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How do people select among different strategies to accomplish a given task? Across disciplines, the
strategy selection problem represents a major challenge. We propose a quantitative model that predicts
how selection emerges through the interplay among strategies, cognitive capacities, and the environment.
This interplay carves out for each strategy a cognitive niche, that is, a limited number of situations in
which the strategy can be applied, simplifying strategy selection. To illustrate our proposal, we consider
selection in the context of 2 theories: the simple heuristics framework and the ACT–R (adaptive control
of thought—rational) architecture of cognition. From the heuristics framework, we adopt the thesis that
people make decisions by selecting from a repertoire of simple decision strategies that exploit regularities
in the environment and draw on cognitive capacities, such as memory and time perception. ACT–R
provides a quantitative theory of how these capacities adapt to the environment. In 14 simulations and
10 experiments, we consider the choice between strategies that operate on the accessibility of memories
and those that depend on elaborate knowledge about the world. Based on Internet statistics, our model
quantitatively predicts people’s familiarity with and knowledge of real-world objects, the distributional
characteristics of the associated speed of memory retrieval, and the cognitive niches of classic decision
strategies, including those of the fluency, recognition, integration, lexicographic, and sequential-sampling
heuristics. In doing so, the model specifies when people will be able to apply different strategies and how
accurate, fast, and effortless people’s decisions will be.
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When you move to a new country you realize how important a
sense of recognition is in making everyday decisions, such as what
TV, yogurt, or car to buy. This is especially true when you are
unable to read labels or talk with sales staff. Which car is likely to
be of better quality, a Daewoo or a Volkswagen? Now, most
Americans would opt for the Volkswagen, largely because it feels
more familiar, and many of us follow the heuristic, or simple

decision strategy, that highly recognizable, familiar brands are
likely to be quality brands. Corporations spend billions of adver-
tising dollars each year to exploit this tendency. Yet advertising
influences not only a sense of recognition but also knowledge
about products. For example, the classic Volkswagen ad featuring
the German word Fahrvergnügen (joy of driving) reminded people
that Volkswagens are German engineered. People often use a
product’s country of origin as an indication of quality, and, in fact,
many of the other heuristics people use operate in this way; that is,
they rely on knowledge rather than on recognition.

How and when people use different heuristics is a key question
in the simple heuristics research program (Gigerenzer, Todd, &
the ABC Research Group, 1999; Todd & Gigerenzer, 2000; see
Marewski, Gaissmaier, & Gigerenzer, 2010a, 2010b, for a recent
overview). This framework for studying decision making assumes
that the mind is equipped with an “adaptive toolbox” consisting of
a collection of heuristics. The thesis that people possess a reper-
toire of strategies to choose from has been similarly formulated in
many areas of study, including choice (Einhorn, 1970; Fishburn,
1980; J. W. Payne, 1976; J. W. Payne, Bettman, & Johnson, 1988,
1993; Rapoport & Wallsten, 1972), social interactions (Erev &
Roth, 2001; Stahl, 1999), mathematical skill (Siegler, 1988), prob-
ability judgments (Ginossar & Trope, 1987), categorization
(Smith, Patalano, & Jonides, 1998), memory (Coyle, Read, Gault-
ney, & Bjorklund, 1998), word recognition (Eisenberg & Becker,
1982), and question answering (Reder, 1987). If one adopts this
view, a major problem is then to determine how people select from
these strategies to solve given tasks—the strategy selection prob-
lem.
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The strategy selection problem represents a major theoretical
challenge in the cognitive and decision sciences, but it is also a
stumbling block for theories in other disciplines, including, for
instance, economics and machine learning, where the problem
presents itself in terms of the selection of actions, algorithms,
operators, routines, or production rules (e.g., for the cognitive and
decision sciences, Anderson & Betz, 2001; Beach & Mitchell,
1978; Bröder & Newell, 2008; Bröder & Schiffer, 2003, 2006;
Busemeyer & Myung, 1992; Christensen-Szalanski, 1978; Cisek,
2007; Cokely, Kelley, & Gilchrist, 2006; Dror, Busemeyer, &
Basola, 1999; Einhorn & Hogarth, 1981; Fu & Anderson, 2006;
Gaissmaier, Schooler, & Rieskamp, 2006; Gigerenzer, Hoffrage,
& Goldstein, 2008; Glöckner & Betsch, 2008; Gray, Sims, Fu, &
Schoelles, 2006; Lovett & Anderson, 1996; Marewski, 2010;
Marewski, Schooler, & Gigerenzer, 2010; McAllister, Mitchell, &
Beach, 1979; Newell & Shanks, 2003; J. W. Payne et al., 1988;
Rieskamp & Otto, 2006; Taatgen & Wallach, 2002; for economics,
Haruvy & Stahl, 2007; Haruvy, Stahl, & Wilson, 2001; Stahl,
2000; Stahl & Wilson, 1994; for machine learning, Provost &
Buchanan, 1995; Vilalta & Drissi, 2002; Walker, 2000).

In this article, we contribute to solving the strategy selection
puzzle by proposing a quantitative model that predicts how selec-
tion emerges through the interplay among the strategies, the work-
ings of basic cognitive capacities, such as memory, and the struc-
ture of the environment in which we humans live. To illustrate our
proposal, we consider strategy selection in the context of two
ecological theories, the aforementioned simple heuristics frame-
work and the adaptive control of thought—rational theory of
cognition (ACT–R; Anderson et al., 2004; Anderson & Lebiere,
1998). From the heuristics framework we adopt the notion of an
adaptive toolbox of simple decision strategies. ACT–R provides a
quantitative theory of the workings of memory, time perception,
and other cognitive capacities essential to the strategies. By show-
ing how the strategies and the capacities interact with the envi-
ronment, we demonstrate how each strategy can be applied to a
limited number of situations, simplifying strategy selection.

Approaches to Strategy Selection

In the cognitive and decision sciences, cost–benefit approaches
have been used to explain how people select from a repertoire of
strategies (Beach & Mitchell, 1978; Christensen-Szalanski, 1978;
J. W. Payne et al., 1988, 1993). People trade a strategy’s costs
(e.g., the cognitive effort and time involved in adopting a strategy)
against its benefits (e.g., its accuracy in making decisions) by, for
instance, applying a metastrategy to master trade-offs between
making accurate and effortless decisions. However, as has been
argued by Rieskamp and Otto (2006; see also J. W. Payne et al.,
1993), assuming a metastrategy can result in the recursive homun-
culus problem of deciding how to decide.

Most more recent approaches have abandoned the assumption of
a metastrategy while still focusing on accuracy, cognitive capacity,
or time and effort as determinants of strategy selection (e.g.,
Bröder, 2003; Bröder & Schiffer, 2006; Newell & Shanks, 2003;
Pachur & Hertwig, 2006; Volz et al., 2006). For example,
Rieskamp and Hoffrage (1999, 2008) showed that people use
particularly fast and simple heuristics under time pressure (see also
J. W. Payne et al., 1988). Understanding such determinants of
strategy selection has proved useful; yet, at the same time, these

approaches have also been criticized for being vague (e.g., Glöck-
ner, Betsch, & Schindler, 2010), and in fact, most of them are not
realized as quantitative models (see the various proposals for
strategy selection in the simple heuristics framework; e.g., Mata,
Schooler, & Rieskamp, 2007).

Many quantitative theories of strategy selection stress the role of
learning (Busemeyer & Myung, 1992; Erev & Roth, 2001;
Rieskamp, 2006). To illustrate this, according to Rieskamp and
Otto’s (2006) model, people choose among different strategies as
a function of learning how accurate the strategies are. In ACT–R,
similar reinforcement mechanisms favor the selection of cognitive
processes (i.e., production rules) that implement successful strat-
egies (Fu & Anderson, 2006; Lovett & Anderson, 1996). Although
these models help us understand strategy choice in learning con-
texts, they do not explain how an adaptive, systematic selection of
strategies emerges in the absence of feedback.

A Complementary Approach to Strategy Selection:
The Cognitive Niche Framework

Explicitly or implicitly, most strategy selection theories assume
that the strategies’ accuracy or the time and effort involved in
using them shape the selection. Yet there may be another way to
select strategies—a complement to these theories—that follows
the lead of Gibson’s (1979) ecological approach to visual percep-
tion. Gibson hypothesized that, at every moment in time, an
organism’s environment poses opportunities and demands for dif-
ferent courses of action—food affords eating, predators require
evasion, and caves offer protection. According to Gibson, the
visual system allows organisms to perceive these functional mean-
ings of the environment. He called them affordances. Gibson never
developed his ideas into a computational model, and he might not
have envisioned them applying beyond visual perception. The
model we introduce below does this. It asks how cognitive capac-
ities such as memory shape opportunities for applying different
strategies—for instance, for inferring the quality of cars. Accord-
ing to our proposal, strategy selection emerges in two ways.

First, when faced with a decision task, people will not actually
choose among all the strategies in their repertoire. Rather, the
workings of the cognitive system will limit the number of strate-
gies that can be executed, simplifying strategy selection by reduc-
ing the consideration set of applicable strategies. This limitation
arises from how the strategies and cognitive capacities, such as
memory or time perception, interact and represent regularities in
the environment. Following Gibson (1979), who conceptualized an
animal’s environmental niche as a set of affordances, we use the
term cognitive niche to refer to the situations in which a strategy is
applicable, or afforded. Below, we model these niches in terms of
landscapes that quantify the probability of an individual being able
to apply a strategy as a function of the interplay between the
cognitive system and the environment. We show that this interplay
results in partially disjunctive probability landscapes for different
strategies, that is, in nonoverlapping niches, which limits strategy
selection to situations where the niches of two or more strategies
overlap. As we demonstrate, this aspect of the selection process
does not require the assumption of cost–benefit calculations,
learning, or any of the other mechanisms of strategy choice that
have populated the literature over the past decades.
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Second, where different strategies’ niches overlap, strategy se-
lection depends on the cost–benefit, learning, and other selection
mechanisms that assume accuracy, effort, and time as currencies of
strategy choice. Our model maps out how these currencies are
shaped by the interplay between the cognitive system and the
environment. In doing so, the model refines an assumption made
most notably by the cost–benefit approaches, namely, that peo-
ple typically face trade-offs between making accurate, effortless,
and quick decisions (but see Busemeyer, 1993; Gigerenzer &
Goldstein, 1996). Although our model allows for such trade-offs,
it also specifies the regions within a strategy’s niche where they
need not occur.

To illustrate our cognitive niche framework, we consider how
people choose among classic strategies that can be used, for
example, to infer which of two cars is likely to be of better quality.
These strategies can be roughly divided into two types. The first
leads to decisions based on knowledge about the world, say, about
a manufacturer’s country of origin. These decisions depend on the
content of what is retrieved from memory. The second type de-
pends on the characteristics of the retrieval. Such strategies are
guided by the accessibility (e.g., Bruner, 1957; Higgins, 1996;
Kahneman, 2003; Koriat, 1993; Tulving & Pearlstone, 1966) of
memories, that is, the ease with which mental content comes to
mind. This can take the form, for instance, of a sense of recogni-
tion of brand names.

Decisions From the Accessibility of Memories

Decades of research in decision making, social psychology, and
memory have shown that the accessibility of memories guides
judgment (e.g., Hertwig, Pachur, & Kurzenhäuser, 2005; Jacoby &
Dallas, 1981; S. J. Payne, Richardson, & Howes, 2000; Reber,
Schwarz, & Winkielman, 2004; Tversky & Kahneman, 1973;
Whittlesea, 1993; Winkielman, Schwarz, & Belli, 1998). Across
disciplines, several related concepts have been investigated: rec-
ognition (e.g., Goldstein & Gigerenzer, 2002; Pleskac, 2007),
which we use here to distinguish between objects, such as brands
people believe they have heard of before and those they have not;
familiarity (e.g., Dougherty, Franco-Watkins, & Thomas, 2008;
Mandler, 1980), which is frequently used to denote degrees of
recognition; and a sense of fluency (e.g., Jacoby & Dallas, 1981;
Oppenheimer, 2008) or availability (Tversky & Kahneman, 1973),
which often refers to the ease or speed with which memories are
retrieved.1 To give a few examples, recognition and familiarity can
influence consumer choice (Coates, Butler, & Berry, 2004, 2006).
Fluent processing stemming from previous exposure can increase
the perceived truth of repeated assertions (Begg, Anas, & Fari-
nacci, 1992; Hertwig, Gigerenzer, & Hoffrage, 1997) and the
perceived fame of names (Jacoby et al., 1989), and assessments of
memories themselves can partly be based on a sense of fluency
(Jacoby & Dallas, 1981).

Moreover, relying on the accessibility of memories can often
lead us to make accurate inferences about the world, such as about
uncertain future events or unknown quantities. For instance, our
recognition of soccer teams and politicians can be used to forecast
their future success in competitions and political elections, respec-
tively (Gaissmaier & Marewski, 2011; Herzog & Hertwig, 2011;
Pachur & Biele, 2007). Our recognition of universities and cities
allows us to predict their quality and size, respectively (Hertwig &

Todd, 2003; Reimer & Katsikopoulos, 2004), and the ease with
which we retrieve the names of billionaires reflects their fortunes
(Hertwig, Herzog, Schooler, & Reimer, 2008).

The Adaptive Toolbox: A Repertoire of Decision
Strategies

There are ecological reasons for why the accessibility of mem-
ories can be so informative in inference: The press, the Internet,
and other environmental mediators (Goldstein & Gigerenzer,
2002) make it likely that we will encounter objects (e.g., brands)
that score high on a criterion of interest (e.g., quality) more
frequently in our environment than those that score low. As a
result, objects with high criterion values (e.g., high-quality brands)
tend to be more accessible in memory. Thus, we can rely on a
sense of accessibility to accurately infer which objects are likely to
score higher on the criterion (see Figure 1).

A key tenet of the simple heuristics framework is that the people
choose from heuristics that exploit how memory and other cogni-
tive capacities reflect such environmental regularities. Many of
these heuristics can be categorized according to whether they
operate on knowledge and/or on the accessibility of memories.
Table 1 provides an overview of the various heuristics considered
in this article.

Knowledge-based heuristics use features of objects as cues to
make inferences about the objects. For instance, to infer which of
two cars is of better quality, a person could rely on one of the
classic integration strategies (e.g., Dawes, 1979; Dawes & Corri-
gan, 1974). Here, we refer to two of them as tally1 and tally2.
Following tally1, a person would consider one or more cues, such
as where the cars are produced, their reliability, or their price. An
object’s value on a cue is coded as positive (e.g., high price, high
reliability), as negative (e.g., low price, poor reliability), or as
unknown (e.g., unknown price, unknown reliability). For each
car, the person adds up the number of positive cue values and
subtracts the number of negative cue values and then infers that the
car with the higher sum is better. Tally1 is akin to Gigerenzer and
Goldstein’s (1996) unit-weight linear model, which is a special
case of the equal-weight linear model (Huber, 1989) and Einhorn
and Hogarth’s (1975) Model 2. Tally2, resembling the tallying
model (Gigerenzer & Goldstein, 1996), sums only positive cue
values, ignoring negative ones (see Alba & Marmorstein, 1987,
and J. W. Payne et al., 1993).

1 The term recognition is often used to refer to a person’s ability to
distinguish between stimuli that have been presented in an experiment
(e.g., in a study list) and those that have not. Usually, a person is familiar
with the stimuli before participating in the experiment (e.g., stimuli could
be the names CARTER and BUSH). Here, we adopt Goldstein and Gig-
erenzer’s (2002; see also Pleskac, 2007; Schooler & Hertwig, 2005) usage
of the term to refer to a person’s ability to discriminate between novel
stimuli that have not been heard of before (e.g., the name SCHILKE) and
those that have (e.g., CLINTON). For a discussion of the similarities
between this notion of recognition and the notions of availability/fluency,
see Schooler and Hertwig (2005) and Hertwig et al. (2008). See also
Jacoby and Dallas (1981, p. 333) and Jacoby, Kelley, Brown, and Jasechko
(1989, p. 328) for similarities between their fluency/familiarity concept and
availability, and Hertwig et al. (2005), Schooler and Hertwig, and
Sedlmeier, Hertwig, and Gigerenzer (1998) for differences in notions of
availability.
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Lexicographic strategies (e.g., Tversky, 1969) search through cues
sequentially, basing a decision, for instance on the first cue on which
the two objects differ (e.g., where one car has a negative value and the
other a positive). To illustrate this, take-the-best (Gigerenzer & Gold-
stein, 1996), which resembles Tversky’s (1972) classic elimination-
by-aspects heuristic, considers cues in the order of how likely they are
to help a person make accurate inferences.

The sequential-sampling strategies take-the-first-cue, take-the-
first-value1, and take-the-first-value2, in turn, exploit the order in
which cue values come to mind, independent of the cues’ accu-
racy. These three knowledge-based strategies thus take the acces-
sibility of the knowledge into account. They are inspired by classic
sequential-sampling models (Busemeyer & Townsend, 1993; Rat-
cliff & Smith, 2004), but the sampling of knowledge is based on
the speed of memory retrieval rather than on random walks or
other sampling procedures. Related models have been discussed by
Bröder and Gaissmaier (2007), Dougherty et al. (2008),
Gaissmaier (2007), Johnson and Raab (2003), Lee and Cummins
(2004), and others.

An example of a purely accessibility-based strategy is the flu-
ency heuristic, which has been defined in various ways (e.g.,
Jacoby & Brooks, 1984; Whittlesea, 1993). Here, we use Schooler
and Hertwig’s (2005) model. Building on these earlier definitions,
their version of the fluency heuristic can be seen as a computa-
tional instantiation of Tversky and Kahneman’s (1973) classic
notion of availability. When inferring the quality of cars, for
instance, the heuristic opts for the brand whose name is perceived
as having been more quickly retrieved. This sense of retrieval
fluency for brand names, such as Daewoo or Volkswagen, is
modeled in terms of the time it takes to recognize the brand names,

that is, in terms of a graded sense of recognition. Another
accessibility-based strategy is Goldstein and Gigerenzer’s (2002;
see also Gigerenzer & Goldstein, 2011) recognition heuristic,
which derives inferences from a binary, rather than a graded, sense
of recognition, choosing recognized brands over those that have
never been heard of before.

Structure of This Article

By modeling heuristics in accord with the ACT–R cognitive
architecture, quantitative precision can be lent to memory and
other capacities the heuristics exploit. At the same time, ACT–R
provides a theory of how these capacities interact with the envi-
ronment. Such an integrative theoretical framework is essential to
modeling how a strategy’s niche emerges.

