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This talk

> Pilot data presented at the 2018 ACT-R workshop
> Newer and better results
> Displays the power of this approach (and a peek to

the future)
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Data vs. Models

In-House Example
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Task-Based Inference and Its limits

> Optimize parameters that fit a set of task data

> Depends on behavioral testing
— can be long and complicated
— Many many trials to get reliable measures

> Requires reasonable models of a task
— Garbage in, garbage out

> Parameters should be the same across tasks
— “Cognitive supermodels”, a la Salvucci
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A reductionist
approach

~ Individual differences
in biology

Individual differences =
different sets of parameters




What if we Could Bypass Behavior?

> Parameters should reflect basic neural activity

> Task-free neural measures exist
— Anatomical MRI, DTI, SPECT/PET...
— Most importantly, resting state functional connectivity
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Resting-State Functional Connectivity

> Participants rest for ~5 mins
while brain activity is
recorded

> Spontaneous fluctuations in
activity are highly organized

> |dentify networks of stably
connected regions

> Connectivity measures
predict individual variables

(Age, 1Q).

Fox et al., 2005, PNAS



EEG: Emotiv EPOC Headset

> Reasonable price (< 1K)

> Decent characteristics
— 14 channels @ 128 Hz
— Frequently used for BCls
> FEasy:
— Portable, wireless systems
— Saline-based electrodes
— ~15 mins for correct application
— Minimal training required
— Great for individual difference studies




EEG Plpelme

Decompose each epoch
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Gamma
30 -40 Hz

Raw data

4 ; Y I| "‘m

I
l‘u'o

'” \ M

(K

h" |9

Beta
13 -30 Hz

Alpha
8-13Hz

Divide mto 2-sec,
overlapping epochs

Theta
4 -8 Hz

Delta
<4 Hz

I Mo

\l/

\l/

E

-Q

Individual spectrogram

A>uanbaay
yoea jo Jamod ueapy

Remove epochs
with artifacts

10 20 30 40
Frequency (Hz)




Which Parameter?
Long-Term Memory Decay

> Perhaps the cornerstone of ACT-R
> The most fundamental learning mechanism
> Activation A is controlled by decay parameter d
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> Used Pavlik & Anderson’s (2005) equation
_ 5 4k
A= L= ceh+a

— Consistent across very short and very long intervals

— Accounts for spacing effects




How is o Measured?
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Predict when the chunk is forgotten
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If the chunk is remembered, reduce o
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If the chunk was forgotten, increase a
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Reliability of estimates

> Hedderik and Florian have done massive work
showing that a ...

— (Can be estimated fast (~ 12 mins, even when participants
do not make mistakes)

— Is consistent across materials (visual, verbal, complex facts)
— Is highly stable and reliable over time (test-retest reliability

between 0.5 and 0.8)

— (Sense etal., 2016, TopiCS)
> |n essence, ais psychological “trait”.




Can we decode a from
Resting-State QEEG?

> N =50 UW undergraduates
> All native English speakers
— Thisis important!
> Collected 5 minutes of resting state, eyes closed EEG

> Learned 25 pairs of English-Swahili words
— Same paradigm as Sense et al., 2016

> Learned 25 pairs of USA City-Maps associations
— Same paradigm as Sense et al., 2016




Correlations Between a and QEEG Power

Vocabulary
Eyes Closed

Correlation with



Correlations

(FDR-corrected)

> Many tests (14 channels

>

X 7 bands), so FDR was
applied.

Nine channels (Eight in
Maps) still showed
significant correlations
after FDR

All correlations in Low
and Upper Beta band
(13-18 Hz)
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..« But Can We Predlc Someone s a?

Individual differences
in biology

Different sets of
parameters




Lasso

> Common and simple machine learning technique
> Linear regression built-in penalty to reduce the number of
explanatory variables/overfitting:

min( lly - XBIL? )
> (Can be seen as a GLM with constrain
> The term trades off A accuracy and simplicity




Group Lasso

> When multiple variables are actually grouped
together, it makes sense to constrain them in groups

> In the case of EEG, groups are naturally formed by
frequency bands.
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Model fitting and validation

Absolute loss
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~ (simple regression)

(only intercept)
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Used cross-validation

— fit vs. generalizability
Used Leave-One-Out (LOOV)
Guarantees ideal lambda is
actually best estimate
(minimum absolute loss)




Rate of Forgetting

Predicted vs.
Observed

Cross-Va

lidation:

Predicted vs. Observed Rates of Forgetting
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Rate of Forgetting

0.4

Predicted vs.
Observed

Cross-Validation:
Predicted vs. Observed Rates of Forgetting
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What does it look like?

Beta Regressor Value
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What does it look like?

Beta Regressor Value

Upper Beta
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Why is this important?

> Forgetting rate has many practical applications
— Learning skills, scholastic achievement...
— See work by Hedderik, & Florian, Kevin Gluck, Michael
Collins

> But it has implications for disorders that affect
memory directly (Alzheimer’s) or indirectly (PTSD)

> Marieke will do a way better job talking about this!




Other research
(aka: shout-out to my students)

> Yinan Xu is applying this approach to fMRI data
> Briana Smith is using this approach to predict
hippocampal volume in PTSD
— See her upcoming ICCM talk and paper

> Patrick Rice is extending this approach to working

memory

— Mixture of parameters and strategy




Conclusion

Nomothetic Approach

Q) Group averages

Q) Low predictive power (“one size fits all”)
Q) Stale

|ldiographic Approach

v/ Individual differences
v/ High predictive power
v/ Possibilities are endless
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