically on
both having the EEG signal from the subject and a good model of human
behavior. The variability in game play is enormous and no two games are
identical, eliminating any chance that a model by itself could predict
what subjects are going to do. Even though we had a library of over
35,000 games none matched a subject game nor did any two subject
games match. On the other hand, while the EEG signal allows for much
better than chance classification of the different aspects of game play,
that information by itself is also not good enough to enable successful
reconstruction.

The Sketch-and-Stitch method uses information from classification
and the model at both the Sketch and the Stitch level. The Sketch level
takes advantage of both the strong signals associated with critical events
and statistical information about the order and timing of those events
from the model. The Stitch level required the model to provide sequences
of actions of the appropriate length to stitch in and selected among these
according to their EEG signatures. Even if the procedure failed to choose
the right detail for a period between two critical events, the reconstructed
game stayed on a path that was consistent with the sketch. Thus, even
after a period of significant mismatch between reconstruction and

12 These are not exactly the same as the values reported with respect to Fig. 7
because slight differences in the timing of the deaths and occasional unintended
interactions between fire and thrust sequences in the reconstructed games.
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Fig. 13. Relationship between the score of the 1080 actual games and their
reconstructions.

subject, the two would often come back to close correspondence.

At an abstract level, the approach in this paper bears similarities to
BCI efforts for merging statistical regularities in language with EEG sig-
nals (Speier et al., 2016). These regularities can be leveraged to tailor the
presentation of letters on an external device based on their base rates and
posterior probabilities given the currently typed word. Likewise, these
regularities can be used to support inference of intended spelling using
EEG signals (Mora-Cortes et al., 2014). Our cognitive model effectively
provides a “grammar” of gameplay and action. More generally, using
such cognitive models could enable successful application of EEG
decoding to a vastly wider range of tasks.

While we have focused on reproducing the subjects’ actions because
that is where we have the ground truth of the game record, the models
also make commitments about the cognitive processes giving rise to these
actions. For instance, as described in Anderson et al. (2019) decisions
about how to pace fires is made by an evolving sense of the appropriate
pacing. One could infer the threshold a subject is currently using to time
fires by considering the threshold in the model segment that has been
stitched in. Similarly, one could infer the subject’s threshold for thrusting
from the threshold in the inferred model segment. If there were alter-
native strategies for game play, one could infer the subject’s strategy by
which strategy provided the matching segments for stitching. One could
use these inferences to provide feedback on what the subject needed to
do to improve their performance.

The Space Fortress game has provided a good testbed for judging
reconstruction from EEG. The domain is one where small differences in
the timing of events can greatly affect the course of subsequent events.
There is a strong sequential dependence where the earlier actions can
change the consequences of later ones. The approach described in this
paper handles these challenges well, and is capable of creating compel-
ling reconstructions of game play. The approach combines training of
classifiers to detect events and using a computational model to provide
the statistical information about the distribution of events and the details
about how these events where achieved. While reconstruction perfor-
mance is good, it might be improved by better approaches to classifica-
tion or tuning cognitive models to individual player’s style. However, the
current results do establish the potential of combining classification and
cognitive models to reconstruct mental activity.

The complete game record of Space Fortress provides a reliable
ground truth for training classifiers and for judging the success of re-
constructions. In other work (e.g. Anderson et al., 2016) we have had
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similar success in parsing EEG signals using the HSMM-MVPA method
without such training events. Rather, HSMM-MVPA discovered critical
events in the absence of labeled training events. However, in the earlier
work the intervals were much briefer and the EEG signal was constrained
to be a simple ERP-like bump. Although those conditions accurately
represent the majority of ERP studies with brief trials, this unsupervised
method did not scale to the current situation with much longer intervals.
Error in identifying events without supervision increases as one moves
from the beginning or end of an interval such that replicable ERP-like
bumps are no longer found. The current approach is appropriate for
longer intervals provided that one has access to ground truth from some
data to train the classifiers for other data.