Specifically, in what follows, we describe an ACT–R model of
how the environment shapes memory. As the perception of the
timing of memory retrieval is critical to the accessibility-based
strategies, we also model time perception. Using environmental
data, such as how often an object (e.g., Volkswagen) is mentioned
in the media, the resulting integrated model of memory and time
perception predicts different types of behavioral data. These data
include (a) whether people recognize an object and (b) whether
they additionally know something about it (e.g., that Volkswagen
is a German company). These behavioral data also include (c) the
speed of memory retrieval (e.g., recognition time of Volkswagen)
as well as (d) people’s perception thereof. The models’ predictions
about memory retrieval and time perception, in turn, enable de-
tailed quantitative predictions (e) about the niches where different
strategies are applicable and (f) in what regions of their niches the
strategies help a person make accurate inferences, as well as (g) in
what regions using the strategies requires little effort and time.

Owing to the complexity of these modeling efforts, we provide a
roadmap in Figure 2. As is illustrated in the figure’s Panels A and B,
first we describe how we calibrate and test our ACT–R memory
model, predicting memory retrieval from the environment. Second,
we explain how we integrate our memory model with Taatgen, Van
Rijn, and Anderson’s (2007) ACT–R model of time perception (Panel
C) and how we let the resulting integrated model orchestrate the
various knowledge- and accessibility-based decision strategies from
the adaptive toolbox (Panel D). As we show, this allows us to predict
where the different strategies’ niches overlap and where they do not,
simplifying strategy selection (Panel E).

In the remainder of the article, we then use the integrated model
to reveal how the mechanisms of strategy selection that have been
discussed in the literature come into play, zooming in on situations
where the niches of different strategies overlap (Panels F–I). In
doing so, we turn to (a) accuracy, effort, and time as determinants
of strategy choice and (b) those regions in the strategies’ niches in
which people can avoid the effort–accuracy trade-offs that have
been so often assumed in the literature. Specifically, we describe
how we use the integrated model to predict in which regions the
fluency heuristic would help a person make accurate, effortless,
and fast inferences (Panel F). Furthermore, we examine how such
predictions about accuracy, effort, and time provide insight into
the selection of the fluency heuristic where this heuristic’s niche
overlaps with those of knowledge-based strategies (Panel G). The
article also turns to the niches of the recognition heuristic and the
knowledge-based strategies, respectively, exploring the regions in

Figure 1. An unknown criterion (e.g., car quality) is reflected by a
mediator (e.g., the press). The mediator makes it more likely that a person
will encounter objects with larger criterion values than those with smaller
ones (e.g., high-quality cars are mentioned in the news more often than
low-quality cars). As a result, objects with larger criterion values are more
accessible in memory (e.g., more easily recognized), and ultimately, ob-
jects’ accessibility in memory can be relied upon to infer the criterion (e.g.,
recognition can be used to infer quality). These connections can be thought
of in terms of three correlations: between the criterion and the mediator,
between the mediator and a person’s access to memories, and between the
accessibility of memories and the criterion.
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which less effort and time are associated with greater accuracy
(Panels H, I). We start by explaining how decision strategies can
be modeled in accord with ACT–R.

ACT–R: An Integrative Framework

ACT–R is a unified, quantitative theory of cognition that
accounts for many phenomena, ranging from memory perfor-
mance (e.g., Anderson, Bothell, Lebiere, & Matessa, 1998) to
time perception (Taatgen et al., 2007), driving (Salvucci, 2006),
flying (Gluck, Ball, & Krusmark, 2007), and the learning of
mathematics (Ritter, Anderson, Koedinger, & Corbett, 2007). It
distinguishes between declarative memory (knowing that) and
procedural memory (knowing how). The basic declarative rep-
resentation is the chunk, which can simply be memories of
objects’ names, such as car brands, or elaborate knowledge, say,
about attributes of a car. Procedural knowledge, in turn, is
modeled with sets of production rules (i.e., if–then rules) whose
conditions (i.e., the “if” parts of the rules) are matched against,
for example, the contents of declarative memory. If the condi-
tions of a production rule are met, then the rule is eligible to be
selected. If selected, the actions specified in the “then” part of
the rule are carried out.

Using ACT–R to Model Decision Strategies

We think of strategies such as tally1 or the fluency and recog-
nition heuristics in terms of production rules. In doing so, we
specify what it means for a strategy to be applicable, or afforded:
A strategy is applicable if all the production rules implementing it
have the potential to be selected.2 The subsequent descriptions of
the strategies can best be thought of as stylized, simpler versions
of the production rules that are required to implement the strategies
in ACT–R.

In modeling the fluency and recognition heuristics, we follow
Anderson et al. (1998) and Schooler and Hertwig (2005) in as-
suming that (a) a chunk’s retrieval implies recognizing the asso-

2 Some strategies were originally defined as including guessing rules
that fire when the strategy cannot be applied. For instance, following
Gigerenzer and Goldstein’s (1996) formulation of take-the-best, a person
choosing between two objects would randomly guess if unable to retrieve
knowledge about them. Likewise, according to Schooler and Hertwig’s
(2005) fluency heuristic, a person would randomly guess if unable to detect
a difference in recognition times between two objects. Here, we concep-
tualize guessing as a separate decision strategy. That is, none of the
strategies listed in Table 1 include guessing rules.

Table 1
Strategies Considered

Strategy Description

Accessibility-based
Recognition heuristic Infers recognized objects to be larger than unrecognized ones; compares objects on a binary sense of

recognition
Fluency heuristic Infers objects that are perceived as more quickly recognized to be larger than those that are

perceived as more slowly recognized; compares objects on a graded sense of recognition
Knowledge-based

Tally1 Unit-weight linear integration strategy; adds up the number of positive cue values and subtracts the
number of negative cue values for A and B,a inferring the object with the higher sum to be larger

Tally2 Unit-weight linear integration strategy; adds up the number of positive cue values for A and B,
inferring the object with the higher sum to be larger

Take-the-best Lexicographic strategy; considers cues in the order of their validities,b basing an inference on the
first cue on which A has a positive and B a negative or unknown value, and inferring A to be
larger than B

Knowledge-based, but sequentially samples
knowledge as a function of its
accessibility

Take-the-first-cue Sequential sampling strategy; first samples cues according to the speed with which positive cue
values are retrieved, basing an inference on the first cue on which A has a positive value and B a
negative or an unknown one, and inferring A to be larger than B; if this does not lead to an
inference then cues are searched according to the speed with which negative cue values are
retrieved, basing an inference on the first cue on which A has a negative value and B an unknown
one, and inferring B to be larger than A

Take-the-first-value1 Sequential sampling strategy; relies on comparisons of objects by sampling cue values independently
for each object according to the speed with which cue values are retrieved, basing an inference on
the first comparison of objects in which A has a positive value on one cue and B a negative or an
unknown one on the same or another cue, and inferring A to be larger than B

Take-the-first-value2 Sequential sampling strategy; relies on comparisons of objects by sampling cue values independently
for each object according to the speed with which cue values are retrieved, basing inferences
either on the first comparison of objects in which A has a positive value on one cue and B a
negative or an unknown value on the same or another cue, or on the first comparison in which A
has an unknown value and B a negative one, inferring A to be larger than B

a A and B are two objects. A and B’s values on cues are coded as 1 (positive cue value), �1 (negative), or 0 (unknown). For example, when inferring the
quality of cars, high price would be a positive cue value, poor price a negative cue value, and having no information about a car’s price an unknown cue
value. b The validity of a cue is the probability that A has a higher value on the criterion (e.g., car quality) to be inferred than B, given that A has a positive
value on that cue and B a negative or unknown one.
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ciated object and (b) the more quickly the chunk is retrieved, the
greater the sense of recognition and ease of retrieval. If a person’s
goal is to infer which of two objects, A or B, has a larger value on
a given criterion, then the production rules that implement the
recognition heuristic can be summarized as follows:

If a chunk with the name A is retrieved and A is recognized,
and a chunk with the name B cannot be retrieved,

Then set the goal to respond that A has the larger value on the
criterion.

For instance, when inferring which of two car brands, Volkswagen
or Daewoo, is of higher quality, a person may recognize the name
Volkswagen but not the name Daewoo. Following the recognition
heuristic, the person would infer that the Volkswagen is of higher
quality.

When both car brands are recognized, a person can use the
fluency heuristic. This heuristic consists of production rules that
fire when the memories of two objects are both available but are
perceived to have been recalled with different speeds. A person
using this heuristic would infer car brands that are more quickly
recognized to be of higher quality:

If two chunks with the names A and B are retrieved and
recognized, and A is perceived to have been recognized faster
than B,

Then set the goal to respond that A has the larger value on the
criterion.

Finally, the production rules implementing knowledge-based strat-
egies can fire when a person remembers attributes of objects

Figure 2. Roadmap of the modeling carried out. The environment shapes the contents of memory; memory, in
turn, interacts with other cognitive capacities such as time perception and people’s repertoire of decision
strategies. This interplay carves out a cognitive niche for each strategy where it can be applied. The strategies’
niches do not overlap completely, simplifying strategy selection. Where the niches overlap, the selection among
such simultaneously applicable strategies depends on the cost–benefit, learning, and other selection mechanisms
that assume accuracy, effort, and time as currencies of strategy choice. These currencies, too, depend on the
interplay between the cognitive system and the environment. In the figure, the repertoire of strategies is
symbolized by an adaptive toolbox, which contains different measurement tools, such as a ruler or a compass.
Each tool pertains to a cognitive niche; niches partially overlap. The strategies’ niches and their overlap are
symbolized by Venn diagrams.
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beyond just recognizing their names. For instance, tally2’s pro-
duction rules can be summarized as follows:

If two chunks with the names A and B are retrieved and
recognized, and chunks with knowledge representing more
positive cue values for A can be retrieved than can be re-
trieved for B,

Then set the goal to respond that A has the larger value on the
criterion.

The sense of recognition, ease of retrieval, and knowledge on
which the recognition, fluency, tally2, and other heuristics depend
can be modeled with ACT–R’s declarative memory.

Using ACT–R to Model Declarative Memory

In modeling declarative memory, ACT–R maps the frequency
and temporal spacing of encounters with objects onto a mental
currency called activation. Roughly speaking, the more often an
object and/or information about it is encountered, the more
strongly the corresponding chunks are activated. The more
strongly a chunk is activated, (a) the more likely it is that it will
be retrieved and (b) the less time it will take to retrieve it. The
activation, Ai, of a chunk i is determined by a combination of the
base-level activation of the chunk, Bi, and the Sji units of activation
the chunk receives from each of the j elements of the current
context:

Ai � Bi � �
j

Sji. (1)

The base-level activation Bi of a chunk i depends on the environ-
mental pattern with which the corresponding object occurs, and the
Sji units of activation depend on the co-occurrence of the ith and jth
element of the context. Where the object has been encountered n
times in the past, with the kth encounter having occurred tk time
units in the past, and with the decay parameter, d, capturing the
degree of forgetting in declarative memory,

B � ln� �
k�1

n

tk
�d� . (2)

ACT–R assumes that there is stochastic variability in the activation
level of a chunk. This variability is modeled as a logistic distri-
bution, which adds noise to the retrieval process. With s repre-
senting noise in the retrieval process, the probability P that a chunk
will be retrieved—that is, that its activation exceeds the retrieval
criterion, �—is modeled with a logistic function:

P �
1

1 � e��A���/s. (3)

The retrieval time, Tretrieval, of a chunk with activation A is

Tretrieval � F e�A, (4)

where F is a scaling parameter and A � �. In what follows, we
explain which behavioral data we modeled using these and other
components of ACT–R.

Overview of the Behavioral Data to Be Modeled With
ACT–R

In the simple heuristics and related frameworks, a classic par-
adigm for studying people’s repertoire of decision strategies is
two-alternative choice. For instance, in the cities problem, the goal
is to judge which of two cities is likely to have more inhabitants
(e.g., Dougherty et al., 2008; Gigerenzer & Goldstein, 1996;
Hogarth & Karelaia, 2006). In 10 experiments, we modeled strat-
egy selection for this and related problems, examining what strat-
egies people are able to apply to make inferences about cities’
population and fame, countries’ gross domestic product, compa-
nies’ market capitalization, diseases’ fame (i.e., notoriety), and
politicians’ fame. All experiments are described in detail in Ap-
pendix A. Descriptive statistics and a list of all stimulus materials
are provided in the supplemental Online Materials A and B,
respectively.

As summarized in Table 2, our experiments consisted of four
modular tasks. First, in inference tasks we asked people to make
inferences about objects, for example, which of two cities has
more inhabitants. These tasks allowed us to examine when people
rely on different strategies, for instance, when they use the fluency
heuristic as opposed to knowledge-based strategies. Because we
did not provide information about the objects, people had to make
inferences by relying on their memory contents as they had been
shaped by the environment outside of the laboratory, prior to
participating in our study. Three additional tasks allowed us to
examine these naturally acquired memory contents, offering a
snapshot of people’s declarative memories. Specifically, we used
recognition tasks to assess people’s recognition and recognition
times of the objects. For example, we asked people whether they
had heard of a city name prior to participating in our studies,
measuring the time it took them to make this recognition judgment.
Whether an object is recognized or not and how fast it is recog-
nized is critical input to decision strategies such as the recognition
and fluency heuristics, and as such is essential to modeling these
strategies’ niches. General knowledge tasks enabled us to separate
out objects people knew something about from those they had
merely heard of, recognizing the name but not knowing anything
else about them. As we show below, this is a critical distinction for
modeling the overlap between the niches of the fluency heuristic
and knowledge-based strategies. Cue-knowledge tasks allowed us
to further specify the knowledge people have about the objects, for
instance, whether people know if cities such as Venice and Milan
have international airports. Because strategies such as tally1 and
take-the-best operate on such knowledge, assessing this informa-
tion is essential for modeling them.

To provide an integrated picture of a person’s declarative mem-
ory, all objects assessed in one task of an experiment were also
assessed in all other tasks used in that experiment. As Table 3
shows, most experiments included recognition and general knowl-
edge tasks, and a few of them additionally included inference and
cue-knowledge tasks. As Table 3 also shows, our experiments
differed in terms of the objects used as stimulus materials. Exper-
iments 1–3 and 10 made use of cities as stimuli, and Experiments
4–9 used countries, companies, diseases, and politicians, enabling
us to assess our model’s ability to predict memory retrieval and the
strategies’ niches for different kinds of objects.
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How the Environment Shapes Memory: An Ecological
ACT–R Memory Model

We built an ecological ACT–R memory model (throughout
referred to as the memory model) that uses environmental data to
predict what information is likely to have been stored in people’s
memories prior to their participation in a laboratory experiment
(see also Schooler & Anderson, 1997). Specifically, we calculated
activations of the chunks stored in participants’ memories by
estimating how often the participants would have encountered the
associated objects’ names in the environment outside the labora-
tory. To estimate the number of encounters, we obtained from the
Yahoo search engine the objects’ web frequencies, N, that is, the
number of websites in which each object’s name occurred. Ap-
pendix B explains how we derived the equations to calculate a
chunk’s activation from web frequencies. We used these activa-
tions to predict our participants’ recognition and knowledge of
objects as well as the associated recognition times in our experi-
ments. In the recognition tasks, the predicted recognition proba-
bility, PR, that an object will be recognized is

PR �
1

1 � e���cR�bR ln N���	/s, (5)

where cR is a constant and bR a scaling parameter that together
figure into an estimation of the unknown relation between how
often we encounter an object in our environment and the object’s
web frequency, N. Similarly, in the general knowledge tasks, the
predicted knowledge probability, PK, of retrieving knowledge
about an object is

PK �
1

1 � e���cK�bK ln N���	/s, (6)

where cK is a constant and bK a scaling parameter that together
relate an object’s web frequency, N, to the activation of a person’s
knowledge about that object.

In the recognition tasks, the predicted recognition time,
Trecognition, of an object is how long it takes to judge the object as
recognized, measured from the object’s presentation until a rec-
ognition response is made by pressing a key. We assume that an
object’s recognition time equals its retrieval time, Tretrieval, plus the
time it takes to execute additional processes, Tperceptual-motor, such
as encoding the object’s name and pressing a key:

Tretrieval � Trecognition � Tperceptual�motor � Fe��cR�bR ln N�. (7)

Table 2
Overview of the Main Experimental Tasks

Task Schematic description of task

Inference The names of two objects (e.g., cities) appear on the computer screen, one on the
left side and one on the right. Participants judge which of the two objects has a
larger value on a given criterion (e.g., city size). Participants respond by
pressing a key corresponding to either (a) the object on the left or (b) the
object on the right.

Recognition The name of one object appears on the computer screen. Participants judge if they
have heard or seen the object’s name prior to participating in the study, that is,
if they recognize the name. Participants respond with (a) “yes” or (b) “no” by
pressing corresponding keys.

General knowledge The name of one object appears on the computer screen. Participants indicate how
much they know about each object. Participants respond for each object if they
have (a) “never heard of it and never seen it before participating in the study”;
(b) “heard of it or seen it before participating in the study but don’t know
anything else about it beyond recognizing its name”; or (c) “heard of it or seen
it before participating in the study and know something about the city beyond
simply recognizing it.” Responses are made by pressing corresponding keys.

Cue-knowledge The name of one city appears on the computer screen. The city name is combined
with one of four cues,a namely, whether the city has an international airport
(airport cue), has a university (university cue), is a significant industry site
(industry cue), and is a world-famous tourist site (tourism cue). Participants
respond to all combinations of cities and cues. Response options are (a) “yes”
(e.g., the city does have an airport), (b) “no” (e.g., the city does not have an
airport), or (c) “don’t know” (e.g., do not know whether the city does have an
airport or not). Responses are made by pressing corresponding keys.

Note. All trials were preceded by a small fixation cross for 1,000 msec. We instructed participants to always fixate on this cross until it disappeared and
to respond as quickly and accurately as possible upon stimulus onset. Positive responses were always made with the index finger of the right hand. In all
tasks no feedback on the correctness of responses was given until after the experiment. Participants received a guaranteed minimum payment supplemented
by a performance bonus for correct responses in the inference and cue-knowledge tasks. Within all tasks, the order of presentation of stimuli was
randomized. All the objects included in one task of an experiment appeared in all the other tasks in that experiment. For detailed descriptions of all
experiments, see Appendix A.
a In Experiment 3, the city name is combined with three cues.
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We use a normal distribution to model noise in perceptual-motor
times. We estimated the mean of this distribution (0.59 sec) by
using ACT–R to simulate the encoding of an object’s name and
the pressing of a key in the recognition tasks (see Online
Materials C).3

As explained in Appendix B, we further assume that the total
retrieval noise, s, in Equations 3, 5, and 6 can be divided into
criterion noise, s�, attributable to the retrieval criterion and acti-
vation noise, sA, attributable to permanent and momentary changes
in the activation level of a chunk:

s � ��s�
2 � sA

2 �. (8)

Using the Ecological Memory Model to Predict
Memory Performance From the Environment:

Simulation 1

As the interplay between the environment and memory is crit-
ical for the emergence of cognitive niches, in a first simulation we
examined whether environmental data enable our memory model
to account for the probabilities of recognizing objects and retriev-
ing knowledge about them, as well as for the associated recogni-
tion times (see Figures 2A and 2B). Specifically, we calibrated the
memory model to Experiment 1, estimating eight parameters (see
Table 4). We then used the memory model to predict memory
performance in Experiments 2–9, leaving these parameters un-
changed throughout this article.4 Next, we describe this first sim-
ulation; details of this and all other simulations are reported in
Online Materials D.

