Revisiting Associative Learning

John Anderson Dan Bothell ? Christian Lebiere? Carnegie Mellon University

Rational Analysis: Bayesian Formula for Activation of Chunks in Declarative Memory

- Activation of a memory should scale with the log odds that the memory is needed.
- The Bayesian formula for the posterior odds of needing a memory i in a context:

$$\frac{P(N_i|Context)}{P(\sim N_i|Context)} = \frac{P(N_i)}{P(\sim N_i)} \times \frac{P(Context|N_i)}{P(Context|\sim N_i)}$$

$$\geq A_i = \log(\operatorname{posterior odds})$$

$$= \log(\frac{P(N_i)}{P(\sim N_i)}) + \sum_{C_j \in Context} \log(\left[\frac{P(C_j|N_i)}{P(C_j|\sim N_i)}\right]$$

$$= B_i + \sum_j W_j S_{ji}$$

 \succ The question of interest: How are the S_{ji}'s learned?

Rational Analysis: "Bayesian" Formula for S_{ii}

S_{ji} are calculated from a weighted average of a prior estimate, R_{ji}, and an empirical estimate, E_{ii}, of the likelihood ratio

$$\frac{P(C_j|N_i)}{P(C_j|\sim N_i)} \approx \frac{P(N_i|C_j)}{P(N_i)}$$

$$\gg S_{ji} = log\left(\frac{assoc \times R_{ji} + F(C_j) \times E_{ji}}{assoc + F(C_j)}\right) \text{ where } assoc \text{ is a parameter}$$
and $F(C_i)$ is the frequency of cue j.

- ► $R_{ji} = \frac{1/n}{1/m} = m/n$ for connected chunks (1 otherwise) where m is all chunks and n is number of chunks connected to cue j.
- This leads to the non-learning formula S_{ji}= S –log(n) for connected chunks and 0 otherwise.

 $\succ E_{ji} = \frac{F(N_i \& C_j) / F(C_j)}{F(N_i) / F}$ where F(X) denotes the frequency of X.

Some of the Problems with Formulation

- All experiences represented equally: Experimental effects like the fan effect would be drowned out if the huge prior set of associations were represented.
- Awkward combination of prior and empirical: The first time a j-i combination is experienced, there can be an abrupt shift from a prior of 0 to a large negative value.
- Enormous Storage Demands: Grows with the square of number of chunks although many combinations seem superfluous (e.g., 2+6=8 chunk priming a visual chunk).
- Irrelevant cues: Elements in a buffer that are there for irrelevant purposes (part of computation) get counted as cues both for creating associations and as retrieval cues.
- Role-Independent Associations: For instance 2 and 6 in the query 2+6=? spread as much activation to 2+4=6 as to the desired 2+6=8.

VISCA Talk: Use of S_{ii} for Causal Attribution

		Effect	
		Yes	No
Cause	Yes	а	b
	No	с	d

a, b, c and d are frequencies with whichsubjects observed the presence and absence ofa possible cause with the presence or absenceof an effect.

- ACT-R model attributed a cause-effect relationship when a pairing became reliable enough for the effect to be retrieved.
- Silve sji-hook for strength of association S_{ji} from cause (j) to effect (i): $S_{ji} = \log\left(\frac{P(j|i)}{P(j|\sim i}\right) = \log\left(\frac{a/(a+c)}{b/(b+d)}\right) = \log(a) - \log(a+c) - \log(b) + \log(b+d)$
- The model like Cheng's power-PC correctly predicts that subjects are largely insensitive to sample size but rather just relative sizes of a, b, c and d and that they weigh a and b more.
- Could this be used as a template for a general associative learning approach between cues (causes) and chunks (effects).
- Note the a, b, c and d in the the causal implementation where 1 plus the actual frequencies – a better way to incorporate priors.

Fan Effect Analysis

		Doctor-Bank	Hippie-Park	Hippie-Church	Others	The summed
Cues	Doctor	10	0	0	10	weights of all the Others could only be this weak because of decay.
	Bank	10	0	0	10	
	Hippie	0	10	10	10	
	Park	0	10	0	10	
	Church	0	0	10	10	
	Others	0	0	0	1000	

+1 prior				$S_{ji} = \log \left[\frac{F(N_i \& C_j) / F(C_j)}{F(N_i) / F} \right]$
		Doctor-Bank		$F(N_i)/F$
		Needed	Not Needed	F(Ni&Cj)/F(Cj)=11/22=.50
Doctor	Present	11	11	F(Ni)/F=11/1114=.01
	Absent	11	1081	S _{ii} =1.65
				5 _{ji} -1.05
		Hippie-Park		
		Needed	Not Needed	
Hippie	Present	11	21	F(Ni)/F=11/1114=.01
	Absent	11	1071	S _{ii} =1.35

Implementation Details

$$B_i + \sum_i W_j S_{ji}$$

- When counts and S_{ji}s are updated: Clearing of chunk from Imaginal or entry of chunk into Retrieval.
- 2. Cues (the j's) are the elements of the chunks in Imaginal.
- 3. The memories (i's) are only things created in Imaginal or retrieved.
- 4. The storage requirements are probably much less than the square of the number of all chunks.
- 5. Use the approximation: $S_{ji} = \log \left[\frac{F(N_i \& C_j) / F(C_j)}{F(N_i) / F} \right]$
- 6. The frequencies are seeded with non-zero priors.
- 7. $F(X) = a + \sum_{k \in Xupdates} t_k^{-d}$ where t_k is the time since the kth update involving X.

Potential Predictions of Proposal

- Fan effect: Interfering effect of number of things learned about an element on retrieval of those things when cued with the element.
- This interference really reflects the decrease in the probability of a memory in the presence of the cue and not number of interfering associations.
- Interfering effect of number of things learned about an element on retrieval of pre-experimental knowledge about the element.
- With power-law decay their influence on pre-experimental memories decreases with passage of time.
- If one practices retrieving a paired memory (A-B) from one element A, it will become more accessible from element A than B.

Problems with the Old Formulation

- All experiences represented equally: Experimental effect like the fan effect would be drowned out if the huge prior set of associations were represented.
- Awkward combination of prior and empirical: The first time a j-i combination is experienced, there can be an abrupt shift from a prior of 0 to a large negative value.
- Enormous Storage Demands: Grows with the square of number of chunks although many combinations seem superfluous (e.g., 2+6=8 chunk priming a visual chunk).
- Irrelevant cues: Elements in a buffer that are there for irrelevant purposes (part of computation) get counted as cues both for creating associations and as retrieval cues.
- Role-Independent Associations: For instance 2 and 6 in the query 2+6=? spread as much activation to 2+4=6 as to the desired 2+6=8.