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“(...) seeks to characterize mental
disorders in terms of aberrant

computations at multiple scales.”




Gold Standard: Reinforcement Learning

Redish, 2004, Science

Addiction as a Computational

Process Gone Awry
A. David Redish

Addictive drugs have been hypothesized to access the same neurophysiolog-
ical mechanisms as natural learning systems, These natural learning systems
can be modeled through temporal-difference reinforcement learning (TDRL),
which requires a reward-error signal that has been hypothesized to be carried
by dopamine, TDRL learns to predict reward by driving that reward-error
signal to zero, By adding a noncompensable drug-induced dopamine increase
to a TDRL model, a computational moded of addiction is constructed that over-
selects actions leading to drug receipt. The model provides an explanation for
important aspects of the addiction literature and provides a theoretic view-
point with which to address other aspects.

If addiction accesses the same neuro-
physiological mechanisms 1sed by normal
reinforcement-leamng systems (/-3), then ot
should be possible 10 construct a computational
model based on current remnforcement-leaming
theorics (4-7) that mapproprintely sclects an
“addictive” stimulus. In this paper, I present a
computational model of the behavioral con-
sequences of one effect of drugs of abuse,
which is increasing phasic dopamine levels
through neuropharmacological means, Many
drugs of abuse increase dopamine levels
vither directly [e.g., cocaine ()] or indirectly
[e.g., nicotine (%, 10) and heroin (/1)) A
neuropharmacologically driven increase in
dopamine is not the sole effect of these
drugs, nor is it likely to be the sole reason
that drugs of abuse are addictive. However,
this model provides an immediate expla-
nation for several important aspects of the
addiction literature, including the scositiv-
ity of the probability of selection of drug
receipt 10 prior drug experience, 10 the size
of the contrasting nondrug reward, and the
seasitivity but inelasticity of drugs of abuse
to cost

The proposed model has its basis in

in order o accommaodate the leaming algo-
rithm (6, 7); however, animals (including
humins) show hyperbolic discounting of
futare rewards (/2. 13). This will be
addressed by including multiple discounting
time scales within the model (N;
In poral-difference rei

learming (TDRL), an agent (the subject)
traverses o world consisting of a limited
number of explicit states. The state of the
world can change because of the action of
the agent or as a process inherent in the
world (e, external to the agent). For
example, a model of delay conditioning
may include an interstimulus-interval state
(indicated to the agent by the observation of
an ongoing tone); after a set dwell time
within that state, the world transitions to a
reward state and delivers 4 reward to the
agent, This is an example of changing stute
because of processes external to the agent. In
contrast, in a model of FRI conditionmng, an
agent may be in an action-avalable state
(indicated by the observation of a lever
available to the agent), and the world will
remain in the action-available state antil the
ugent tukes the action (of pushing the lever).

pected and observed changes in value (6)
This signal, termed 8. can be used to leam
sequences that maximize the amount of
reward received over time (6). 8 is not equiv-
alent to pleasure; mstead, it is an internal
signal indicative of the discrepancy between
cxpectations and observations (35, 7, /5),
Esseotially. if the change in value or the
achieved reward was better than expected
(&> 0), then one should increase the value of
the state that led to it If it was no different
from expected (3 = 0), than the sinmtion is
well learned and nothing needs to be changed.
Because § transfers backwurd from reward
states 1o anticipatory states with leaming,
actions can be chained together to leamn se-
quences {6). This is the heart of the TDRL
algorithm (4-7),

TDRL leams the value function by
caleulating two equations as the agent takes
each action. If the agent leaves state S, and
eoters state 3, at time 4, at which time it
receives reward R(S)). then

8(0) = Y'IR(S) + VIS — V(Se) (2

where ¢ indicates raising the discounting
factor ¥ by the delay o spent by the animal in
state 8, (14). 14S,) is then updated as

V(Si) «= V(Si) + nyd {3)

where 1, 1s a leaming rate parameter.

Phasic increases in dopamine ure seen
afler unexpected natural rewards (/41 how-
ever, with leaming. these phasic increases
shift from the time of reward delivery to
cuing stimuli (/4). Transient increases in
dopamine are now thought to signal changes
in the expected future reward (.e., unexpect-
ed changes in value) (4, /6). These increases
can occur either with unexpected reward or
with unexpected cue stimuli kaown to sig-
nal reward (/6) and have been hypothesized
to signal & (4. 7. 16). Modcels of dopamine
ignaling as & have been found 10 be
cnmpanhlc with many aspects of the data
(4, 5,16, 17).