Observed data. We call our behavioral measure of the prob-
ability of recognizing an object the observed recognition proba-
bility, computed for each object as the proportion of participants
who recognized the object in the recognition tasks. In addition, by
pooling the time it took participants to recognize each object, we
obtained an observed recognition time distribution for each object.

Finally, we computed the observed knowledge probability for each
object as the proportion of participants who not only recognized
the object but in addition indicated having knowledge about it in
the general knowledge tasks.

Model calibration. To calibrate the memory model to these
observed data, we first fit Equation 5 to the observed recognition
probabilities of Experiment 1 with a regression analysis, estimat-
ing the constant, cR (–8.52), the total retrieval noise, s (.83), and
the scaling parameter, bR (.70). In doing so, we anchored the
activation scale by setting the expected value of the retrieval
criterion distribution, �, to zero; an object with an activation of 0
would have a 50% chance of being retrieved. With these param-
eters fixed, in a second calibration step we then fit Equation 6 to
the observed knowledge probabilities of Experiment 1, estimating
the constant, cK (–9.93), and the scaling parameter, bK (.68).

In a final calibration step, we fit Equation 7 to the recognition
time distributions of Experiment 1, striking a balance between
accounting for their 25th, 50th, and 75th percentiles by informally
searching the parameter space. Specifically, we estimated the
criterion noise, s� (.60), the scaling parameter, F (.49), and the
standard deviation of the perceptual-motor times (0.12 sec). As
implied by Equation 8, the activation noise, sA, is fixed (.58) once

3 We also modeled the perceptual-motor times another way, running
Experiment 10 to estimate them and feeding this estimated distribution into
Simulation 1. The pattern of results remained similar. The experiment is
described in Appendix A.

4 Ideally, such predictions should be made without knowing how well
the memory model accounts for the to-be-predicted data, given a set of
parameter values. In one situation we did not live up to this ideal. On the
basis of the quality of the predictions for the recognition time distributions
shown in Simulation 1’s Figure 4 (to be discussed later), we went back and
set the parameters F and s� to the values reported in Table 4.

Table 3
Overview of the Experiments

Experiment Objects Inference task
Recognition

task
General knowledge

task
Cue-knowledge

task Other tasks
No. of

participants

1 240 citiesa Xb X X X 49
2 240 citiesa Xc X X Xe 71
3 240 citiesa Xd X X X Xe 55
4 168 countries X X 20
5 80 companies X X 21
6 54 diseases X X 20
7 189 politicians X X 19
8 54 diseases X 118
9 189 politicians X 83

10 240 citiesa Xf 32

Note. All experiments are described in detail in Appendix A.
a To obtain clean measures of recognition time, we only used city names of similar length (see Supplemental Online Materials B). b In Experiment 1,
participants inferred which of two cities is larger. c In Experiment 2, participants inferred which of two cities would be recognized by a larger number
of 100 randomly chosen students. Judging other people’s recognition of names can be thought of as a judgment about fame. Using fame as a criterion
follows the tradition of Jacoby et al.’s (1989) classic “fame” studies, where recognition processes were examined by asking people to judge other people’s
fame. In one of Experiment 2’s two experimental groups, the instruct group, we instructed participants to always apply the fluency heuristic when inferring
which of two cities is recognized by more students. In a second group, the no-instruct group, we did not give any instructions on strategy use. d In
Experiment 3, we put participants under time pressure, giving them only 900 msec to infer which of two cities is larger. e Task assesses whether people
consider fluency and/or various knowledge cues useful for making inferences about cities. f Task to measure the time it takes to press a key on a computer
keyboard.
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s� is estimated, and the parameters cR and bR were left at the values
estimated previously from the observed recognition probabilities.

Data predicted by the memory model. To assess how well
the memory model captures memory retrieval in different experi-
ments, we then used Equations 5–8 with the fixed parameters to
predict the recognition and knowledge probabilities as well as the
recognition times in Experiments 2–9.

Results. Figure 3A shows the predicted and the observed
recognition probabilities for the cities of Experiments 2 and 3 as a
function of the expected value of their activation distributions. The
inflection point of the curve is at an activation of zero, dividing
cities with activations above (e.g., Milan) and below (e.g., Bar-
letta) zero into cities with a high and a low probability of being
recognized. For the same cities, Figure 3B shows the predicted and
observed knowledge probabilities. Figure 4 depicts the cities’
predicted and observed recognition times. Finally, Table 5 reports
the correlations between predicted and observed data for all ob-
jects and experiments. As can be seen, our ecological memory
model gives us a good handle on how memory performance
reflects the environment, capturing, for example, such complexi-
ties as how the median, spread, and skew of the cities’ recognition
time distributions change as a function of activation. Next, we
exploit this ability of our model to predict how cognitive niches
emerge (see Figures 2C–2E).

Quantifying Cognitive Niches: Applicability

When making judgments such as which cars are of good quality,
which cities are large, or which politicians are trustworthy, the
cognitive niches of applicable strategies are shaped by what is
stored in people’s memories about the cars, cities, and politicians.
We distinguish between three levels of knowledge. First, a person
may have never heard of an object, not even recognizing its name
(unrecognized object). Second, this person may merely recognize
the name and know nothing else about the object (tartle object;
tartle is a Scottish verb: People tartle when they recognize some-
one but cannot recall anything else about that person; Goldstein &
Gigerenzer, 2002). Third, the person may retrieve some knowledge
about a recognized object (knowledge object). Pairing these three
kinds of objects, we further distinguish between six memory states

a person can be in when comparing two objects: unrecognized
pairs (two unrecognized objects), tartle–unrecognized pairs (a
tartle and an unrecognized object), knowledge–unrecognized pairs
(a knowledge and an unrecognized object), tartle pairs (two tartle
objects), tartle–knowledge pairs (a tartle and a knowledge object),
and knowledge pairs (two knowledge objects).

With our memory model, we can predict the probabilities of
a person being in these six memory states. For instance, Figure
5 shows these probabilities when comparing two cities, plotted
as a function of the cities’ environmental frequency (i.e., as

Figure 3. Simulation 1. (A) Predicted (Equation 5; curve) and observed
(dots) recognition probabilities (PR) for 240 cities computed across 126
participants in Experiments 2 and 3. Recognition probabilities are plotted
as a function of the expected value of the cities’ activation distributions.
For instance, Milan has a mean activation of 2.18, the predicted recognition
probability is .93, and the observed recognition probability is .98. (B)
Predicted (Equation 6; curve) and observed (dots) knowledge probabilities
(PK) for 240 cities computed across 126 participants in Experiments 2 and
3. Knowledge probabilities are plotted as a function of the expected value
of the knowledge’s activation distributions. For instance, knowledge about
Barletta has a mean activation of –3.05, the predicted knowledge proba-
bility is .03, and the observed knowledge probability is .01. In each panel,
the vertical line shows the expected value of the retrieval criterion distri-
bution.

Table 4
Parameters Estimated for the Memory Model From the
Observed Data in Experiment 1

Parameter Value

Recognition probability, PR

Scaling parameter, bR .70
Constant, cR �8.52
Total retrieval noise, s .83

Knowledge probability, PK

Scaling parameter, bK .68
Constant, cK �9.93

Retrieval time, Tretrieval, and perceptual-motor
time distributions, Tperceptual-motor

Scaling parameter, F .49
Criterion noise, s� .60
Standard deviation of perceptual-motor times .12

Note. ACT–R � adaptive control of thought—rational.
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measured by web frequency). Importantly, each memory state
may afford the application of a different set of strategies. To
illustrate this, the recognition heuristic can be applied on tartle–
unrecognized and knowledge– unrecognized pairs (see Figures
5B and 5C), but not on the other four types, because the
heuristic relies on only one of two objects being recognized.
Among the conditions for the applicability of the fluency heu-
ristic is that both objects’ names be recognized, which is the
case for tartle, tartle– knowledge, and knowledge pairs (Figures
5D, 5E, 5F). Tally1, take-the-first-cue, and other strategies
require knowledge, as is available in knowledge– unrecognized,
tartle– knowledge, and knowledge pairs (Figures 5C, 5E, 5F).
Figure 5 suggests that the applicability of all these strategies
varies systematically as a function of the environment: The
predicted probabilities of being in the six memory states are
massed in different areas. Combining such predictions about the
interplay between memory and the environment with predic-
tions about time perception allows us to quantify the overlap
among different strategies’ niches.

Using ACT–R to Model Time Perception

Many strategies depend not on just one cognitive capacity but
on several. The fluency, availability, and take-the-first-cue heuris-
tics, for instance, draw on both memory, which influences retrieval
and recognition times, and mechanisms for time perception that
determine how a person will perceive these times. This is partic-
ularly important for carving out the fluency heuristic’s niche:
People will be able to apply this strategy only if they sense that one
object has been recognized in less time than another.

To model time perception, we used Taatgen et al.’s (2007)
ACT–R model (henceforth the timing model). According to it, a
pacemaker generates pulses at certain time intervals, which are
counted by an accumulator. The number of pulses accumulated
serves the cognitive system as an estimate of time. To assess which
of two objects is recognized more quickly, the system will com-
pare the number of pulses that correspond to the recognition time
of the first object with the number of pulses that correspond to the
recognition time of the second. The system will detect a difference
in recognition times if the numbers of pulses differ. Having de-
tected a difference, the system will infer that objects that took
fewer pulses to recognize have larger values on the criterion than
those that took more pulses to recognize, when the fluency heu-
ristic is used.

The timing model captures Weber’s law, an important psycho-
physical property of time perception that previous studies (e.g.,
Hertwig et al., 2008; Schooler & Hertwig, 2005) on the fluency
and related heuristics did not take into account. The rate at which
pulses are generated gradually slows down, while at the same time
the intervals between pulses become increasingly affected by
noise. As a result, the ability to detect a difference in recognition
times between two objects falls nonlinearly as the time it takes to
recognize each object increases. For instance, whereas recognition
times of 100 msec and 200 msec may correspond to the accumu-
lation of 6 and 11 pulses, respectively, both 600 and 700 msec may
well result in the accumulation of 20 pulses, making it possible
to detect a difference between 100 and 200 msec, but not
between 600 and 700 msec.

More formally, the time interval, t, separating one pulse from
the next is a function of the time interval separating the previous
two pulses:

Table 5
Correlations Between Predicted and Observed Data in
Simulation 1

Data set Objects rPR rPK rTrecognition

Experiment 1 Cities .76 .82 .64
Experiment 2 Cities .77 .83 .64
Experiment 3 Cities .76 .81 .62
Experiments 2 & 3 Cities .77a .82a .70a

Experiment 4 Countries .63 .84 .74
Experiment 5 Companies .58 .68 .61
Experiment 6 Diseases .75 .77 .48
Experiment 7 Politicians .81 .75 .48
Experiment 8 Diseases .75 .51
Experiment 9 Politicians .81 .43

Note. Pearson correlations between objects’ observed and predicted rec-
ognition probabilities (rPR), between objects’ observed and predicted
knowledge probabilities (rTrecognition), and between medians of objects’ ob-
served and predicted recognition time distributions (rTrecognition) in Simulation
1 are shown. The correlations are computed across the objects. For com-
puting rTrecognition, only those objects that were recognized by at least two
participants were included. The magnitude of the correlations lies in the
range of those reported when using well-established corpora as a basis for
calibrating models to response times in lexical decision tasks (cf. Adelman
& Brown, 2008, who calibrated Bayesian, race, and other models to
response times, using different experimental data sets and corpora).
a Observed recognition probabilities, observed knowledge probabilities,
and observed recognition times, respectively, computed by collapsing the
observed data across Experiments 2 and 3.

Figure 4. Simulation 1. Percentiles (25th, 50th, 75th) of recognition time
distributions of cities predicted by our memory model (Trecognition; Equa-
tions 7–8; curves) and observed recognition time distributions of cities
(dots) computed across participants in Experiments 2 and 3. Recognition
times (in seconds) are plotted as a function of the expected value of the
cities’ activation distributions. Recognition times and activations are
smoothed with a running window. The vertical line shows the expected
value of the retrieval criterion distribution. For instance, Palermo has a
mean activation of 1.35, the 50th percentile of its predicted recognition
time distribution is 0.72 sec, and the 50th percentile of the observed
recognition time distribution is 0.64 sec.
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tn�1 � atn � noise �M � 0, SD � b � atn�, (9)

where n is the number of accumulated pulses, a and b are con-
stants, and the noise is drawn from a logistic distribution. The
duration t1 is seeded with a start value, t0. Taatgen et al. (2007)
estimated t0 � 11 msec, a � 1.1, and b � 0.015, stressing that
these parameters should be left unchanged. We used these param-
eter values.

Quantifying Cognitive Niches: Simulation 2

To quantify the overlap among different strategies’ cognitive
niches, we integrated the timing model and the memory model

(throughout referred to as the integrated model) by letting them
interact in a simulation. Before turning to the data predicted by this
integrated model, let us describe the observed data.

Applying the timing model to the observed data. For each
participant of Experiments 2–7, objects were exhaustively
paired and grouped into bins according to the ranks of each
object’s environmental frequency (i.e., as measured by web
frequency). For each pair in each bin, we tested which strategy
the participant would have been able to apply to make infer-
ences about that pair.

Fluency heuristic. To test whether a participant would have
been able to apply the fluency heuristic, we first checked if both

Figure 5. Memory states. The vertical axis shows the probability of a person being in six memory states (A–F)
when comparing two cities. To generate the horizontal axes, we ranked the cities according to their environ-
mental frequencies, as measured in terms of their web frequencies, and grouped them into 50 equally sized bins
according to rank. These bins are shown on the horizontal axes. For instance, Panel A shows the probability of
facing pairs of unrecognized cities and Panel C the probability of facing pairs consisting of an unrecognized city
and a recognized city with knowledge. As can be seen, in Panel A the probability of facing two unrecognized
cities (e.g., Barletta and Terni) is largest at the intersection of the first bins, where the cities’ frequencies are the
lowest. In Panel C, the probability of facing a recognized city with knowledge and an unrecognized city (e.g.,
Milan and Barletta) is highest where the 50th bin intersects the 1st bin, representing a highly frequent and an
infrequent city, respectively. To predict these probabilities, the memory model was run 1,500 times, generating
1,500 hypothetical persons’ recognition and knowledge responses (Equations 5–6). Specifically, according to
the predicted recognition probability, PR, we determined whether a hypothetical (i.e., simulated) person would
recognize a city. If the city was recognized, then according to the predicted knowledge probability, PK, we
determined whether that person would additionally know something about it. For each hypothetical person, we
then exhaustively paired the cities, grouping the pairs into equally sized bins, indexed by the ranks of each city’s
environmental frequency. In each bin, we computed the proportion of occurrence of the six different types of
pairs. We averaged these proportions across hypothetical persons. These proportions represent the probability of
a person being in each of the six memory states.
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objects in a pair were recognized. If so, the probability of a person
being able to apply the fluency heuristic is the probability of
detecting a difference in recognition times. To estimate this detec-
tion probability, PD, we fed the participant’s recognition times into
the timing model. In each simulation run of this model, we let it
count the number of pulses associated with the person’s recogni-
tion time for each of the objects in a pair. Across simulation runs,
for each pair, we counted how often a difference in pulses was
detected (TD) and how often it was not detected (TND). For each
pair of recognized objects, the detection probability is

PD � TD/�TD � TND�. (10)

If either one or both objects in a pair are unrecognized, by
definition, the probability of a person being able to apply the
fluency heuristic is zero. Across all pairs in a bin, we averaged the
probabilities of the participant being able to apply the fluency
heuristic. We averaged these probabilities across all participants.

Knowledge-based strategies. Similarly, for each participant,
we estimated the probability that this individual would have been
able to apply a knowledge-based strategy, assuming that knowl-
edge based strategies, such as those listed in Table 1, are applica-
ble when knowledge is available about at least one object in a pair.
Across the pairs in a bin, we computed this probability as the
proportion of pairs for which knowledge was available.

Recognition heuristic. Finally, across the pairs in each bin,
we computed the probability that the participant would have been
able to apply the recognition heuristic as the proportion of pairs in
which the participant recognized one object but not the other.

Applying the timing model to the data predicted by the
memory model. We use the terms observed detection proba-
bilities and observed pulses to indicate that these timing measures
have been estimated from participants’ behavioral data, rather than
from data predicted by our memory model, which we label pre-
dicted detection probabilities and predicted pulses. To generate the
predicted data, we ran the memory model 1,500 times, creating
1,500 hypothetical persons’ predicted recognition and knowledge
responses.5 Specifically, according to the predicted recognition
probability, PR, we determined whether a hypothetical (i.e., sim-
ulated) person would recognize an object and determined the
object’s recognition time, Trecognition, by drawing a sample from
the object’s predicted recognition time distribution. If the object
was recognized, then according to the predicted knowledge prob-
ability, PK, we determined whether that person would additionally
indicate knowing something about it. To compute the probabilities
of the hypothetical persons being able to apply the different
decision strategies, we processed their predicted data in the same
way as we processed the observed data. For instance, by feeding
predicted recognition times into the timing model we predicted the
probability of a hypothetical person being able to apply the fluency
heuristic.