CRediT authorship contribution statement

John R. Anderson: Writing - original draft, Writing - review &
editing, Formal analysis. Shawn Betts: Writing - original draft. Jon M.
Fincham: Writing - review & editing, Formal analysis. Ryan Hope:
Formal analysis. Mathew W. Walsh: Writing - review & editing, Formal
analysis.

Acknowledgements

This work was supported by the Office of Naval Research Grant
NO00014-15-1-2151. We thank Cvetomir Dimov for his comments on the
paper. The data and analyses which were used to create used to create the
figures in the paper are available at http://act-r.psy.cmu.edu/?post_type
=publications&p=31867.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2020.116999.

References

Anderson, J.R., Betts, S., Bothell, D., Hope, R., Lebiere, C., 2019. Learning Rapid and
Precise Skills. Psychological Review.

Anderson, J.R., Betts, S., Ferris, J.L., Fincham, J.M., 2010. Neural imaging to track mental
states while using an intelligent tutoring system. Proc. Natl. Acad. Sci. Unit. States
Am. 107, 7018-7023.

Anderson, J.R., Borst, J.P., Fincham, J.M., Ghuman, A.S., Tenison, C., Zhang, Q., 2018.
The common time course of memory processes revealed. Psychol. Sci. 29,
1463-1474.

Anderson, J.R., Fincham, J.M., Schneider, D.W., Yang, J., 2012. Using brain imaging to
track problem solving in a complex state space. Neuroimage 60, 633-643.

Anderson, J.R., Zhang, Q., Borst, J.P., Walsh, M.M., 2016. The discovery of processing
stages: extension of Sternberg’s method. Psychol. Rev. 123, 481.

Brouwer, A.-M., Hogervorst, M.A., Van Erp, J.B., Heffelaar, T., Zimmerman, P.H.,
Oostenveld, R., 2012. Estimating workload using EEG spectral power and ERPs in the
n-back task. J. Neural. Eng. 9, 045008.

Buckland, M., Gey, F., 1994. The relationship between recall and precision. J. Am. Soc.
Inf. Sci. 45, 12-19.

Cavanagh, J.F., Castellanos, J., 2016. Identification of canonical neural events during
continuous gameplay of an 8-bit style video game. Neuroimage 133, 1-13.

Delorme, A., Makeig, S., 2004. Eeglab: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis. J. Neurosci. Methods 134,
9-21.

Donchin, E., 1989. The learning strategies project: introductory remarks. Acta Psychol.
71, 1-15.

Frederiksen, J.R., White, B.Y., 1989. An approach to training based upon principled task
decomposition. Acta Psychol. 71, 89-146.

Gopher, D., Weil, M., Siegel, D., 1989. Practice under changing priorities: an approach to
the training of complex skills. Acta Psychol. 71, 147-177.

Kerous, B., Skola, F., Liarokapis, F., 2018. EEG-based BCI and video games: a progress
report. Virtual Real. 22, 119-135.

Kim, M.-K., Kim, M., Oh, E., Kim, S.-P., 2013. A review on the computational methods for
emotional state estimation from the human eeg. Comput. Math. Methods Med. 2013.

Krauledat, M., Dornhege, G., Blankertz, B., Losch, F., Curio, G., Muller, K.-R., 2004.
Improving speed and accuracy of brain-computer interfaces using readiness potential
features. In: The 26th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, vol. 2. IEEE, pp. 4511-4515.

Lotte, F., Bougrain, L., Cichocki, A., Clerc, M., Congedo, M., Rakotomamonjy, A., Yger, F.,
2018. A review of classification algorithms for eeg-based brain-computer interfaces:
a 10 year update. J. Neural. Eng. 15, 031005.