Maia & Frank, 2016, Nat Neurosci
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From reinforcement learning models to
psychiatric and neurological disorders

Tiago V Maia'? & Michael ] Frank**

Over the last decade and a half, reinforcement learing models have fostered an of the
functions of dopamine and cortico-basal ganglia-thalamo-cortical (CBGTC) circuits. More recenlly, these models‘ and the insights
that they afford, have started to be used to understand important aspects of several i that

involve disturbances of the dopaminergic system and CBGTC circuits. We review this approach and its existing and potential

applications to Parkinson's disease, Tourette's disorder, and
preclinical animal models used to screen new ic drugs. The 's proven and i power bodes
well for the i growth of iatry and

The limitations of the state-of-the-art in nasology i psychistry have been
much debated in the context of the development of the new edition of the
anm»ln uml Statistical Manual of Mental Disorders (DSM). There |s

P £ that the current symptom-based system of das-
sification must eventually be replaced with a system based on p.nhn

interactions: habits, goal-directed actions and their interactions: and the
inter-related issues of incentive salience, motivation and vigor™~?.

Organizing behavior in ways that obtaln outcomes appropriate for
the current motivational state (for example. acquiring food if hungry)
and that avoid harmful outcomes is crucial for survival and is therefore

physiology'. However, the current und ding of the

and genetics of psychiatric disorders remains too limited to form :hr
backbone of nosology”. This limited understanding is also reflected in
the state-of-the-art in treatment, with most psychiatric medications
having been found by serendipity, rather than through rational design.
Neurology typically deals with disorders with better understood ctiology
{for example, loss of d inergic neurons in Park s disease), but
cven then it ks often undmr how these ctiological processes produce
complex patterns of symptoms and why treatments can alleviate some
deficits while exacerbating, or even cxusing, others™. Part of the problem
s the complexity of the beain and mind and the many Jevels of analysls
that span the two. Computational models are a valuable toal for taming

acentral principle of the nervous system. Not surprisingly,
then, disturbances of the dopaminergic system and CRGTC circuits
have a key role in several psychiatric and neurological disorders.
Reinforcement learning models have recently started to be applied 1o
these disorders and have been shawn to have substantial explanatory
and predictive power' ', The approach builds on an understand-
ing of the computations that these circuits perform in healthy indi

viduals and investigates how pathophysiological processes alter these
computations, producing symptoms. We therefore start by reviewing
the computational neurabiology of the normal functioning of these
clrcuits, We then discuss several disorders that have benefited or are
ripe to benefit from the use of reinforcement learning models. We




Can ACT-R contribute the missing piece?
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Intrusive Memories

> Emotionally charged memories that intrude in
everyday life and prevent normal functioning
> Staple of several disorders (depression, OCD, ...)

> Particularly studied in PTSD




The problem: Not all patients are equal
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ACT-R has an excellent model of memory!
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Memory is rational and elastic

Activation over time
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Incorporating emotions and memory

> Activation tracks need probability, A. ~ P(i| Q)
— Assumes all memories are created equal.
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Not all memories are equal!

(One-shot learning
at its finest)




Incorporating emotions and memory

> Activation tracks need probability, A. = P(i| Q)
— Assumes all memories are created equal.
— Some memories are intrinsically more important!

> A should reflect a memory's expected value, i.e.

A= P | Q) * Vi

> Old idea (e.g., West, Larue, and my 2004-self)




Implementation

> |n addition to slots, chunks are given a scalar
quantity, V

— Insight: Emotions have “survival value” (Panksepp)
> Vis actually normalized, given the rest of memories,

so that M(V) =1

> Code at github.com/UWCCDL/PTSD




Implementation
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This model is still rational,
but memories are inelastic

Activation over time
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Testing the model

> Abstract agent that simulates a few months of life
> Accrues random memories at fixed intervals
> Productions implement a perceive/retrieve/act

loop

— “Retrieve” replaces “Decide”
— Not too different from Christian’s IBL models




Testing the model

> At predefined time 7,.., a traumatic event PTE is
introduced
— Random memory, but V> 1

> We can now track down how often PTE is retrieved

out of context




Effects of PTE Value

Traumatic memories as a function of value V

Non-linear effect of trauma
(chronic vs. resilience)

Number of
intrusive memories




Disruption of cognitive functions

> Function: relevance of
a retrieved memory R
to the current situation
Q

> Measured as cos(R, Q)

> Traumatic memories
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Biological interpretation

> The PTSD field is looking for Cérféx\,. —
biomarkers AN

> Two targets:
— Amygdala/hippocampus circuit
— Prefrontal/hippocampus circuit

Amygdala."’ >H4ippocampus

W




Biological interpretation and findings
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Greater amygdala = greater effect of
trauma (greater value V)

Greater hippocampus = smaller effect of
trauma (smaller decay d)

Greater prefrontal volume = smaller
effect of trauma (greater spreading
activation W)

Greater working memory = smaller
effect of trauma (again, greater W)

UNIVERSITY of WASHINGTON



What’s next

> More simulations are running!

> Predicting PTSD from brain activity (should provide V
and d through neurometrics)
— ACT-R as the missing model between biomarkers and

outcomes
— With Katie McLaughlin

> Application: Optimizing presentation of traumatic

images to human raters w




Thank you!

Briana
Smith

Code at: http://github.com/UWCCDL/PTSD