Results. For the same cities used in Figures 3–5, Figure 6
shows the probabilities that a person will be able to apply the
fluency heuristic, recognition heuristic, and knowledge-based
strategies in a comparison of two cities, plotted as a function of the
cities’ environmental frequencies. Figure 7 shows the same graph
for countries, companies, politicians, and diseases. Regardless of
the type of object, the integrated model of memory and time
perception accurately predicts how very different probability dis-
tributions emerge for each of the three types of strategies, dem-

onstrating how little the strategies’ niches overlap. A person will
most likely be able to apply knowledge-based strategies when
comparing two objects that occur very frequently in the environ-
ment. For instance, when comparing the cities of Milan and
Venice, which fall into the upper area of the environmental fre-
quency axes of Figure 6C, a person has roughly a 76% chance of
being able to rely on a knowledge-based strategy. In contrast,
when comparing the slightly lower frequency cities of Catania and
Palermo in Figure 6C, the probability that the same person can use
a knowledge-based strategy is about 37%. Instead, for these cities,
this person may rely on the fluency heuristic, which is likely to be
applicable about 64% of the time (Figure 6B). Finally, when
inferring whether a comparatively high-frequency city like Catania
or a low-frequency city like Barletta is larger, the same person has
a 60% probability of being able to rely on the recognition heuristic
(Figure 6A) but only a 17% probability of being able to use the
fluency heuristic (Figure 6B) and a 34% probability of being able
to use knowledge-based strategies (Figure 6C).

In fact, Figures 6C, 6F, 7C, and 7F overestimate the niches of
the six knowledge-based strategies listed in Table 1, because the
aggregated data depicted in these figures do not distinguish be-
tween the niches of particular knowledge-based strategies, and the
niches of these six knowledge-based strategies need not fully
overlap. Table 6 summarizes when each of the strategies is appli-
cable. For instance, as we elaborate below, tally2 requires the
number of positive cue values to differ between two objects.
Tally1, in contrast, requires sums of positive and negative cue
values to differ, limiting the overlap between the two strategies’
niches.

In short, Figures 6 and 7 show that the niches of different
decision strategies do not completely overlap, simplifying the
selection among them by constraining the consideration set of
applicable strategies. This aspect of the strategy selection process
does not assume cost–benefit calculations, reinforcement learning,
or any of the other mechanisms of strategy choice that have been
discussed in the literature over the past decades. In the remainder
of this article, we report how we use the integrated model to
examine those parts of the selection process in which these cost–
benefit, learning, and other selection mechanisms are likely to
come into play, focusing on accuracy, effort, and time as determi-
nants of strategy choice in situations when the niches of different
strategies overlap (see Figures 2F–2I).

Zooming in on the Fluency Heuristic’s Niche: Regions
of Accurate, Effortless Inferences

As explained above, in line with the literature on cost–
benefit, learning, and other strategy selection mechanisms, we
assume the choice among simultaneously applicable strategies
depends on the strategies’ accuracy or the effort and time

5 In Simulations 2, 3, 9, C1, C2, and C3, each run of our memory model
can be thought of as generating one hypothetical person’s recognition and
knowledge responses (including the recognition times) for each of the
objects considered. Also, in all simulations where the memory model and
the timing model interact, the timing model processes the data predicted by
the memory model in the same way as the observed data.
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involved in using them. However, on the basis of this literature
one might also believe that people are forced to master trade-
offs among these currencies of strategy selection, for instance,
between making accurate decisions or effortless ones. Our
integrated model of memory and time perception maps out
different strategies’ niches directly from environmental data,
(a) providing the currencies needed by the cost– benefit, learn-
ing, and related mechanisms to explain the choice among si-
multaneously applicable strategies and (b) enabling us to pin-
point areas in a strategy’s niche where trade-offs between
making accurate, fast, and effortless decisions need not occur.

To start, we use the integrated model to predict in which
regions of its niche the fluency heuristic would help a person
make accurate, effortless, and fast inferences (see Figures 2F
and 2G). The subsequent sections are organized as follows.
First we lay out the integrated model’s predictions about the
accuracy, effort, and time involved in employing the fluency
heuristic. Second, using these predictions, we show how accu-
racy explains the selection between the fluency heuristic and
knowledge-based strategies. Third, we turn to the role of accu-
racy in strategy choice when the fluency heuristic is applicable

but knowledge is unavailable. Fourth, we further validate the
integrated model’s predictions about effort and time and ex-
plore how these predictions help to explain the role of effort and
time in the selection between the fluency heuristic and
knowledge-based strategies.

Before we begin, a comment is warranted. Although the
integrated model provides the currencies required by the cost–
benefit, learning, and related mechanisms, it does not on its own
predict which strategy people will use when different strategies
are applicable simultaneously. Deriving such predictions would
require implementing one of the cost– benefit, learning, or other
mechanisms in our cognitive niche framework, making such
predictions dependent on the specifics of the mechanism im-
plemented. For instance, different learning and cost– benefit
mechanisms may weight accuracy and effort differently in
strategy choice. As the integrated model’s predictions about
accuracy, effort, and time can, in principle, be used by any of
the cost– benefit or learning mechanisms, we have not imple-
mented any specific mechanism here but rather frame our
explanations in general, illustrative terms.

Figure 6. Simulation 2. The cognitive niches of different strategies, predicted by the integrated memory
and timing model (Equations 5–10; e.g., PR, PK, Trecognition, PD) for inferences about cities (A–C) and
computed from the behavioral data observed in Experiments 2 and 3 (D–F). The strategies’ applicability is
plotted in terms of the rank of the cities’ environmental frequency. The cities have been grouped into 50
equally sized bins according to their rank. Bin numbers are shown on the horizontal axes. For instance, in
Panel B, the fluency heuristic is most likely applicable when comparing high to medium frequency cities
(e.g., Milan and Venice or Catania and Palermo) that fall into the 30th to the 50th bin of the horizontal
axes.
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When Does the Fluency Heuristic Help Make Accurate
Inferences? Simulation 3

We assume not only the applicability of the fluency heuristic but
also the effort and time involved in applying it depend on a
person’s ability to detect differences in recognition times. For
instance, all other things being equal, detecting larger recognition
time differences may be easier than detecting smaller ones. Our
memory model predicts that the magnitude of recognition time
differences correlates with the availability of knowledge, and as
such, with the applicability of knowledge-based strategies. Let us
look at why this might be.

Encounters with an object are often associated with the
acquisition of knowledge about the object. For example, the
Volkswagen ad featuring Fahrvergnügen not only increases
activation and, in turn, a sense of recognition of the brand name,
but this German word in addition leads to the encoding or
strengthening of the knowledge that Volkswagens are German
engineered. This correlation between encountering an object
and acquiring knowledge about it makes it likely that people
can retrieve knowledge about objects they encounter more
frequently than about those they encounter less often, resulting
in knowledge objects being more strongly activated than tartle

objects. As Figure 4 shows, our memory model predicts that the
median and spread of recognition time distributions is larger for
weakly activated objects (e.g., Barletta), which tend to be tartle
objects, than for strongly activated ones (e.g., Milan), which
tend to be knowledge objects. Because the median recognition
time is larger for tartle objects than for knowledge objects,
recognition times tend to differ more on tartle– knowledge pairs
than on knowledge pairs. Recognition times tend to differ more
on tartle pairs than on knowledge pairs, because the spread of
the recognition time distributions is larger on the tartle pairs.
Figure 8 illustrates this phenomenon, showing observed and
predicted recognition time differences for tartle, tartle–
knowledge, and knowledge pairs. To predict how the accuracy
of inferences with the fluency heuristic depends on both (a) the
ease of detecting such recognition time differences and (b) the
retrieval of knowledge, we ran a simulation.

Applying the timing model to the observed data. The
simulation consists of two parts. First, in Experiments 2–7, for
each participant, we exhaustively paired the objects. We then used
the timing model to compute for the resulting pairs the detection
probability, PD, that a participant would have been able to detect
a difference in recognition times between two recognized objects.
Recall, this is the probability that a person is capable of applying

Figure 7. Simulation 2. The cognitive niches of different strategies, predicted by the integrated memory and
timing model (Equations 5–10; e.g., PR, PK, Trecognition, PD) for inferences about countries, companies, diseases,
and politicians (A–C) and computed from the behavioral data observed in Experiments 4–7 (D–F). The data are
collapsed across the four different types of objects. The strategies’ applicability is plotted in terms of the rank
of the objects’ environmental frequency. The objects have been grouped into 20 equally sized bins according to
their rank. Bin numbers are shown on the horizontal axes.
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the fluency heuristic; in addition, we assume that PD also acts as
a proxy for the effort and time required to apply it.6

Second, we ran another series of runs of the timing model. In
each run of this second series, we let the timing model assess
whether a person would have detected a recognition time differ-
ence between two objects in that run. On the pairs where the
person would have detected a difference, we estimated the prob-
ability of the person making a correct inference if that person had
used the fluency heuristic to infer quantities such as cities’ size,
countries’ gross domestic product, companies’ market capitaliza-
tion, diseases’ fame, or politicians’ fame. This probability is called
the fluency validity, vfh, and is computed as

vfh � C/�C � I�, (11)

where C is the number of correct inferences that can be made by using
the fluency heuristic, and I is the number of incorrect inferences.
Computing the fluency validity on the pairs where a person would
have detected a difference yields the fluency validity conditional on a
person having been able to apply the fluency heuristic. We computed
such conditional validities separately for tartle, tartle–knowledge, and
knowledge pairs. We binned the validities according to the previously
computed detection probabilities, PD. Bins were arranged by quartiles
of the detection probabilities.

Applying the timing model to the data predicted by the
memory model. As in Simulation 2, we let the memory model
predict hypothetical persons’ recognition and knowledge responses
for the objects (PR, PK, Trecognition), pairing these objects into each
hypothetical person’s predicted tartle, tartle–knowledge, and knowl-

edge pairs. We then processed each hypothetical person’s predicted
data in the same way as we processed our participants’ observed data,
using the timing model to compute both the predicted detection
probability, PD, of the hypothetical person being able to apply the
fluency heuristic and the predicted conditional fluency validity, vfh.
For instance, calculating the validity on the pairs where a hypothetical
person would have detected a difference in predicted recognition
times yields the predicted fluency validity conditional on that person
having been able to apply the fluency heuristic.

Results. Figure 9 shows the fluency validity, vfh, plotted on
the y-axis and the detection probability, PD, on the x-axis. The
integrated model correctly predicts three results. First, the flu-
ency validity increases with rising detection probabilities. Sec-
ond, these detection probabilities tend to be smaller in knowl-
edge pairs than in tartle– knowledge and tartle pairs. This can be
seen by comparing corresponding bins of the three types of
pairs on the x-axis: Here the knowledge pairs tend to be the
farthest to the left. For example, in the first bin of Figure 9B,
the detection probability on knowledge pairs is .65; the corre-
sponding probabilities on tartle and tartle– knowledge pairs are
.71 and .70, respectively. This pattern is consistent with Fig-

6 In Simulations 7 and 8, we provide experimental evidence suggesting
that PD reflects the effort and time required to use the fluency heuristic.
That being said, we would like to add that our conclusions are equally
supported by different proxies for effort and time (see Appendix C,
Simulations C1 and C2).

Table 6
Applicability of Different Strategies

Strategy Applicable . . .

Accessibility-based
Recognition heuristic If a person recognizes one object but not the other
Fluency heuristic If two objects differ in terms of the numbers of pulses accumulated for them, such that a person

would detect a difference in recognition times between the two objects
Knowledge-based

Tally1 If the sum of positive and negative cue values, Spn, differs between two objects
Tally2 If the sum of positive cue values, Sp, differs between two objects
Take-the-best If ordering cues according to their validity yields a cue on which one object has a positive and

the other a negative or an unknown value on the same cue
Knowledge-based, but sequentially samples

knowledge as a function of its
accessibility

Take-the-first-cue If sampling cues according to the number of pulses accumulated for positive cue values yields a
comparison where one object has a positive value on one cue and the other a negative or an
unknown value on the same cue, or if searching through cues according to the pulses with
which negative cue values are retrieved results in a negative value on one cue for one object
and an unknown value for the other object on the same cue

Take-the-first-value1 If sampling cue values independently for each object according to the cue values’ pulses yields
a comparison in which one object has a positive value on one cue and the other object a
negative or an unknown value on another or the same cue

Take-the-first-value2 If sampling cue values independently for each object according to the cue values’ pulses results
in a comparison in which one object has a positive value on one cue and the other a negative
or an unknown value on another or the same cue, or if one object has a negative value and
the other an unknown one

Note. Just as we do for the fluency heuristic, we also implement the knowledge-based sequential sampling heuristics using the timing model (see
Accordance rates section, para. 4, for details). In doing so, we assume that a person will have to decide which cue values have been retrieved most quickly,
because the retrieval of cue values may happen in close succession. The timing model provides a mechanism for these discrimination decisions; pulses
represent the model’s currency for time.
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ure 8, which shows that recognition time differences are small-
est for knowledge pairs. The pattern that it is harder to detect
recognition time differences for knowledge pairs is even more
pronounced in Figures C1 and C2 (see Appendix C), where we
plot the fluency validity in terms of other proxies of effort such
as differences in pulses between two objects. Third, the model
predicts that the fluency validity will be largest on tartle–
knowledge pairs and smallest on tartle pairs, with the validity
on knowledge pairs being somewhere in between.

Each of these three results has an important implication. First, as
the fluency validity increases with the detection probability, it is
easier to apply the fluency heuristic when using it helps a person
make accurate inferences. There appears to be no effort–accuracy
trade-off.7

Second, the detection probabilities show where the niches of
the fluency heuristic and knowledge-based strategies overlap:
On knowledge pairs, a person is least likely to be able to apply
the fluency heuristic, because on these pairs recognition time
differences are hardest to detect. On tartle pairs, differences are
easier to detect, but in any event knowledge-based strategies
cannot be applied. It is on tartle– knowledge pairs where the
niche of the fluency heuristic and those of knowledge-based
strategies overlap most, because on these pairs knowledge-
based strategies are applicable and recognition time differences
are easiest to detect.

Third, the fluency validity is largest on tartle– knowledge
pairs—especially when recognition time differences are the easiest
to detect (fourth bins in Figure 9). It is on such pairs that strategy
selection between the fluency heuristic and its knowledge-based
competitors is most likely to come into play based on currencies
such as accuracy, effort, or time.

How Accuracy Explains Strategy Selection Between
the Fluency Heuristic and Knowledge-Based Strategies

Next we pit the fluency heuristic against six knowledge-based
strategies, examining how accuracy explains what strategy people

7 Hertwig et al. (2008) reported a correlation between recognition time
differences and the accuracy of inferences with the fluency heuristic.
However, they lacked a memory model to predict the emergence of this
correlation. They also had no model of time perception, which would have
enabled them to predict when people detect differences in recognition
times. Finally, they had no model to predict the knowledge people have
about objects, and they also did not assess such knowledge. As we have
learned when conducting our simulations, such models are warranted to
understand the interplay between the fluency heuristic’s accuracy and the
effort required to use this heuristic, because this interplay turns out to be
complex, varying as a function of people’s recognition and knowledge,
their recognition times, and their perception of such recognition times, and
ultimately depending on the environment.

Figure 8. Recognition time differences (in seconds) between two cities in tartle, tartle– knowledge, and
knowledge pairs, (A) predicted by the memory model (Equations 5– 8; e.g., PR, PK, Trecognition) and (B)
observed in Experiments 2 and 3. The data are collapsed across these experiments. Symbols in Panel A
show mean (
1 SE) predicted median time differences computed across simulation runs of our memory
model; symbols in Panel B show mean (
1 SE) observed median time differences computed across
participants. In both panels, some of the error bars are obscured by the symbols. (A) To compute predicted
recognition time differences, we let the memory model generate 1,500 hypothetical persons’ recognition,
knowledge, and recognition times, calculating the predicted recognition time differences for these hypo-
thetical persons in an analogous way as we did for the experimental participants. (B) To compute the
observed recognition time differences, we identified tartle and knowledge objects on the basis of partici-
pants’ responses in the recognition and general knowledge tasks. For each participant, we exhaustively
paired the objects into that participant’s tartle, tartle– knowledge, and knowledge pairs, calculating the
difference in recognition times between the objects in each pair. For each of these three kinds of pairs, we
computed the median of recognition time differences for each participant, averaging the medians across
participants.
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adopt when the strategies’ niches overlap. Like the fluency heu-
ristic, these knowledge-based strategies have been prominently
discussed as descriptive and prescriptive models of behavior (e.g.,
Bröder & Gaissmaier, 2007; Dawes & Corrigan, 1974; Einhorn &
Hogarth, 1975; Johnson & Raab, 2003; Nosofsky & Bergert, 2007;
J. W. Payne et al., 1988; Rieskamp & Otto, 2006). The integration
strategies tally1 and tally2 as well as the lexicographic heuristic
take-the-best were introduced above; these models are summarized
in Table 1. Other strategies that we have not yet described in detail
are take-the-first-cue as well as take-the-first-value1 and take-first-
value2. These three sequential-sampling strategies are explained in
Figures 10 and 11.

Which Strategy Should People Rely on to Make
Accurate Inferences?

