

uwin

LEARNING

Deriving an Architecture from Brain Data

Andrea Stocco¹, Zoe Steine-Hanson², Natalie Koh³, John Laird⁴, Christian Lebiere⁵, Paul Rosenbloom⁶ ¹ University of Washington, ² Oregon State University ³ Northwestern University, ⁴ University of Michigan ⁵ Carnegie Mellon University, ⁶ University of Southern California

Testing architectures with brain data

Task-based approach:

- Find a task that looks different in two architectures
- 2. Find a way to derive **neural** predictions
- 3. **Compare** observed vs. predicted data

W

Architecture: We should be able to see it

A Standard Model of the Mind: Toward a Common Computational Framework Across Artificial Intelligence, Cognitive Science, Neuroscience, and Robotics

John E. Laird, Christian Lebiere, Paul S. Rosenbloom

■ A standard model captures a community consensus over a coherent region of science, serving as a cumulative reference point for the field that can provide guidance for both research and applications, while also focusing efforts to extend or revise it. Here we propose developing such a model for humanlike minds, computational entities whose structures and processes are substantially similar to those found in human cognition. Our hypothesis is that cognitive architectures provide the appropriate computational abstraction for defining a standard model, although the A mind is a functional entity that can think, and thus support intelligent behavior. Humans possess minds, as do many other animals. In natural systems such as these, minds are implemented through brains, one particular class of physical device. However, a key foundational hypothesis in artificial intelligence is that minds are computational entities of a special sort — that is, cognitive systems — that can be implemented through a diversity of physical devices (a concept lately reframed as substrate independence [Bostrom 2003]), whether natural brains, traditional generalpurpose computers, or other sufficiently functional forms of hardware or wetware. Laid, Lebiere, & Rosenbloom, 2017, *AI Magazine*

The CMC: Structural components

Can we see the CMC in neural data?

- > The CMC makes predictions about how components are connected
- > This should be reflected in patterns of functional connectivity between regions
- > It should be independent of the task

The Methods

UNIVERSITY of WASHINGTON

What do we need?

- > Need a method to:
 - Identify architecture components with brain structures
 - Derive neural predictions from the architecture
 - Compare between alternative architectures

What do we need?

> Need a method to:

- Identify architecture components with brain structures
- Derive neural predictions from the architecture
- Compare between alternative architectures

Large-scale component identification

UNIVERSITY of WASHINGTON

What do we need?

- > Need a method to:
 - Identify architecture components with brain structures
 - Derive neural predictions from the architecture
 - Compare between alternative architectures

Creating a network model

UNIVERSITY of WASHINGTON

Implementing the network model: Dynamic Causal Modeling

Estimating the dynamic model

- > Removing **modulatory** terms yields a **linear model**
 - $dy/dt = Ay + \sum_{x} B[i, y] + Cx + \sum_{y} D[j, y]$
 - dy/dt = Ay + Cx
- > A and C estimated through Expectation/Maximization
- > Variational Bayes (older but faster) instead of MCMC (newer but slower) to calculate PDFs

What do we need to test the CMC?

- > Need a method to:
 - Identify architecture components with brain structures
 - Derive neural predictions from the architecture
 - Compare between alternative architectures

Alternatives 1 and 2: Hierarchical, recursive architecture

Alternatives 3 and 4: Hub & Spoke brain architectures

Comparing architectures

- > Many criteria exists
 - AIC, BIC, Log-likelihood...
- > Here, Bayesian approach: Posterior probability that a model is true, given the data
 - Each architectures' PDF is modeled as a **Dirichlet** distribution ~ Dir(α)
 - Two metrics: expected and exceedance probabilities.

Comparing models

The Data

UNIVERSITY of WASHINGTON

The Human Connectome Project

- > Contains high-quality neuroimaging data:
 - 1,200 Adult Participants (July 2018)
 - 7 Different Tasks
 - 4 Resting State Sessions
 - fMRI + MEG data (subset)

The Human Connectome Project

- > Contains high-quality neuroimaging data:
 - 200 out of 1,200 Adult Participants
 - 6 out of 7 Different Tasks
 - 4 Resting State Sessions
 - fMRI + MEG data

Siemens Skyra, Multiband						
TR	720 ms	MB factor	8x	N Slices	72	
TE	33.1 ms	FOV	208 x 180 mm	Slice Gap	0mm	
FA	52°	In-plane res	2 x 2 mm	Slice thick	2mm	

Tasks

Task	Reference	Description	
Motor	Buckner et al. (2011)	Hand, arm, foot, leg, voice responses	
Emotional	Hariri et al. (2002)	Fearful faces vs. Neutral Shapes	
Gambling	Delgado et al. (2000)	"Losing" blocks vs. "Winning" blocks of choices	
Language	Binder et al. (2011)	Language blocks vs. Math blocks	
Relational	Smith et al. (2007)	Relational arrays vs. Control arrays	
Social	Whitley et al. (2007)	Interacting shapes vs. Randomly moving	
Working Memory	Dobryshevsky et al. (2006)	2-back vs 0-back blocks	

Tasks

Task	Reference	Description	
Motor	Buckner et al. (2011)	Hand, arm, foot, leg, voice responses	
Emotional	Hariri et al. (2002)	Fearful faces vs. Neutral Shapes	
Incentive	Delgado et al. (2000)	"Losing" blocks vs. "Winning" blocks of choices	
Language	Binder et al. (2011)	Language blocks vs. Math blocks	
Relational	Smith et al. (2007)	Relational arrays vs. Control arrays	
Social	Whitley et al. (2007)	Interacting shapes vs. Randomly moving	
Working Memory	Dobryshevsky et al. (2006)	2-back vs 0-back blocks	

Task-Specific Regions of Interest

The Results

UNIVERSITY of WASHINGTON

Canonical GLM analysis (Group-level)

Bayesian model comparison

- > Reminder
 - Estimating **posterior probability** *P*(*M* | *Y*) of a model *M* given data *Y*.
- > Two measures
 - Expected probability
 - Exceedance probabilities

Results: Probability densities by task

Results: Expected Probability by Task

0.036

Results: Exceedance probability by task

Relational Reasoning

Working Memory

All tasks combined (repeated measures)

Is the CMC reasonable?

- > Check connectivity parameters
 - Single model, all tasks
- > All parameters are **positive**
 - Except self-connections
- > All parameters are likely
- > Values change by task

Same approach can be used to compare models within architectures

Same approach can be used to compare models within architectures

Ketola, Jiang, & Stocco, *Comparing Models* with Effective Connectivity.

Thursday 7/25 @ CogSci, Paper session 18, 2:30-4pm

... Questions?

UNIVERSITY of WASHINGTON

PSA: We are looking for a post-doc to work on this! Email stocco@uw.edu

UNIVERSITY of WASHINGTON