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Personalizing human-machine interactions

° Human-machine interactions are typically static

o System policies and algorithms often tailored to populations, or average human behavior
o Sometimes based on erroneous assumptions/models of human behavior
o E.g., that humans make perfectly rational decisions.

o Can cognitive architectures be used to personalize human-machine interactions?
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Decisions from Experience

o Within a task, there are many instances of decisions from experience.

o We can leverage the very powerful modeling methodology of Instance-Based Learning to
accurately model decisions from experience

° Instance-Based Learning Theory?!
o Decisions made by generalizing across similar past experiences

o Contextual features
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MURI:

Insider Attack Game (IAG) Cyber Deception

° Game interface ° Model fit
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IBL ACT-R Model Logic

1) Target Selection 2) Attack Decision
Reward Present/
Penalty Absent  Attack
M-prob  Attack SESEEE { ----------- {
l l T | . .~ Saveto
.+ Signal | Decision | Outcome |
SR ' . memory
Context | Decision | Outcome b { ————————— |
1 _Blended
Blended @ Value
Value if <= 0, withdraw
Tareet with else, attack
A Feedback

highest projected |
outcome selected \ ---------------- i ......... :

Signal (present or absent) S R
Save to memory

l h




Aligning Individual Human and Model Runs

° Humans behave differently from one another
o They learn, and are adaptive

o Have unique cognitive biases that arise from unique experiences

° (e.g., confirmation bias)
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Aligning Individual Human and Model Runs

o Model-tracing/Knowledge-tracing?! Model System Human

o Run model alongside human

> Predict human decisions »
—>feed data to system

o Adapt system
—>then human makes decision

o Add/modify chunks to match human
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Aligning Individual Human and Model Runs
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Coghnitive Signaling - Costs and Benefits

° Humans lose trust in the signal when catching it being deceptive
° Restore trust with blocks of truthful signals; but cost of giving free pass

o Optimize tradeoff between short-term cost and long-term gains:
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Model predictions vs human behavior
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Aggressive attackers report ignoring the signal when

making the attack decision
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What’s next?

° Future work aimed at optimizing adaptive signaling scheme

o Lessons from reinforcement learning
o Agent = signal
o Actions = present; withhold
o Goal = minimize expected outcome generated via blending

° For some participants, no matter how the signaling scheme changes, they ignore the
signal and therefore behavior will never change.

o Adapt coverage as well?
o Based on target selection preferences

° To accurately model some participants, we need to adapt the model beyond
adjusting declarative memory.

o Adapt model representation of chunks?




What other kinds of info can we use to adapt
models?

o Other patterns of behavior (e.g., selection preferences)

o Underlying cognitive states (proxy for mental model?)
o Distribution of instances in memory
o Activation of chunks
o Probability of retrieving instances
o Feature salience

° |f we can determine a feature is not important, we can exclude that feature from the
model representation.

o More accurate predictions

o Cognitive Salience
o Degree of influence of individual features
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Cognitive Salience

o Take derivative of blending equation with respect to each feature3

&T <context> Ry - @ Decision for attacking: [ ]
_J1, v>0
=0, v<0
Er_; Ry, (3) Blending:
T-1
§r 2 Bz v=2 PR
L @ Recall Probabilities:
P, = softmaz(M, (&, &r))
5 . @ Matching Score:
0 My (€ &) o Similarity(€or) 7
Declarative Memory
n n :
aSlm(fk, vi,k) aSlm(fk, vj,k)
S(Vtifk)zc Pix P) - ij P X Vit
£ fr = fr

h

3Somers, S., Mitsopoulos, K., Lebiere, C., & Thomson, R. (2019). Cognitive-Level Salience for Explainable Artificial Intelligence.

In Proceedings of the 17th Annual Meeting of the International Conference on Cognitive Modeling. Montreal, CA.



Personalized coverage using salience
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° This information could be used to adapt coverage

° Also, can be used to adapt model to make more accurate predictions
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Personalized signaling using salience
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° Also, can be used to adapt model to make more accurate predictions
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Conclusions

o Combination of model/knowledge-tracing techniques and IBL models provides efficient
method to personalize human-machine interactions

o Very accurate predictions of individuals
o Very little data (experience) needed to make them
o Efficient application
o General decision process; few production rules
o Typically only need to modify declarative memory
o Architecture provides invaluable information to personalize systems
o Explanations of behavior in addition to decision predictions

° Future research aimed at addressing scalability issues
o ACT-UP/pyACT-UP
o David Reitter, Christian Lebierel; Don Morrison?
o Vectorized memory for ACT-R
o Matthew Kelly3
o Vectorized IBL
o Konstantinos Mitsopoulos

IReitter, D., & Lebiere, C. (2010). Accountable Modeling in ACT-UP, a Scalable, Rapid-Prototyping ACT-R

Implementation. In Proceedings of the 2010 International Conference on Cognitive Modeling. Philadelphia, PA.
Zhttps://bitbucket.org/dfmorrison/pyactup
3Kelly, M. A., Arora, N., West R. L., & Reitter, D. High-dimensional vector spaces as the architecture of cognition.

Manuscript in submission as of September 2019. doi: http://dx.doi.org/10.31234/osf.io/ryvg2
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