As we have shown in Simulations 1–3, recognition times for
objects as well as people’s perception of them reflect noisy pro-
cesses; they are sensitive, for example, to momentary changes in
the activation levels of chunks, resulting in moderate levels of
accuracy for the fluency heuristic in most regions of its niche (cf.
Figure 9). At the same time, as we demonstrate next, even the
accuracy of knowledge-based strategies that exploit the retrieval
speed of cue values (e.g., take-the-first-cue) depends more on the
cue values retrieved than on the type of noisy retrieval and time

Figure 9. Simulation 3. Fluency validity (vfh) as a function of the detection probability (PD) that a person
would detect a difference in recognition times between two cities. Predicted data were generated by the
integrated memory and timing model (Equations 5–11; e.g., PR, PK, Trecognition, PD, vfh). The timing model
was also applied to the observed data from Experiments 2–7. (A) Predicted and (B) observed data for
inferences about cities’ sizes. (C) Predicted and (D) observed data for inferences about countries’ gross
domestic product in 2006; companies’ market capitalization on May 31, 2007; diseases’ fame; and
politicians’ fame. We operationalized fame as the proportion of participants who recognized a disease in
Experiments 6 and 8 and a politician in Experiments 7 and 9, respectively. In Panels C and D, the data are
collapsed across the four different types of objects. For predicted data (A, C), symbols show mean (
1 SE)
predicted validities and mean predicted detection probabilities computed across simulation runs of the
memory and timing model. For observed data (B, D), symbols show mean (
1 SE) observed validities and
mean observed detection probabilities computed across participants and simulation runs of the timing
model. Some of the error bars are obscured by the symbols.
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Figure 10. The sequential-sampling strategy take-the-first-cue considers cues in two search orders. First,
it samples cues according to the speed with which the positive cue values are retrieved. For instance, when
inferring whether Barcelona or Granada is larger, the fastest positive cue value may be that Barcelona has
a world-famous tourist site. As a result, the tourism cue is the first cue on which the cities are compared.
Among the remaining cues, the fastest positive cue value may be that Granada has a university. Thus, the
university cue would yield the second comparison of the cities. Among the still remaining cues, the fastest
positive cue value could be that Barcelona has an airport. Take-the-first-cue, in this case, would sequen-
tially consult the tourism, university, and airport cues. It decides on the basis of the first cue in which Object
A has a positive value and Object B has a negative or an unknown value. It infers A to be larger than B.
In our example, take-the-first-cue would thus first compare the cities on the tourism cue. On this cue,
Barcelona has a positive value. If Granada has no positive value on the tourism cue, then a decision can be
made. If Granada also has a positive value on this cue, then the next cue would be considered, in this case,
whether the cities have a university. If both have one, then the next cue would be considered, here, the
airport cue. The algorithm continues until a decision can be made. Second, if sampling cues according to
the speed with which positive cue values are retrieved does not allow making a decision, then the algorithm
restarts, and take-the-first-cue considers the cues according to the speed with which negative cue values are
retrieved. In our example, the fastest negative cue value may be that Granada has no major industrial site.
As a result, take-the-first-cue would try to make a decision by comparing the cities on this industry cue.
Take-the-first-cue relies on the first cue in which A has a negative value and B an unknown one, inferring
B to be larger than A. The intuition is that knowing an object does not have a certain attribute (e.g., a city
has no industry) makes it likely that this object is smaller than another for which one does not know if the
object has the attribute or not. In our example, a person may not know whether Barcelona has a major
industrial site. In this case, the comparison on the industry cue yields a decision and take-the-first would
suggest that Barcelona is larger than Granada.
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perception processes the fluency heuristic solely depends on. All
else being equal, people would thus do well to rely on knowledge-
based strategies when these strategies’ niches and the fluency
heuristic’s niche overlap.8

Description of Observed Data and Measures

Observed data. To pit the fluency heuristic against knowledge-
based strategies, in Experiment 1, we asked people to infer which city
has more inhabitants. In addition, they took the recognition, general
knowledge, and cue-knowledge tasks (see Tables 2 and 3). We used
this recognition and knowledge data to test (a) whether relying on the
fluency heuristic or on a knowledge-based strategy would help a
person make more accurate inferences and (b) whether the former or
the latter predicted their inferences best.

8 On the basis of our earlier work (e.g., Hertwig et al., 2008), one might
expect that people would rely on fluency rather than knowledge. Prior to
developing the integrated model reported in the current article, we did not
know how accurate the fluency heuristic would be compared with
knowledge-based strategies, and we believed that retrieval fluency repre-
sents rapidly available, effortless information compared with knowledge.
We had therefore thought that fluency would be prioritized over knowl-
edge. At that time, we had not yet modeled people’s recognition responses,
knowledge responses, recognition times, and perception of recognition
times, and, with perhaps one exception (Marewski, Gaissmaier, Schooler,
Goldstein, & Gigerenzer, 2009), neither we nor anybody else had ever
tested Schooler and Hertwig’s (2005) fluency heuristic against knowledge-
based strategies.

Figure 11. The sequential-sampling strategies take-the-first-value1 and take-the-first-value2. Take-the-the-first-cue com-
pares objects on the same dimension, that is, on the same cue. In principle, however, objects could also be compared across
cues. (A) Take-the-first-value1 relies on comparisons of objects by sampling cue values independently for each object
according to the speed with which cue values are retrieved. To illustrate this, the fastest cue value generated for Barcelona
may be that this city has an airport. The fastest cue value recalled for Granada may be that it is not an industry site. This
is the first comparison of cities. For both cities, the second fastest cue value could be that they have universities, representing
the second comparison. The third fastest cue value retrieved for Barcelona could be that it is an industry site. For Granada
the third cue value could be that a person does not know whether Granada has an airport. Take-the-first-value1 consults these
comparisons sequentially, relying on the first comparison in which Object A has a positive value on one cue and Object B
a negative or an unknown value on the same or another cue. It infers A to be larger than B. In our example, this would
happen in the first comparison of cities. (B) A variant of take-the-first-value1 is take-the-first-value2. It bases inferences
either on the first comparison in which A has a positive value on one cue and B a negative or an unknown value on the same
or another cue, or on the first comparison in which A has an unknown value and B a negative one. In both cases,
take-the-first-value2 opts for A. As in take-the-first-cue, the intuition is that knowing an object lacks a certain attribute makes
it likely the object will be small.
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Accordance rates. To assess how well the fluency heuristic
predicts people’s inferences, for each participant we calculated the
fluency heuristic accordance rate, kfh, as the proportion of infer-
ences consistent with the heuristic:

kfh � E/�E � D�, (12)

where E is the number of times a more quickly recognized city was
inferred to have more inhabitants than a more slowly recognized
one, and D is the number of times the opposite happened. To
model which city a participant would perceive as having been
more quickly recognized, we used the timing model.

To assess how well tally1 predicts each participant’s inferences,
for each city we computed the cue sum, Spn, of positive and
negative cue values:

Spn � C1 � C2 � C3 � C4, (13)

where C is a participant’s cue value for a given city on the airport
cue (C1), the university cue (C2), the industry cue (C3), and the
tourism cue (C4). Cue values could be either known, based on a
participant’s “yes” or “no” response in the cue-knowledge task, or
unknown (i.e., a “don’t know” response). Cue values were coded
as 1, –1, and 0, respectively. The accordance with tally1 (kt1) is
computed analogously to the fluency heuristic accordance, using
Equation 12, where E is the number of times a city with the larger
cue sum, Spn, was inferred to have more inhabitants than one with
a smaller cue sum, and D is the number of times the opposite
happened. To calculate the accordance with tally2 (kt2), for each
city we computed sums, Sp, of positive cue values, using Equations
12 and 13 as we did for tally1.

To implement take-the-best (see Table 1), we computed cue
validities according to the actual attributes of the cities.9 The
validity of a cue is estimated as the proportion of times a city that
has an attribute is larger than a city that does not have this attribute.
The accordance with take-the-best (kttb) is computed for each
participant individually, employing Equation 12 as for tally1 and
tally2.

To implement take-the-first-cue, take-the-first-value1, and take-
the-first-value2, we measured the speed of retrieving a city’s cue
value for each participant as the response time in the cue-
knowledge task. We then let the timing model generate the number
of pulses a person would have perceived while retrieving a cue
value, sorting the cues (take-the-first-cue) and cue values (take-
the-first-value1, take-the-first-value2), respectively, according to
the number of pulses.10 In doing so, we assumed that a person may
have to decide which cue values have been retrieved most quickly,
because the retrieval of multiple cue values may happen in close
succession. The timing model provides a mechanism for these
discrimination decisions and introduces additional noise in the
retrieval-based sequential sampling of cues and cue values. The
strategies’ accordance rates (kttfc, kttfv1, kttfv2) are computed as for
all other models.

The goal here is to test how well the strategies describe people’s
inferences when their niches overlap, that is, when they are appli-
cable at the same time. For each model comparison, we selected
each participant’s pairs in which both the knowledge-based strat-
egy to be compared and the fluency heuristic were applicable.
Computing the accordance rates on these pairs yields accordance
rates conditional on both the fluency heuristic and the respective

competing knowledge-based strategy being applicable. Table 6
summarizes when the strategies are applicable. Next, we turn to
the corresponding simulation.

Validities. To assess whether using the fluency heuristic or a
knowledge-based strategy would be more helpful to a person
inferring which of two cities is larger, we calculated the fluency
validity and the validities for each of the knowledge-based strat-
egies (vt1, vt2, vttb, vttfc, vttfv1, vttfv2). The knowledge-based strat-
egies’ validities are defined analogously to the fluency validity as
the proportion of correct inferences a person can make by using a
strategy. For each participant, the validities were computed con-
ditional on both the fluency heuristic and the respective
knowledge-based strategy being applicable. Next, we turn to the
corresponding simulation.

The Fluency Validity and the Knowledge-Based
Strategies’ Validities: Simulation 4

Applying the timing model to the observed data. To ex-
amine which strategy would most help a person make accurate
inferences, we ran a simulation consisting of two parts. First, we
used the timing model to compute for each participant’s pairs of
two recognized objects the detection probability, PD. Second, we
reran the timing model, assessing in each run for each participant’s
pairs whether the participant would have been able to apply the
fluency heuristic as well as a knowledge-based strategy in that run.
In each run, we grouped each participant’s tartle–knowledge and
knowledge pairs where one of the knowledge-based strategies as
well as the fluency heuristic were both applicable into four bins,
arranged by quartiles, according to the previously computed de-
tection probabilities, PD. Across the pairs in each bin, we com-
puted the strategies’ validities conditional on a knowledge-based
strategy and the fluency heuristic both being applicable.

Results. As Figure 12 shows, the knowledge-based strate-
gies’ validities tend to be larger than the fluency validity when the
strategies’ niches overlap. Hence, people would be better off
relying on knowledge than on the fluency heuristic.

The Fluency Heuristic Accordance Rate and the
Knowledge-Based Strategies’ Accordance Rates:
Simulation 5

Applying the timing model to the observed data. To assess
how well the strategies account for people’s inferences, we ran a
simulation for Experiment 1. This simulation was similar to the
previous one (i.e., No. 4), an exception being that we computed the
strategies’ accordance rates (rather than their validities) condi-

9 That is, we looked up for each city whether it had at least one
international airport and whether it had at least one university. To opera-
tionalize the industry cue, we looked up for each city whether it was the
headquarters of at least one company that was registered in the major stock
index of the country (i.e., CAC40, MIB30, IBEX, DAX, FTSE, Dow Jones,
ATX). To operationalize the tourism cue, we looked up whether a city had
a site included in the United Nations Educational, Scientific, and Cultural
Organization (UNESCO) world heritage list.

10 If for a city two cue values are retrieved with the same speed, then
take-the-first-cue, take-the-first-value1, and take-the-first-value2 will de-
cide at random which cue value will be considered first for this city.
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tional on a particular knowledge-based strategy and the fluency
heuristic both being applicable.

Results. The knowledge-based strategies account for people’s
inferences better than the fluency heuristic (see Figure 13). In
short, people seem to rely on knowledge rather than on the fluency
heuristic when these strategies’ cognitive niches overlap. This
allows them to make accurate inferences, because the knowledge-
based strategies’ validities are larger than the fluency validity.

How Accuracy Explains Strategy Choice When the
Fluency Heuristic Can Be Used But Knowledge Is Not

Available

Although people tend not to apply the fluency heuristic when
they instead can rely on more accurate knowledge, our integrated
model suggests that they would do well to use this heuristic when
they cannot retrieve knowledge: As can be seen in Figure 9, the
fluency validity rises up to between .55 and .68 on tartle pairs,
depending on the objects considered. On tartle pairs, the fluency
heuristic can thus help people make more accurate inferences than
they would be able to achieve otherwise, for instance, by guessing.
To compare, the accuracy obtainable by relying on a random
guessing strategy is chance (i.e., .50). In fact, Experiment 1’s
participants correctly inferred which of two cities is larger in a
mean proportion of .61 (SE � .05) of the tartle pairs (95% CI on
the mean difference between .61 and .50 [.01, .20], n � 45), and

as can be seen in Figure 14A, the fluency heuristic accordance rate
rises to over .73 on tartle pairs, suggesting that people indeed
relied on the fluency heuristic on the tartle pairs.

Do People Adopt the Fluency Heuristic When They
Cannot Use Knowledge? Simulation 6

Observed data. To further validate that people rely on the
fluency heuristic on tartle pairs, we created a benchmark. In
Experiment 2, in an inference task, we asked students from Berlin
to make judgments about the fame of cities, namely, to infer which
of two cities would be recognized by a larger number of 100
randomly chosen students from Berlin. In one experimental con-
dition (between subjects), the instruct group, we instructed partic-
ipants to always apply the fluency heuristic on pairs of two
recognized cities. We used the fluency heuristic accordance rate
observed in this group to compare how well the fluency heuristic
predicts behavior in a second group, the no-instruct group, in
which we did not give any instructions on strategy use. In both
groups, participants completed the same recognition and general
knowledge tasks as in Experiment 1 (Tables 2 and 3).

Applying the timing model to the observed data. To model
people’s inferences with the fluency heuristic, we ran Simulation
6, which was identical to Simulation 5 with two relevant excep-
tions: First, we used the timing model to assess for each tartle pair
(rather than tartle–knowledge and knowledge pairs as was the case

Figure 12. Simulation 4. Fluency validity (vfh, solid lines) and validity of each of six knowledge-based
strategies (dotted lines; A: tally1, vt1; B: tally2, vt2; C: take-the-best, vttb; D: take-the-first-cue, vttfc; E:
take-the-first-value1, vttfv1; F: take-the-first-value2, vttfv2) for making inferences about cities’ size on those pairs
of cities where two strategies’ niches overlap, plotted as a function of the detection probability (PD) that a person
would be able to detect a difference in recognition times between two cities. To make the graph easier to read,
we enlarged the comparison between the fluency heuristic’s and tally1’s niches in Panel A; as can be seen in
Panels B–F, similar results emerged when comparing the fluency validity to all other knowledge-based
strategies’ validities where the fluency heuristic’s niche overlaps with each of these other strategies’ respective
niches. We modeled detection probabilities, participants’ perception of recognition times, their perception of
retrieval times of cues, and the validities by applying the timing model to each participant’s observed data
(Equations 9–11, 13). Data are collapsed across Experiments 1 and 3. In all panels, symbols show mean
detection probabilities and mean (
1 SE) validities, computed across participants and simulation runs of the
timing model. Some of the error bars are obscured by the symbols.
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in Simulation 5) the detection probability, PD, that a participant
would have been able to apply the fluency heuristic. Second, we
computed the fluency heuristic accordance rate on tartle pairs
conditional on the fluency heuristic being applicable (rather than
conditional on both this heuristic and other strategies being appli-
cable).

Results. The two groups did not differ in terms of the fluency
heuristic accordance rate on tartle pairs (see Figures 14B and 14C).
Rather, in both groups the accordance rate approximated that
observed on tartle pairs in Experiment 1 (see Figure 14A). Impor-
tantly, the accordance rate increased with the detection probability,
PD, that a person would have been able to apply the fluency
heuristic, which is consistent with the hypothesis that people
indeed use this heuristic on tartle pairs.

In short, consistent with our integrated model’s predictions
about accuracy, when people cannot retrieve knowledge, they
seem to employ the fluency heuristic. This helps them make more
accurate inferences than they could otherwise make by simply
guessing.

How Effort and Time Explain Strategy Selection
Between the Fluency Heuristic and Knowledge-Based

Strategies

Besides accuracy, the effort or time required to execute a strat-
egy can also influence strategy selection. In Simulation 3 (see

Figure 9), we illustrated that our integrated model allows us to
predict when trade-offs among these currencies of strategy use
need not occur. Next, we first validate the model’s predictions
further, showing that indeed less effort or time is required to
employ the fluency heuristic when applying it is likely to help a
person make accurate inferences. Second, we then use the model to
examine the choice between the fluency heuristic and knowledge-
based strategies, focusing on effort and time as currencies of
strategy selection.

When Is the Fluency Heuristic Easy to Use?
Simulation 7

Our integrated model predicts that a person using the fluency
heuristic is most likely to make correct inferences when differ-
ences in recognition times are easy to detect (see Figure 9). To
validate this prediction, we ran a simulation for the participants in
the instruct group of Experiment 2, where participants had been
instructed to always rely on the fluency heuristic when inferring
which of two cities was recognized by more students (see Table 3).
We expected that consistently using this heuristic would take them
less time the more likely it was that the heuristic would help them
make a correct inference.

Applying the timing model to the observed data. As in
Simulation 5, in a first set of simulation runs, we used the timing
model to compute for each participant’s pairs of recognized cities

Figure 13. Simulation 5. Accordance rate for the fluency heuristic (kfh, solid lines) and each of six knowledge-
based strategies (dotted lines; A: tally1, kt1; B: tally2, kt2; C: take-the-best, kttb; D: take-the-first-cue, kttfc; E:
take-the-first-value1, kttfv1; F: take-the-first-value2, kttfv2) in Experiment 1. Accordance rates are computed for
making inferences about city size on those pairs of cities where two strategies’ niches overlap and plotted as a
function of the detection probability (PD) that a person would be able to detect a difference in recognition times
between two cities. To make the graph easier to read, we enlarged the comparison between the fluency heuristic
and tally1 in Panel A; as can be seen in Panels B–F, similar results emerged when comparing the fluency
heuristic accordance rate to all other knowledge-based strategies’ accordance rates where the fluency heuristic’s
niche overlaps with each of these other strategies’ respective niches. We modeled the detection probabilities,
participants’ perception of recognition times, their perception of retrieval times of cues, and the accordance rates
by applying the timing model to each participant’s observed data (Equations 9, 10, 12, 13). In all panels, symbols
show mean detection probabilities and mean (
1 SE) accordance rates, computed across participants and
simulation runs of the timing model. Some of the error bars are obscured by the symbols.
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the detection probability, PD, that the participant would have been
able to detect a difference in recognition times and apply the
fluency heuristic. Deviating from Simulation 5, in a second set of
runs, we then computed three kinds of behavioral data conditional
on a participant having been able to apply the fluency heuristic in
that run. First, for each pair of recognized cities, we used the
timing model to assess which city the participant would infer was
recognized by more students, assuming the participant had used
the fluency heuristic. Second and third, on those pairs where the
participant had made an inference consistent with the fluency
heuristic, we also examined how many correct inferences the
participant had made and assessed the time it took the participant
to make an inference (henceforth inference time). (To judge the
inferences’ correctness, we counted how many participants from
Experiments 1–3, N � 175, had recognized each city.) As we did
in Simulation 5, we then grouped the pairs into four bins, arranged
by quartiles, according to the previously computed detection prob-
abilities, PD. We computed (a) the fluency heuristic accordance

rate, (b) the proportion of correct inferences, and (c) the median
inference time across the pairs in a bin.

Results. Recall that participants were instructed to always use
the fluency heuristic. As Figure 15A shows, the fluency heuristic
accordance rate increased the easier it was to detect a difference in
recognition times and apply the heuristic. People were also more
likely to make correct inferences about the cities when it was easier
for them to detect a difference in recognition times (Figure 15B), and
it also took them less time to make inferences the easier it was for
them to detect a difference in recognition times (Figure 15C).

When Is the Fluency Heuristic Fast to Use?
Simulation 8

Figure 15 indicates that people are more likely to make accurate
inferences with the fluency heuristic the less time it takes them to
apply it. This suggests people may do well to apply the fluency
heuristic when forced to make quick decisions.