http://act-r.psy.cmu.edu/?post_type=publications&amp;p=31867
http://act-r.psy.cmu.edu/?post_type=publications&amp;p=31867
http://act-r.psy.cmu.edu/?post_type=publications&amp;p=31867
http://act-r.psy.cmu.edu/?post_type=publications&amp;p=31867
https://doi.org/10.1016/j.neuroimage.2020.116999
https://doi.org/10.1016/j.neuroimage.2020.116999
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref1
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref1
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref2
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref2
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref2
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref2
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref3
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref3
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref3
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref3
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref4
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref4
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref4
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref5
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref5
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref6
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref6
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref6
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref7
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref7
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref7
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref8
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref8
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref8
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref9
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref9
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref9
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref9
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref10
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref10
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref10
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref11
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref11
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref11
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref12
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref12
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref12
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref13
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref13
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref13
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref14
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref14
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref15
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref15
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref15
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref15
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref15
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref16
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref16
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref16
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref16

J.R. Anderson et al.

Maclin, E.L., Mathewson, K.E., Low, K.A., Boot, W.R., Kramer, A.F., Fabiani, M.,
Gratton, G., 2011. Learning to multitask: effects of video game practice on
electrophysiological indices of attention and resource allocation. Psychophysiology
48, 1173-1183.

Mathewson, K.E., Basak, C., Maclin, E.L., Low, K.A., Boot, W.R., Kramer, A.F., Fabiani, M.,
Gratton, G., 2012. Different slopes for different folks: alpha and delta EEG power
predict subsequent video game learning rate and improvements in cognitive control
tasks. Psychophysiology 49, 1558-1570.

Mora-Cortes, A., Manyakov, N.V., Chumerin, N., Van Hulle, M.M., 2014. Language model
applications to spelling with brain-computer interfaces. Sensors 14, 5967-5993.
Noh, E., Herzmann, G., Curran, T., de Sa, V.R., 2014. Using single-trial EEG to predict and

analyze subsequent memory. Neuroimage 84, 712-723.

16

Neurolmage 221 (2020) 116999

Polich, J., 2012. Neuropsychology of p300. In: Oxford Handbook of Event-Related
Potential Components, vol. 159, p. 88.

Rabiner, L.R., 1989. A tutorial on hidden Markov models and selected applications in
speech recognition. Proc. IEEE 77, 257-286.

Smulders, F.T., Miller, J.O., Luck, S., et al., 2012. The lateralized readiness potential. In:
The Oxford Handbook of Event-Related Potential Components, pp. 209-229.

Speier, W., Arnold, C., Pouratian, N., 2016. Integrating language models into classifiers
for bei communication: a review. J. Neural. Eng. 13, 031002.

Su, K.-m., Hairston, W.D., Robbins, K., 2018. EEG-Annotate: automated identification and
labeling of events in continuous signals with applications to EEG. J. Neurosci.
Methods 293, 359-374.

Wickens, T.D., 2002. Elementary Signal Detection Theory. Oxford University Press, USA.


http://refhub.elsevier.com/S1053-8119(20)30485-7/sref17
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref17
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref17
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref17
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref17
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref18
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref18
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref18
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref18
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref18
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref19
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref19
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref19
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref20
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref20
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref20
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref21
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref21
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref22
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref22
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref22
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref23
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref23
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref23
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref24
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref24
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref25
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref25
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref25
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref25
http://refhub.elsevier.com/S1053-8119(20)30485-7/sref26

	Reconstructing fine-grained cognition from brain activity
	1. Introduction
	1.1. Space Fortress game
	1.2. Overview of Sketch-and-Stitch reconstruction

	2. Methods
	2.1. Subjects
	2.2. Game play
	2.3. EEG analysis
	2.4. Classification
	2.5. Model

	3. Results
	3.1. Behavioral results: subjects and models
	3.2. Response-based classification
	3.3. Creating the critical sketch
	3.4. Stitching in detailed game play
	3.5. Summary evaluation of reconstruction accuracy

	4. Discussion
	CRediT authorship contribution statement
	Acknowledgements
	Appendix A. Supplementary data
	References