Figure 14. Simulation 6. Fluency heuristic accordance rate (kfh) for making inferences about city size (A:
Experiment 1) and city fame (B: Experiment 2, no-instruct group; C: Experiment 2, instruct group) on tartle pairs,
plotted as a function of the detection probability (PD) that a person would be able to detect a difference in recognition
times between two cities. Participants’ perception of recognition times, the detection probabilities, and the accordance
rates were modeled by applying the timing model to each participant’s observed data (Equations 9, 10, 12). In all
panels, symbols show mean detection probabilities and mean (
1 SE) accordance rates, computed across participants
and simulation runs of the timing model. Some of the error bars are obscured by the symbols.

416 MAREWSKI AND SCHOOLER



There is evidence that people switch to accessibility-based
rather than knowledge-based heuristics under time pressure (Pa-
chur & Hertwig, 2006). Additionally, a sense of familiarity or
fluency is often thought of as an automatic form of memory that is
more quickly available than recollection, which entails effortful
and intentional retrieval processes (Atkinson & Juola, 1974; Gron-
lund & Ratcliff, 1989; Hintzman & Curran, 1994; Jacoby, 1991;
Mandler, 1980; McElree, Dolan, & Jacoby, 1999; Ratcliff &
McKoon, 1989). Consistent with this literature, Hertwig et al.
(2008) hypothesized the fluency heuristic would be faster to apply
than knowledge-based strategies, which, in their view, depend on
slow and effortful knowledge retrieval. One might thus expect that

people will prefer the fluency heuristic over knowledge-based
strategies in situations of time pressure.

Our integrated model does not predict whether such a preference
will occur—such a prediction would depend, among other things,
on the amount of time pressure and on the specifics of the mech-
anism (e.g., cost–benefit or learning) implemented in our cogni-
tive niche framework—however, our model explains in what areas
of its niche such a preference for the fluency heuristic is most
likely to emerge. This is the case on tartle–knowledge pairs, where
differences in recognition times are the easiest to detect (see Figure
9; when comparing corresponding bins, the tartle–knowledge pairs
tend to be the farthest to the right). As Figure 12 shows, these are

Figure 15. Simulation 7. (A) Fluency heuristic accordance rate (kfh), (B) the proportion of correct
inferences participants made, and (C) inference times (in seconds) for making inferences about the fame of
cities in the instruct group of Experiment 2. Data are plotted as a function of the detection probability (PD)
that a person would be able to detect a difference in recognition times between two cities. Participants’
perception of recognition times for cities, the detection probabilities, and the accordance rates were
modeled by applying the timing model to each participant’s observed data (Equations 9, 10, 12). In all
panels, symbols show means (
1 SE) computed across participants and simulation runs of the timing
model. Some of the error bars are obscured by the symbols. Data are collapsed across tartle, tartle–
knowledge, and knowledge pairs of cities.
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also the pairs where people are the most likely to make as accurate
inferences by using the fluency heuristic as they can by relying on
a knowledge-based strategy (see the fourth bins).

Observed data. To explore whether there is evidence that a
preference for the fluency heuristic most likely emerges on tartle–
knowledge pairs with easily detectable recognition time differ-
ences, we ran Experiment 3. This experiment was essentially
identical to Experiment 1, the major exception being that we put
participants under time pressure in the inference task, giving them
only 900 msec to infer which of two cities is larger.

Applying the timing model to the observed data. We ran
the same simulation (No. 5) for Experiment 3 as for Experiment 1.
That is, we calculated the fluency heuristic’s and each of six
knowledge-based strategies’ accordance rates conditional on the
heuristic and a knowledge-based strategy both being applicable,
plotting each model’s accordance rate as a function of the detec-
tion probability, PD, that a person would have been able to apply
the fluency heuristic.

Results. On tartle–knowledge pairs, when people have al-
most a 100% probability of detecting a difference in recognition
times, the fluency heuristic predicts people’s inferences as well as
any of its knowledge-based competitors (see fourth bins in Figure
16). To compare, in Experiment 1, where people were not under
time pressure, the knowledge-based strategies predicted people’s
inferences better (see Figure 13). In short, consistent with our

integrated model’s predictions about effort and time, for situations
of time pressure, there is evidence that if there were a preference
for the fluency heuristic over knowledge-based strategies, this
preference would most likely emerge when differences in recog-
nition times are easy to detect and available knowledge is sparse.
In this situation the heuristic also most likely helps a person make
accurate inferences.

Zooming in on the Niches of the Recognition Heuristic
and Knowledge-Based Strategies: Regions of Accurate,

Effortless Inferences

Our integrated model not only maps out the accuracy, effort,
and time entailed by using the fluency heuristic, it also makes
corresponding predictions for other strategies, (a) providing the
currencies the cost– benefit, learning, and related mechanisms
use to explain the selection among simultaneously applicable
strategies and (b) enabling us to pinpoint regions in the strate-
gies’ niches where effort–accuracy trade-offs need not occur. In
the remainder of this article, we illustrate this by zooming in on
the recognition heuristic’s niche (see Figure 2H) before closing
with a glimpse of the knowledge-based strategies’ niches (see
Figure 2I).

Figure 16. Simulation 8. Accordance rate for the fluency heuristic (kfh, solid lines) and each of six
knowledge-based strategies (dotted lines; A: tally1, kt1; B: tally2, kt2; C: take-the-best, kttb; D: take-the-
first-cue, kttfc; E: take-the-first-value1, kttfv1; F: take-the-first-value2, kttfv2) in Experiment 3. Accordance
rates are computed for making inferences about city size on those pairs of cities where two strategies’ niches
overlap and plotted as a function of the detection probability (PD) that a person would be able to detect a
difference in recognition times between two cities. To make the graph easier to read, we enlarged the
comparison between the fluency heuristic and tally1 in Panel A; as can be seen in Panels B–F, similar
results emerged when comparing the fluency heuristic accordance rate to all other knowledge-based
strategies’ accordance rates where the fluency heuristic’s niche overlaps with each of these other strategies’
respective niches. We modeled the detection probabilities, participants’ perception of recognition times, and
the accordance rates by applying the timing model to each participant’s observed data (Equations 9, 10, 12,
13). In all panels, symbols show mean detection probabilities and mean (
1 SE) accordance rates,
computed across participants and simulation runs of the timing model. Some of the error bars are obscured
by the symbols.
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When Does the Recognition Heuristic Help Make
Accurate Inferences?

To zoom in on the recognition heuristic’s niche, we ran two
simulations. As these simulations show, the integrated model
predicts that the accuracy, effort, and time involved in applying
this heuristic vary systematically as a function of a person’s
ability to retrieve knowledge about an object as well as a
function of a person’s perception of the object’s recognition
time. Before reporting the two simulations, let us provide an
intuitive account.

As explained in Simulation 3, the correlation between encoun-
tering objects (e.g., Volkswagens) and acquiring knowledge about
them (e.g., German engineered) results in people being more likely
to retrieve knowledge about frequently encountered objects than
about infrequently encountered ones. Due to being encountered
more often, knowledge objects are likely to be more strongly
activated, and more quickly recognized, than tartle objects (see
Appendix C, Figure C3). In environments in which the probability
of retrieving knowledge additionally correlates with the criterion
to be inferred (e.g., car quality), knowledge objects also score on
average higher on the criterion than do tartle or unrecognized
objects. Because both knowledge and tartle objects are likely to
have larger criterion values than unrecognized objects,
knowledge–unrecognized pairs will tend to reflect larger differ-
ences on the criterion than tartle–unrecognized pairs. As a result,
people are more likely to score accurate inferences with the rec-
ognition heuristic on knowledge– unrecognized pairs than on
tartle–unrecognized pairs.11 At the same time, because knowledge
objects are more quickly recognized than tartle objects, applying
the recognition heuristic on knowledge–unrecognized pairs is
likely to be faster and less effortful than applying it on tartle–
unrecognized pairs. Finally, in such environments, not only a
person’s ability to retrieve knowledge about objects but also the
objects’ recognition times themselves correlate with the criterion.
Therefore, the recognition heuristic is most likely to help a person
to make accurate, fast, and effortless inferences the more quickly
an object is perceived as recognized.

Recognition Validity as a Function of Perceived
Recognition Times: Simulation 9

Applying the timing model to the observed data. To model
how the accuracy of inferences with the recognition heuristic
correlates with the retrieval of knowledge and people’s perception
of recognition times, we first grouped each participant’s objects
into tartle–unrecognized and knowledge–unrecognized pairs, us-
ing their responses in the recognition and general knowledge tasks
in Experiments 2–7. For each participant, we fed each tartle and
knowledge object’s recognition time into the timing model. In
doing so, we computed each object’s perceived recognition time,
expressed in pulses. Second, according to the number of pulses, we
further grouped each participant’s pairs into four bins, arranged by
quartiles. We calculated the recognition validity, vrh, for each
participant in each bin. This validity is the probability that a person
will score a correct inference by using the recognition heuristic. It
is estimated as the proportion of times a recognized object has a

larger criterion value than an unrecognized one, using Equation 11
as for all other strategies.

Applying the timing model to the data predicted by the
memory model. To generate the model predictions, we inte-
grated the memory and the timing models in a simulation. Specif-
ically, we first let the memory model predict hypothetical persons’
recognition and knowledge responses, including the recognition
times (PR, PK, Trecognition). We then processed these hypothetical
persons’ predicted data in the same way as we processed the
observed data, feeding them into the timing model and calculating
the predicted perceived recognition times (i.e., pulses) and the
predicted recognition validity for each hypothetical person.

Results. The integrated model of memory and time percep-
tion correctly predicts three important results (see Figure 17). First,
because knowledge objects tend to be recognized more quickly
than tartle objects, more pulses tend to be accumulated for the
recognized object in tartle–unrecognized pairs than in knowledge–
unrecognized pairs (the bins of the knowledge–unrecognized pairs
are the farthest to the left). Second, the fewer pulses that are
accumulated the larger the recognition validity will be. Third, the
recognition validity is larger on knowledge–unrecognized pairs
than on tartle–unrecognized pairs. These results suggest that peo-
ple should make the fastest and most accurate inferences on
knowledge–unrecognized pairs. Correspondingly, on these pairs
people would do well to rely most on the recognition heuristic,
which is a hypothesis we test next.

When Is the Recognition Heuristic Easy and Fast to
Use? Simulation 10

Applying the timing model to the observed data. To test
whether people are most likely to make fast and accurate infer-
ences in accordance with the recognition heuristic on knowledge–
unrecognized pairs, in Simulation 10 we processed the observed
data in a similar way to what we did in Simulation 9, a relevant
exception being that we computed three behavioral measures
across the pairs in each bin. First, for each participant, we calcu-
lated the recognition heuristic accordance rate (krh) in the inference
task, which is the proportion of inferences the participant made
consistent with the recognition heuristic. It is computed analo-
gously to all other strategies’ accordance rates, using Equation 12,
and counting how often a participant infers a larger criterion value
for a recognized city than for an unrecognized one. Second and
third, on those pairs where the participant had made an inference
consistent with the recognition heuristic, we also calculated the
proportion of correct inferences the participant had made and

11 Consistent with these intuitions, Hilbig and Pohl (2009), Marewski
(2008), and Marewski, Gaissmaier, Schooler, Goldstein, and Gigeren-
zer (2010) reported longer recognition times for tartle objects than for
knowledge objects. Marewski, Gaissmaier, Schooler, et al. also found a
correlation between the accuracy of inferences with the recognition
heuristic and people’s knowledge. However, Marewski, Gaissmaier,
Schooler, et al. and Hilbig and Pohl lacked models to predict these
phenomena, and in fact, Marewski, Gaissmaier, Schooler, et al.’s re-
ports of these phenomena were motivated exclusively by the simula-
tions reported in the current article. With our integrated model we can
now predict these and other phenomena directly from environmental
data (e.g., Simulation 9; Simulation C3 in Appendix C).
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computed the median time it took the participant to make each
inference.

Results. Figure 18 shows the results for Experiment 1 and the
no-instruct group of Experiment 2, which are the data sets without
experimental manipulations (such as instructing people to use the
fluency heuristic). Consistent with our integrated model’s predic-
tions, people were most likely to make inferences in line with the
recognition heuristic on knowledge–unrecognized pairs (Panel A).
On these pairs their inferences were also the most accurate (Panel
B) and made the fastest (Panel C).

It has been debated whether the recognition heuristic is an
adequate model of behavior (cf. Marewski, Pohl, & Vitouch, 2010,
2011). For instance, when both recognition and knowledge are
acquired naturally, outside the laboratory, as is the case in the type

of memory-based inference task we employ in our studies, recog-
nition heuristic accordance rates have been found to vary as a
function of knowledge. This and related findings have led several
researchers to suggest that other (e.g., knowledge-based) decision
strategies should account for people’s inferences better than the
recognition heuristic does (e.g., Hilbig & Pohl, 2009; Newell &
Fernandez, 2006; Pohl, 2006). Yet, until recently no study has
actually tested a computationally specified knowledge-based strat-
egy (or any other model of decision-making processes) against the
recognition heuristic in this type of memory-based inference task.
The only study that conducted corresponding formal comparative
model tests, for this type of task, found that neither knowledge- nor
accessibility-based strategies predicted people’s inferences as well
as the recognition heuristic does (Marewski, Gaissmaier, Schooler,

Figure 17. Simulation 9. Recognition validity (vrh) as a function of the pulses a person would perceive when
recognizing the tartle city and when recognizing the knowledge city in tartle–unrecognized and knowledge–
unrecognized pairs, respectively. Predicted data were generated by the integrated memory and timing model
(Equations 5–9, 11; e.g., PR, PK, Trecognition, vrh). The timing model (Equations 9 and 11) was also applied to each
participant’s observed data. (A) Predicted and (B) observed data for inferring cities’ size in Experiments 2 and
3. (C) Predicted and (D) observed data for inferring countries’ gross domestic product in 2006; companies’
market capitalization on May 31, 2007; diseases’ fame; and politicians’ fame in Experiments 4–7. In Panels C
and D, the data are collapsed across the four different types of objects. (A, C) Mean (
1 SE) predicted validities
and mean predicted pulses computed across simulation runs of the integrated model. (B, D) Mean (
1 SE)
observed validities and mean observed pulses computed across participants and simulation runs of the timing
model. Some of the error bars are obscured by the symbols.
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et al., 2010). This also holds true for the knowledge–unrecognized
and tartle–unrecognized pairs from our current Experiment 1,
which Marewski, Gaissmaier, Schooler, et al. (2010) reanalyzed,
and for which we reported the simulations of the integrated model
above. These simulations show how the recognition validity, rec-
ognition times, and people’s perception of recognition times co-
vary with knowledge, providing a rationale for why one might
expect recognition heuristic accordance rates and inference times
to behave the way they do (see Figure 18; cf. Erdfelder, Küpper-
Tetzel, & Mattern, 2011). In short, our integrated model predicts
when people would do well to rely on the recognition heuristic, and

Marewski, Gaissmaier, Schooler, et al.’s comparative model tests
provide some evidence to suggest that they do rely on this heuristic
in the situations specified by the integrated model.

When Are Knowledge-Based Strategies Easy to Use?
Simulation 11

Several studies have examined the accuracy, effort, and time
involved in using knowledge-based strategies such as take-the-best
or tally2 (e.g., Gigerenzer & Goldstein, 1996; Hogarth & Karelaia,

Figure 18. Simulation 10. (A) Recognition heuristic accordance rate (krh), (B) the proportion of correct inferences
participants made, and (C) inference time (in seconds) for inferences about cities as a function of the pulses a person
would perceive when recognizing the tartle city and when recognizing the knowledge city in tartle–unrecognized and
knowledge–unrecognized pairs, respectively. Data are aggregated across Experiment 1 and the no-instruct group of
Experiment 2. Participants’ perception of pulses and the resulting accordance rates were modeled by applying the
timing model to each participant’s observed data (Equations 9 and 12). In all panels, symbols show means (
1 SE)
computed across participants and simulation runs of the timing model. Some of the error bars are obscured by the
symbols. Note that participants made their inferences faster on knowledge–unrecognized pairs than on tartle–
unrecognized pairs (C). This inference time difference is consistent with our memory model, which correctly predicts
faster recognition times for knowledge objects than for tartle objects (see Figure C3, Appendix C).
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2007; J. W. Payne et al., 1993). Yet, little emphasis has been
placed on how these strategies depend on the way the environment
interacts with memory and other cognitive capacities. With our
integrated model it is now possible to make systematic predictions
about the knowledge-based strategies’ cognitive niches. For in-
stance, we can quantify the overlap between niches (e.g., Simula-
tion 2). We can also examine in which regions of their niches the
knowledge-based strategies help people make accurate and effort-
less inferences. In what follows, for the purpose of illustration we
briefly sketch out one such analysis of accuracy and effort. For
simplicity, in this exploratory analysis, we focus on the data
observed in our experiments, assessing how different strategies’
validities behave as a function of how easy it is to apply these
strategies.

Integration strategies such as tally1 or tally2 are likely to be
easier to apply when the sums of cue values differ greatly between
two objects. The intuition is that it is easier to tell which of two
objects (e.g., two cars) scores higher on a criterion (e.g., quality)
when one exhibits a large number of positive cue values (e.g., a
Mercedes: high price, famous brand) and the other does not than
when both objects exhibit many positive cue values (e.g., Mer-
cedes and BMW: both are expensive, famous, etc.).

In lexicographic and sequential-sampling strategies, the effort
involved in using them is likely to increase with the number of
comparisons of cue values that need to be considered to make an
inference. For instance, if the first pair of cue values considered is
sufficient to make an inference, then this inference is likely to take
less time than if lots of cue values have to be searched through.
The number of cue values that need to be compared in a given
situation varies among these strategies; recall that the lexico-
graphic take-the-best heuristic sorts cues according to their valid-
ities and that sequential-sampling strategies such as take-the-first-
cue or take-the-first-value1, in contrast, rely on people’s
perception of retrieval times of cue values (see Table 1).

Applying the timing model to the observed data. To ex-
plore in what regions of these knowledge-based strategies’ niches
effort–accuracy trade-offs need not be made, we ran a simulation
for Experiments 1 and 3, which are the data sets where we assessed
participants’ knowledge about cues. First, we organized each par-
ticipant’s objects into tartle–knowledge and knowledge pairs and
assessed how effortful it would have been for a participant to use
a strategy. For the integration strategies, we computed differences
between sums of cue values as a measure of effort, and for the
lexicographic and sequential-sampling strategies the number of
comparisons of cue values that need to be considered prior to
making an inference. For the sequential-sampling strategies, this
required running the timing model, using each participant’s reac-
tion times observed for each cue value in the cue-knowledge tasks
as input for this model. Second, for each participant and each
strategy, we selected those tartle–knowledge and knowledge pairs
where a strategy was applicable. We grouped those pairs where a
strategy was applicable into four bins, arranged by quartiles,
according to the previously calculated effort involved in using the
strategy. In each of the bins, for each participant, we calculated
each strategy’s validity (vt1, vt2, vttb, vttfc, vttfv1, vttfv2). This sim-
ulation procedure yields each strategy’s validity conditional on the
strategy being applicable.

Results. As Figure 19 shows, on tartle–knowledge pairs—
except for take-the-first-cue, which always decides on the first

comparison of cue values (Panel D)—each strategy’s validity
decreases the more effortful it is to rely on the strategy. This
pattern holds regardless of whether a strategy sums cue values
(e.g., tally1; Panel A) or consults them sequentially (e.g., take-the-
first-value1; Panel E). In short, within these areas of their niches,
it is likely to be easier for a person to apply a knowledge-based
strategy when using such a strategy is also most likely to help that
person make accurate inferences.

At the same time, Figure 19 demonstrates that the niches of the
six knowledge-based strategies differ. For instance, the validities
of the lexicographic and sequential-sampling strategies (Panels
C–F) remain almost constant as a function of effort on the knowl-
edge pairs. In contrast, the validities of two integration strategies
(Panels A, B) fall sharply as effort increases on the knowledge
pairs as well as on the tartle–knowledge pairs.

A comparison of Figures 19 and 12 illustrates a general meth-
odological point: It is useful to examine both a strategy’s niche
separately (as in Figure 19) and those regions of the niche where
it overlaps with the niches of other strategies (as in Figure 12). For
instance, in Figure 12A, the tally1 validity increases only a little as
a function of the probability, PD, of a person being able to detect
a difference in recognition times. In Figure 19A, in contrast, the
tally1 validity increases as a function of increasing differences in
sums of cue values, corresponding to its own currency of effort.
From the perspective of the cognitive niche framework this is to be
expected, because the ability to detect recognition time differences
reflects the effort involved in applying the fluency heuristic, but
not necessarily the effort involved in using tally1.

General Discussion

We join others in stressing the importance of studying how the
cognitive system nestles into the environment (Anderson, 1990;
Anderson & Milson, 1989; Dougherty et al., 2008; Gibson, 1979;
Gigerenzer, Hoffrage, & Kleinbölting, 1991; Howes, Lewis, &
Vera, 2009; Howes, Vera, & Lewis, 2007; Oaksford & Chater,
1998; Shepard, 2001; Simon, 1956; Stewart, Chater, & Brown,
2006; Vicente, 2003). Using the ACT–R cognitive architecture, we
modeled how the natural environment, outside the laboratory,
structures memory. Memory, in turn, interacts with time percep-
tion and other cognitive capacities, yielding the information on
which decision strategies operate. Building an integrative, ecolog-
ical model of the interplay between the environment, memory,
time perception, and decision strategies, we were able to show how
this interplay guides strategy selection by determining what strat-
egies from our repertoire (a) are applicable, as well as (b) how
accurate they will be and (c) how much effort and time will be
involved in using them.

We use the term cognitive niche to characterize the situations in
which a strategy can be applied, for instance, because sufficient
knowledge can be retrieved or differences in recognition times
detected. In particular, we demonstrated that the niches of the
strategies in our repertoire may not fully overlap. That is, not all
strategies will always be applicable simultaneously, thus simpli-
fying strategy selection. At the same time, we showed what re-
gions in the strategies’ niches will allow people to make accurate,
fast, and effortless inferences.

To elaborate our cognitive niche framework, we considered
selecting among classic strategies, including knowledge-based in-
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tegration strategies, knowledge-based lexicographic strategies,
knowledge- and accessibility-based sequential-sampling strate-
gies, and purely accessibility-based strategies. For instance, we
showed that the fluency heuristic is most likely applicable when a
person has little or no knowledge about the objects in question. In
such situations of limited knowledge, differences in recognition
times tend to be easy to detect, favoring the applicability of the
fluency heuristic. A person is less likely to be able to apply this
heuristic when knowledge is abundant, because in this case dif-
ferences in recognition times tend to be harder to notice. As it turns
out, this is also a situation where knowledge-based strategies tend
to help a person more to make accurate inferences than the fluency
heuristic.

In the remaining sections of this article, we position our cogni-
tive niche framework in broader theoretical and methodological
contexts, discussing its connections to (a) complementary ap-

proaches to strategy selection, (b) the robustness of biological
systems, (c) the ecological rationality of decision strategies, and
(d) the development of memory models.

Cognitive Niches: A Complementary Approach to
Strategy Selection

Much progress has been made in our understanding of strategy
selection, for example, by assuming that people trade the accuracy
of adopting a strategy against the effort and time required to use it
(i.e., as in the cost–benefit approaches, e.g., J. W. Payne et al.,
1988, 1993) or by describing the learning processes involved in the
strategy’s selection (e.g., Busemeyer & Myung, 1992; Erev &
Roth, 2001; Rieskamp & Otto, 2006). By mapping out the niches
where different strategies are applicable, our cognitive niche

Figure 19. Simulation 11. (A) tally1, (B) tally2, (C) take-the-best, (D) take-the-first-cue, (E) take-the-first-value1,
and (F) take-the-first-value2 validities (vt1, vt2, vttb, vttfc, vttfv1, vttfv2) for inferences about cities’ size as a function of
the effort entailed in applying each of the strategies. For all strategies, on the left-hand side of the x-axis the least effort
is required to apply a strategy, on the right-hand side the most. For the sake of this illustrative analysis, for tally1 and
tally2, effort is operationalized as differences between sums of cue values; for take-the-best, take-the-first-cue,
take-the-first-value1, and take-the-first-value2, effort is the number of comparisons of two cue values that need to be
considered. Participants’ perception of retrieval times of cue values and the resulting validities were modeled by
applying the timing model to each participant’s observed data (Equations 9, 11, 13). Data are collapsed across
Experiments 1 and 3. In all panels, symbols show mean effort and mean (
1 SE) validities, computed across
participants and simulation runs of the timing model. Some of the error bars are obscured by the symbols. Note that
on tartle–knowledge pairs, take-the-first-cue is the most frugal strategy: The first comparison of cue values always
consists of a positive or negative cue value for the knowledge object and an unknown cue value for the tartle object,
allowing take-the-first-cue to make a decision on the first comparison of cue values (see Figure 10). Therefore, on
tartle–knowledge pairs all four bins fall on top of each other (D). As it turns out, these four bins also fall exactly on
the first bin of the knowledge pairs. As a result, the tartle–knowledge pairs’ four bins and the knowledge pairs’ first
bin obscure each other.
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framework can be seen as a complement to these earlier ap-
proaches to strategy selection, rather than as an alternative.

For instance, neither Rieskamp and Otto’s (2006) model nor
other learning models, including ACT–R’s mechanism for produc-
tion rule selection, can easily explain how an adaptive, systematic
selection occurs in the absence of feedback and learning processes.
Moreover, like other approaches, Rieskamp and Otto’s reinforce-
ment learning model requires N � 1 free parameters for each of N
strategies in a person’s repertoire. To avoid an explosion in the
number of parameters, Rieskamp and Otto suggested clustering the
strategies into groups, such that the model selects between groups
of strategies, rather than between the individual strategies them-
selves. The cognitive niche framework provides a theoretical basis
for such grouping of strategies, because it allows modeling how
the interplay of the environment and the cognitive system reduces
the consideration set of strategies to those whose cognitive niches
overlap. At the same time, for those situations where two or more
strategies’ niches do not overlap, the cognitive niche framework
facilitates understanding how strategy selection emerges as a
bottom-up process—in the absence of feedback and learning—
solely through the interplay between the cognitive system and the
environment.

Moreover, by mapping out how the interplay between the cog-
nitive system and the environment shapes the regions in a strate-
gy’s niche where that strategy will help a person make accurate,
fast, and effortless decisions, the cognitive niche framework pro-
vides the currencies needed by the cost–benefit, learning, and
other earlier approaches to explain the selection among simulta-
neously applicable strategies. For instance, the cognitive niche
framework enables us to model when positive feedback on the
success of a strategy will be available for reinforcement learning
and when not. To illustrate this, the fluency heuristic will most
likely be reinforced when recognition time differences are easy to
detect, because it is in this situation that a person using the
heuristic is most likely to make accurate inferences.

Finally, with respect to the cost–benefit approaches, the cogni-
tive niche framework specifies the regions within a strategy’s
niche where people may engage in the effort–accuracy trade-offs
assumed by these approaches and where not. For example, the
recognition heuristic most likely helps a person to make accurate,
fast, and effortless inferences when a person has additional knowl-
edge about an alternative (e.g., a car brand).

The Trade-Off Between Strategy Selection and
Robustness in Biological Systems

The cognitive niche framework also connects to theories of
human and animal cognition beyond the approaches to strategy
selection discussed in this article. As is well known, a repertoire of
strategies allows an organism to respond flexibly to environmental
demands. At the same time, it makes an organism’s cognitive
system robust by creating redundancies in the system. To give an
example in terms of the strategies discussed in this article, when a
person’s ability to perceive time is impaired, he or she may still be
able to use knowledge-based strategies. In contrast, if the person
has no knowledge, he or she may be capable of applying the
fluency heuristic. This implies that there is a tension between
having the cognitive niches of strategies overlap completely,
which serves robustness, and having them be distinct, which

simplifies strategy selection. Correspondingly, a well-functioning
biological system will strike a balance by harboring a set of
strategies that have partially overlapping cognitive niches.

Partial redundancies are often observed in biological systems,
which can have multiple mechanisms that serve the same function.
Because the mechanisms depend on different components, they are
less susceptible to the failure of any single one (Kitano, 2004).
Hammerstein, Hagen, Herz, and Herzel (2006) provided the met-
aphor of a carpenter’s toolbox, which, rather than including several
identical screwdrivers, is more likely to contain a set of different
ones. Yet, if one is lost, another screwdriver will do reasonably
well. To illustrate this, pigeons seem to rely on at least two
mechanisms for navigation. The first depends on the sun. The
second exploits the magnetic field of the earth. On overcast days,
the first mechanism is hard to apply (Wiltschko & Wiltschko,
2003). Put in our terms, on sunny days, the niches of these
mechanisms overlap; on overcast days they do not. Similarly, deer
stags seem to make use of various mechanisms to judge a rival
prior to engaging in a fight, including vision and hearing. At a
distance, even when it cannot clearly see its rival, the stag can hear
the deepness of its rival’s roar, an indication of size. And as they
close the distance to fight, the stag can then both see how large its
rival is and still hear its roar (Hutchinson & Gigerenzer, 2005).
Finally, we all often use our visual, auditory, sensory, and olfac-
tory systems in parallel to explore our environment. For example,
we can judge an unknown dish’s taste by smelling it or by looking
at it. However, except for those few with synesthesia, we will not
“hear” how the dish tastes. That is, the niches of our sensory
systems do not completely overlap.

An Integrative, Cognitive Approach to Ecological
Rationality

In proposing the cognitive niche framework, we highlight that
the study of decision making warrants detailed models of decision
strategies, the cognitive capacities they draw on, and the environ-
ments in which both are embedded. For instance, within the simple
heuristics framework, much research has focused on what is
termed the heuristics’ ecological rationality, that is, whether and
how heuristics can exploit environmental structure (e.g., Gigeren-
zer et al., 1999; Hogarth & Karelaia, 2007; Katsikopoulos &
Martignon, 2006; Martignon & Hoffrage, 1999). Yet, little re-
search in this framework has implemented models of the cognitive
capacities that are responsible for mapping these environmental
structures into mental representations (see Dougherty et al., 2008;
Tomlinson, Marewski, & Dougherty, 2011). Rather, environmen-
tal structure has often been characterized in terms of the objective
properties of environments. To illustrate this, in their analyses of
different heuristics’ rationality, Gigerenzer and Goldstein (1996)
and many others (e.g., Brighton, 2006; Chater, Oaksford, Nakisa,
& Redington, 2003; Hogarth & Karelaia, 2006) studied how ac-
curate the heuristics are for inferring objects’ criterion values (e.g.,
a city’s size) from the objects’ attributes (e.g., whether a city has
an airport). In doing so, these researchers relied on objective
attributes, as they are listed in almanacs, rather than on what
people know about the objects, or how easily they can recall what
they know. Yet, as we have shown, it is the mental representations
of the environment that define the niche of a strategy, influencing
whether and when a person will be able to apply the strategy and
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how accurate, fast, and effortful using the strategy will be. If we
had just studied cities’ or other objects’ objective attributes, rather
than how they are mentally represented, then it would have been
hard to discover a number of results.

Let us name just a few. For example, prior to carrying out our
modeling efforts, we did not know (a) when a person using the
fluency heuristic would be most likely to make accurate and
effortless inference; (b) that a person using a knowledge-based
strategy would be more likely to make accurate inferences than a
person using the fluency heuristic; (c) that people’s inferences
would be best described by knowledge-based strategies; (d) that
the fluency heuristic is most likely applicable, easy to use, and
relied upon when there is little or no knowledge; and (e) that the
recognition heuristic is most likely to help a person make fast and
accurate inferences when knowledge is available, which is also (f)
the situation when the recognition heuristic predicts people’s in-
ferences better than knowledge-based strategies (Marewski,
Gaissmaier, Schooler, et al., 2010). In uncovering these results, we
found some of our initial expectations, formed prior to our mod-
eling efforts, did not hold up. For instance, on the basis of the
recognition memory literature, we and others had expected that
fluency-based information may have been prioritized over knowl-
edge (see Hertwig et al., 2008; Pachur & Hertwig, 2006).

An Ecologically Grounded Approach for Studying
Cognition

Since the publication of Woodworth’s (1938) classic textbook,
Experimental Psychology, the common practice in psychology of
using systematic design has prescribed the isolation and manipu-
lation of a few independent variables while all others are kept
constant or randomly varied (Dhami, Hertwig, & Hoffrage, 2004;
Hoffrage & Hertwig, 2006; Marewski & Olsson, 2009). The eco-
logically minded Brunswik (1955) argued that systematic design
destroys the natural covariation of variables in the organism’s
habitat, making it hard to generalize from such controlled labora-
tory experiments to the conditions under which the organism
actually performs in its environment.

In our investigation of the cognitive niches of decision strategies
we were careful not to disrupt the natural covariation of memory
variables. But as the strategies depend on the knowledge people
bring with them to the experiment about, say, cities or companies,
we needed to model in some detail how this knowledge is repre-
sented in memory. Using little more than web frequency data, we
developed an ecological ACT–R memory model for predicting (a)
how likely people are to recognize objects in the world, (b) how
likely they are to know something more about these recognized
objects, and (c) the associated recognition time distributions. The
accessibility of these simulated memories reflects not only the
natural environment, outside the laboratory, but also how easily a
person in the laboratory can retrieve like memories. Our work thus
aids developing quantitative, ecologically grounded models of
accessibility, availability, familiarity, fluency, and recognition—
notions that have been used, at least since Hume (1740/1978), to
account for behavior (e.g., Goldstein & Gigerenzer, 2002; Jacoby
& Dallas, 1981; Koriat, 1993; Tversky & Kahneman, 1973;
Winkielman et al., 1998).

To conclude, in modeling strategy selection, by necessity, we
contributed to research on how to build models of memory based

on environmental data (e.g., Anderson & Schooler, 1991; Burgess
& Lund, 1997; Griffiths, Steyvers, & Tenenbaum, 2007; Landauer
& Dumais, 1997), additionally tying one such ecological memory
model to models of decision strategies (e.g., Dougherty, Gettys, &
Ogden, 1999; Juslin & Persson, 2002; Pleskac, 2007) as well as to
models of other cognitive capacities like time perception. We hope
that one day such detailed models of cognition will allow us to
better understand how human decision making reflects the envi-
ronment in which we act. Perhaps it is only then that we will begin
to fully appreciate the subtle complexities of what we thought were
among the simplest of decisions.
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Appendix A

Methods of Experiments Conducted

All experiments were conducted in the Center for Adaptive
Behavior and Cognition at the Max Planck Institute for Human
Development in Berlin, Germany. Descriptive statistics for the
main experiments are reported in Online Materials A, Tables
OA1–OA5.

Experiment 1

Participants and Materials

Forty-nine right-handed persons participated in the study (43%
female; mean age 24.0 years, SD � 3.1). Participants received a
guaranteed minimum payment of €13 ($17) supplemented by a
performance bonus. We chose the 70 largest Austrian, British,
French, German, Italian, Spanish, and U.S. cities as candidate
stimuli for the experimental tasks. To obtain a clean measure of
recognition times we included only one-word city names of similar
word length (i.e., 5–8 letters). This resulted in 240 cities (see
Online Materials B, Table OB1), which we also used as stimuli in
Experiments 2, 3, and 10.

Procedure

In an inference task (cf. Table 2), we presented two cities on a
computer screen (one on the left side and the other on the right)
and asked participants to infer which city had more inhabitants.
Pairs of cities were randomly drawn for each country without
replacement such that each city could appear only once throughout
the task. In addition to the guaranteed minimum payment of €13,
participants received €0.04 ($0.05) for each correct response. Four
cents were subtracted from this additional payment for each in-
correct response. (No feedback on the correctness of the responses
was given until after the experiment.)

In a subsequent computerized recognition task, we gave partic-
ipants the name of one city at a time and asked them to judge
whether they had seen or heard of the city prior to participating in
the study. The response times for positive responses represented
our measure of recognition time.

After a 60-sec break, we presented all cities again in a comput-
erized general knowledge task. Here, we asked participants how
much they knew about each city. There were three possible an-
swers: (a) “never heard of it and never seen it before participating
in the study”; (b) “heard of it or seen it before participating in the
study but do not know anything else about it beyond recognizing
its name”; or (c) “heard of it or seen it before participating in the
study and know something about the city beyond simply recog-
nizing it.”

Last, in a cue-knowledge task, we asked participants to indicate
for each city whether it (a) has an international airport (airport

cue), (b) has a university (university cue), (c) is a significant
industry site (industry cue), and (d) is a world-famous tourist site
(tourism cue). Participants could respond with “yes,” “no,” or
“don’t know.” Previous participants from the subject pool of the
Center for Adaptive Behavior and Cognition considered these
knowledge cues as the most useful ones for inferring city size
(Pachur, Bröder, & Marewski, 2008). Participants received €0.04
for each correct response on top of the guaranteed minimum
payment. For incorrect responses, €0.04 was subtracted from this
additional payment. (No feedback on the correctness of the re-
sponses was given until after the experiment.) Participants did not
receive payment nor did they lose money for “don’t know” re-
sponses.

Within all tasks, the order of presentation of stimuli was ran-
domized. Each trial was preceded by a small fixation cross for
1,000 msec. We instructed participants to always fixate on this
cross until it disappeared and to respond as quickly and accurately
as possible upon stimulus onset. All responses were made on a
standard PC keyboard. Positive responses were always made with
the index finger of the right hand. Participants took a 20-sec break
every other 12 trials (inference, recognition, and general knowl-
edge tasks) and every other 12 question blocks (cue-knowledge
task), respectively.

Experiment 2

Participants and Materials

Seventy-one right-handed persons participated in the study
(62% female; mean age 24.9 years, SD � 2.8). Participants were
required to be enrolled in a university in Berlin. They received a
flat payment of €8 ($11). We assigned participants randomly to
two experimental groups (between subjects), labeled the instruct
group (n � 37) and the no-instruct group (n � 34), respectively.
Participants in the instruct group had been told to always use the
fluency heuristic. Participants in the no-instruct group received no
such instructions. Stimuli were the same cities used in Experiments
1, 3, and 10 (see Online Materials B, Table OB1).

Procedure

In the computerized experiment, participants were presented
first with an inference task, second a recognition task, third a
general knowledge task, and last an estimation task. The procedure
differed from Experiment 1 only in the following respects.

First, in the inference task, we asked participants to infer which
of two cities would be recognized by more of 100 randomly
chosen students from Berlin (instead of which city had more
inhabitants). In the instruct group, the instructions to use the
fluency heuristic were as follows:
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In pairs of cities in which you recognize both city names, that is, in
which you have heard of or seen both city names before, please
always use the following strategy: In such pairs, always decide that
the city name you recognize faster is also recognized by more stu-
dents.

In both groups, participants were not given additional payment for
correct responses, nor were their payments reduced for incorrect
ones. The inference task used in Experiment 2 follows the tradition
of Jacoby et al.’s (1989) classic “fame” studies, where fluency and
recognition processes were examined by asking people to judge
other people’s fame. Inferring other people’s recognition of city
names can be thought of as a judgment about the cities’ fame.

Second, we replaced the cue-knowledge task with an estimation
task. This task served to assess whether participants in both ex-
perimental groups considered retrieval fluency to be an equally
valid piece of information. Participants estimated the fluency va-
lidity for inferring which of two randomly drawn cities from a
country would be recognized by more students. The estimation
task was presented in a frequency format (e.g., “Imagine 100
randomly drawn pairs of cities. . . . In how many pairs is the city
you recognize faster the larger one. . .?”). As it turns out, the two
experimental groups did not differ in terms of participants’ esti-
mates of the fluency validity (both groups M � .72, SE � .01).

Experiment 3

Participants and Materials

Fifty-five right-handed persons participated in the study (66%
female; mean age 25.1 years, SD � 3.5). Participants received a
minimum payment of €8 ($11), which they could raise on the basis
of their performance in the experimental tasks. We used the same
set of cities as in Experiments 1, 2, and 10 as stimuli (see Online
Materials B, Table OB1).

Procedure

The procedure of the computerized experiment was identical to
that of Experiment 1, with the following exceptions in the infer-
ence task and the cue-knowledge task: In the inference task, in
which people inferred under time pressure which of two cities is
larger, each presentation of a pair of cities started with a blank
screen. After 2,000 msec, a first acoustic signal (Tone 1) sounded,
followed by a second signal 900 msec later (Tone 2) that coincided
with the presentation of a fixation cross. Again 900 msec later,
upon the sound of a third signal (Tone 3), the fixation cross was
replaced by a pair of cities. Participants were instructed to respond
as quickly and accurately as possible but not later than a fourth,
imaginary signal (Tone 4, imagined), 900 msec after the third
signal and stimulus onset. (We asked participants to imagine the
fourth signal to avoid possible interference of a real signal with the
ongoing processing of the city pair. A similar procedure is em-
ployed in lexical decision tasks—see Wagenmakers, Zeelenberg,
Steyvers, Shiffrin, & Raaijmakers, 2004—and has been used by
Pachur & Hertwig, 2006, to study how people use recognition

when making inferences under time pressure.) If a response was
markedly delayed, that is, 1,200 msec after the third tone, an
aversive tone sounded and the message “too late” appeared on the
screen. On top of the guaranteed flat fee of €8, participants were
paid €0.04 ($0.05) for each correct response. Incorrect responses
resulted in a subtraction of 4 cents from this additional payment.
(No feedback on the correctness of the responses was given until
after the experiment.) Regardless of whether the response was
correct, responses that were followed by the message “too late”
always resulted in a subtraction of 4 cents.

In the cue-knowledge task, we asked three of the same questions
as in Experiment 1, that is, whether a city has (a) an international
airport, (b) a university, and (c) significant industry. We dropped
the question about whether a city is a world-famous tourist site. (In
another study [Experiment 16 in Marewski, 2008], participants
gave the tourism cue the lowest validity rating of the knowledge
cues.)

To make sure that our participants considered fluency and the
knowledge cues to be valid for inferring city size, in a question-
naire we additionally asked them to estimate the fluency validity as
well as the validity of the cues from the cue-knowledge task (using
a frequency format; see Experiment 2). The order of tasks (i.e.,
estimates for fluency vs. for cues) was randomized. Both fluency
and the knowledge cues were considered to be valid for inferring
city size (range of mean estimated validities was .72 to .74, SE �
.01).

Eye-Tracking and Data-Cleaning Procedures in
Experiments 1–3

For the purpose of further analyses to be reported elsewhere, we
monitored participants’ eye movements in Experiments 1–3 during
the inference tasks, the recognition tasks, and the general knowl-
edge tasks. To allow for comparing results between the current
analyses and future ones, in our initial analyses (i.e., in Simulation
1 as well as in reanalyses of our data published elsewhere; e.g.,
Marewski, Gaissmaier, Schooler, et al., 2010) we used the data as
they were recorded and filtered by eye-tracking software and
algorithms. In addition, we excluded from the analyses those trials
for which the total duration of gazes on the screen computed from
stimulus onset to stimulus offset did not differ by more than 15%
from the response time chunked for the trial. In Experiment 1, this
resulted in an average exclusion of 2.96% of the trials per partic-
ipant (Mdn � 0.83%, SE � 0.98%). In Experiment 2, this resulted
in an average exclusion of 2.59% of the trials per participant
(Mdn � 0.00%, SE � 0.96%) and in Experiment 3 in an average
exclusion of 0.93% of the trials per participant (Mdn � 0.00%,
SE � 0.36%). The eye-tracking system we used (Tobii 1750
system) is completely noninvasive, and the experimental setup is
hardly distinguishable from a setup without an eye tracker. The
frame rate of the system is 50 Hz, and its accuracy has been tested
to 0.5° (Tobii Technology, 2005). Assuming an average distance
of 60 cm from the screen, in the inference task cities were sepa-
rated by a 19° visual angle between the midpoints of the two city
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letter strings (20 cm). We used the font Courier New (18 pixels per
letter) for the strings. Within each string, 4° separated letters from
each other. Due to a programming error, in later analyses of the
data, including all simulations except Simulation 1, we did not
exclude trials on the basis of the eye tracking.

Experiments 4–9

Experiments 4–7: Participants and Materials

We assigned 80 right-handed persons (55% female; mean age
24.6 years, SD � 3.9) at random to four experiments. In two
experiments, stimuli were either the names of 168 countries (Ex-
periment 4, N � 20; Table OB2 in Online Materials B; including
four filler stimuli) or the names of 80 companies (Experiment 5,
N � 21; Table OB3 in Online Materials B). Countries were
essentially those about which the German Federal Statistical Of-
fice provides data on the gross domestic product (see Online
Materials B for details). Companies were all 80 firms listed in the
DAX and MDAX, which are important German stock indices. In
Experiment 6 (N � 20), stimuli were the names of 54 infectious
diseases that are subject to registration in Germany (Table OB4 in
Online Materials B). In Experiment 7 (N � 19), stimuli were the
189 names of all past and current federal ministers and chancellors
of the Federal Republic of Germany from 1949 to 2007 (Table
OB5 in Online Materials B). Countries, companies, diseases, and
politicians’ names differed in word length (Tables OB2–OB5).
Participants’ payment differed between the experiments as a func-
tion of the length of the experiment (countries: €7 [$10]; compa-
nies: €6 [$8]; diseases: €5 [$7]; politicians: €8 [$11]).

Experiments 4–7: Procedure

Participants completed computerized recognition and general
knowledge tasks that were identical to those used in Experiments
1–3, except that the stimuli were countries, companies, diseases,
and politicians instead of cities. Participants took a 10-sec break
after 20 to 27 trials depending on the experiment.

Experiments 8 and 9: Participants, Materials, and
Procedure

One hundred eighteen and 83 participants completed only the
recognition task for diseases (Experiment 8; 60% female; mean
age 42.4 years, SD � 23.1) and politicians (Experiment 9; 59%
female; mean age 34.1 years, SD � 18.6), respectively. With these
data we also operationalized politicians’ and diseases’ fame,
namely, as the proportion of participants who recognized a disease
in Experiments 6 and 8 and a politician in Experiments 7 and 9,
respectively.

Experiment 10

Participants, Materials, and Procedure

Thirty-two right-handed persons (63% female; mean age 24.2
years, SD � 3.5) completed a reaction task. In this task, we
presented participants one of 240 cities (Table OB1 in Online
Materials B) at a time and asked them to press a key with their
right index finger immediately upon stimulus onset (i.e., without
reading the city’s name). All other features of this task were
identical to those of the recognition task employed in Experiments
1–3.

Appendix B

How to Predict Memory Retrieval From the Internet: Derivations of the Model Equations

Activation of Objects

Anderson (1993) showed that Equation 2 can be approximated
with

B � k � ln n � d ln Tcreation, (B1)

where d is a decay parameter that captures the degree of forgetting
in declarative memory, k is a constant, n is the number of times the
object represented by the chunk has been encountered, and Tcreation

is how long it has been since the chunk was first created. We
assume that Tcreation is the same for all objects such that a constant,
c0, can absorb k � �d ln Tcreation:

B � c0 � ln n. (B2)

We assume that the base-level activation, BW, as estimated from
the web counts, N, produced by the search engine Yahoo, can be
written as BW � c1 � ln N. It is related to the base-level activation,
B, as produced by a person’s true past encounters with objects:

B � b0 BW � c2 � b0 c1 � c2 � b0 ln N, (B3)

where the scaling parameter, b0, and the constant c2 capture the
relation between the two measures of base-level activation. We do
not model the influence of contextual information as represented
by the second term in Equation 1 (i.e., the Sji units of activation a
chunk i receives from each of the j elements of the current context,
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�
j

Sji). Rather, we assume that it contributes to the overall variance

in activation. Correspondingly, �
j

Sji can be replaced with a con-

stant c3 in Equation 1:

A � B � c3. (B4)

Combining Equations B3 and B4 gives

A � b0 c1 � c2 � b0 ln N � c3. (B5)

The terms b0 c1, c2, and c3 can be represented by a new constant,
c4, which gives our estimate of the activation, A, of the chunk
representing an object:

A � c4 � b0 ln N. (B6)

In the main text’s Equation 5, we refer to c4 as cR and b0 as bR to
signal that they are used to model the recognition of objects.
Inserting Equation B6 into Equation 3 gives the recognition prob-
ability, PR, that the chunk representing an object will be retrieved
and the object recognized:

PR �
1

1 � e���c4�b0 ln N���	/s. (B7)

Activation of Knowledge

Each encounter with an object can result in a person acquiring
knowledge about the object, which can be information co-
occurring with the object. Each encounter can increase both the
activation of the object and the activation of knowledge. We
assume that the activation, AR, of a chunk representing an object is
related to the activation, AK, of a chunk representing knowledge
about the object with

AK � c5 � b1 AR, (B8)

where the constant, c5, and the scaling parameter, b1, capture the
relation between the two levels of activation. In addition c5 also
captures the effects of interference from competing chunks. Com-
bining Equations B6 and B8 gives

AK � c5 � b1 c4 � b1 b0 ln N, (B9)

where the term c5 � b1 c4 can be replaced with a new constant, c6,
and the term b1 b0 with a new scaling parameter, b2, yielding the
final equation to model the activation of knowledge:

AK � c6 � b2 ln N. (B10)

In the main text’s Equation 6, we refer to c6 as cK and b2 as bK to
signal that they are used to model knowledge about objects.
Inserting Equation B10 into Equation 3 gives the knowledge
probability, PK, that knowledge about an object will be retrieved:

PK �
1

1 � e���c6�b2 ln N���	/s. (B11)

Adding Noise to the Retrieval Criterion

ACT–R assumes that retrieval variability depends on stochastic
variability in the activation level of a chunk. However, in principle,
this variability could instead be attributed to noise in the retrieval
criterion, �, as in the original rational analysis of memory (Ander-
son, 1990; Anderson & Schooler, 1991). Moreover, there could
even be variability in activation and the retrieval criterion. Then,
the total retrieval noise, s, in Equations 3, 5, and 6 can be divided
into criterion noise, s�, attributable to the retrieval criterion, and
activation noise, sA, attributable to the activation. We define

s � ��s�
2 � sA

2 �. (B12)

As Figure 4 illustrates, Equation B12 helps us model recognition
time distributions that are characterized by an increase in the mean,
median, and spread as a function of activation (cf. Ratcliff, 2002;
Wagenmakers & Brown, 2007). The shape of the distributions
predicted by our model also results from computing retrieval times
for each activation level conditional on a chunk being retrieved. In
Figure 4, we imposed this condition on the retrieval times by
estimating the portion of each object’s activation distribution that
falls above the retrieval criterion, and we computed a retrieval time
distribution from it (i.e., using Equation 7). This is the retrieval
time distribution given that the object is retrieved (cf. Equation 4).
Recall that we assume there is a probability distribution of retrieval
criteria, rather than just one criterion. Therefore, we split the total
retrieval noise into criterion noise and activation noise, which
determines the shape of the retrieval criterion and activation dis-
tributions, respectively. We then computed retrieval time distribu-
tions across the retrieval criterion distribution, generating the cor-
responding recognition time predictions using Equation 7.
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Appendix C

Additional Simulations

Appendix C consists of three additional simulations we ran to
test our model. As for all other simulations, details of the simula-
tion procedures are reported in Online Materials D.

Robustness of Model Predictions Across Proxies for
Effort: Simulations C1 and C2

In Simulation 3 (see Figure 9), we used the detection probabil-
ity, PD, as a proxy for how effortful it would be for a person to
apply the fluency heuristic. The detection probability is derived
from the timing model. To make sure that our conclusions from
Simulation 3 do not depend on the proxy for effort chosen (i.e.,
PD), in Simulation C1 we modified the design of Simulation 3. We
used the memory model alone, that is, without the timing model,
to predict how the fluency validity changes as a function of the raw
recognition time differences. In doing so, we assumed that the
fluency heuristic would be applicable when two objects differ in
recognition times. The intuition is that it should be easier to apply
the heuristic the larger the recognition time differences are.

Besides the detection probability PD, another measure of how
easy it would be for a person to apply the fluency heuristic is the
difference in pulses the person would notice when comparing the
objects. The intuition is that it is easier to tell two objects’
recognition times apart the larger their differences in pulses. Al-
though pulse differences are likely to correlate with detection
probabilities, these proxies are not identical. To further test
whether our results depend on the proxy chosen, in Simulation C2
we modified the design of Simulation 3, computing the fluency
validity as a function of pulse differences.

Results

Larger differences in raw recognition times and pulses are both
associated with a larger fluency validity (see Figures C1 and C2),

demonstrating that our results hold independently of the proxy
chosen.

Recognition Times as a Function of Knowledge:
Simulation C3

We let the memory model predict recognition times for tartle
and knowledge objects.

Observed Data

We used participants’ responses in the recognition and general
knowledge tasks of Experiments 2–3 to identify tartle and knowl-
edge objects. For each participant, we calculated the median rec-
ognition times for these objects, averaging the medians across
participants.

Data Predicted by the Memory Model

We used our memory model to predict hypothetical persons’ rec-
ognition, knowledge, and recognition times (PR, PK, Trecognition),
computing medians of predicted recognition times separately for
predicted tartle and knowledge objects. We averaged the medians
across simulation runs.

Results

Figure C3 shows the results for the cities of Experiments 2 and
3. As can be seen, the model predicts larger recognition times for
tartle objects than for knowledge objects.
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Figure C1. Simulation C1. Fluency validity (vfh) as a function of the recognition time difference (in seconds) between
two objects. Predicted data were generated by the memory model (Equations 5–8, 11; e.g., PR, PK, Trecognition, vfh). (A)
Predicted and (B) observed data for inferences about cities’ size. (C) Predicted and (D) observed data for inferences about
countries’ gross domestic product in 2006; companies’ market capitalization on May 31, 2007; diseases’ fame; and
politicians’ fame. We operationalized fame as the proportion of participants who recognized a disease in Experiments 6 and
8 and a politician in Experiments 7 and 9, respectively. In Panels C and D, the data are collapsed across the four types of
objects. For predicted data, symbols show mean (
1 SE) predicted validities and mean predicted median time differences
computed across simulation runs of the memory model. For observed data, symbols show mean (
1 SE) observed validities
and mean observed median time differences computed across participants. Some of the error bars are obscured by the
symbols.
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Figure C2. Simulation C2. Fluency validity (vfh) as a function of the pulse difference between two objects.
Predicted data were generated by the integrated memory and timing model (Equations 5–9, 11; e.g., PR, PK,
Trecognition, vfh). The timing model was also applied to the observed data in Experiments 2–7. (A) Predicted and
(B) observed data for inferences about cities’ size. (C) Predicted and (D) observed data for inferences about
countries’ gross domestic product in 2006; companies’ market capitalization on May 31, 2007; diseases’ fame;
and politicians’ fame. In Panels C and D, the data are collapsed across the four types of objects. For predicted
data, symbols show mean (
1 SE) predicted validities and mean predicted pulse differences computed across
simulation runs of the memory and timing model. For observed data, symbols show mean (
1 SE) observed
validities and mean observed pulse differences computed across participants and simulation runs of the timing
model. Some of the error bars are obscured by the symbols.
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Figure C3. Simulation C3. Recognition times (in seconds) for tartle cities and knowledge cities, (A) predicted
by the memory model (Equations 5–8; e.g., PR, PK, Trecognition) and (B) observed in Experiments 2 and 3. The
observed data are aggregated across these experiments. (A) Means (
1 SE) of predicted median times computed
across simulation runs of the memory model; (B) means (
1 SE) of observed median times computed across
participants. Some of the error bars are obscured by the symbols.
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