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Task-based approach:

1. Find a task that looks
different in two
architectures

2. Find a way to derive
neural predictions

3. Compare observed vs.
predicted data
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A Standard Model of the Mind:
Toward a Common Computational

Framework Across Artificial Intelligence,

Cognitive Science, Neuroscience,

and Robotics

John E. Laird, Christian Lebiere, Paul S. Rosenbloom

W A standard model captures a com-
munity consensus over a coherent region
of science, serving as a cumulative ref-
erence point for the field that can pro-
vide guidance for both research and
applications, while also focusing efforts
to extend or revise it. Here we propose
developing such a model for humanlike
minds, computational entities whose
structures and processes are substan-
tially similar to those found in human
cognition, Our hypothesis is that cogni-
tive architectures provide the appropri-
ate computational abstraction for defin-
ing a standard model, although the

support intelligent behavior. Humans possess minds,

as do many other animals. In natural systems such as
these, minds are implemented through brains, one particular
class of physical device. However, a key foundational hypoth-
esis in artificial intelligence is that minds are computational
entities of a special sort — that is, cognitive systems — that
can be implemented through a diversity of physical devices
(a concept lately reframed as substrate independence
[Bostrom 2003]), whether natural brains, traditional general-
purpose computers, or other sufficiently functional forms of
hardware or wetware.

3 mind is a functional entity that can think, and thus

Articles

Laid, Lebiere, &

Rosenbloom, 2017, Al

Magazine




Laird, Lebiere, & Rosenbloom (2017

THE COMMON MODEL

THE STANDARD MODEL
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The CMC: Structural components

Feature-based representations +
Metadata
(Bayesian estimates)

State-action pairs +
Metadata
(Rewards, RL)

Working Short-term Context
Memory Representation

Perception o oum o Motor Planning
+ Execution
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Attention-based
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Can we see the CMC in neural data?

> The CMC makes predictions about how components
are connected

> This should be reflected in patterns of functional

connectivity between regions

> [t should be independent of the task




The Methods
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What do we need?

> Need a method to:
— Identify architecture components with brain structures
— Derive neural predictions from the architecture
— Compare between alternative architectures




What do we need?

— Ildentify architecture components with brain structures
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Large-scale component identification

Long-term
Memory

Memory
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What do we need?

Derive neural predictions from the architecture
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Creating a network model
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Implementing the network model:
Dynamic Causal Modeling

B1,2 A12 323 C21 \;1,2
Traditional A Dynamic '? R . "‘, -
GLM P Causal PP

Modeling

dy/dt = Ay + 2 xB(i)y + Cx + ijjD(/')y



Estimating the dynamic model

> Removing modulatory terms yields a linear model
~ dy/dt = Ay +[ExBii,Jy}+ Cx +[ZyBi. 1)
— dy/dt = Ay + Cx

> A and C estimated through
Expectation/Maximization

> Variational Bayes (older but faster) instead of

MCMC (newer but slower) to calculate PDFs




What do we need to test the CMC?

— Compare between alternative architectures
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Alternatives 1 and 2:
Hierarchical, recursive architecture

Hierarchical, Hierarchical,
Open '|‘ Closed

(Boly et al., 2011; (Tononi et al.,
Margulis et al., 2018) 2011)




Alternatives 3 and 4:
Hub & Spoke brain architectures

Hub-and-Spoke, =8 N
Basal Ganglia
(Anderson, 2007)

PFC ‘|p
(Cole etal., 2011, 2013)




Comparing architectures

> Many criteria exists
— AIC, BIC, Log-likelihood...

> Here, Bayesian approach: Posterior probability that

a model is true, given the data

— Each architectures’ PDF is modeled as a Dirichlet
distribution ~ Dir(a)

— Two metrics: expected and exceedance probabilities.
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Comparing architecture -
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Probability given data (P | y)

Comparing models
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The Data
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The Human Connectome Project
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The Human Connectome Project

> Contains high-quality neuroimaging data:
— 1,200 Adult Participants (July 2018)
— 7 Different Tasks
— 4 Resting State Sessions
— fMRI + MEG data (subset)
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The Human Connectome Project

> (Contains high-quality neuroimaging data:
— 200 out of 1,200 Adult Participants
— 6out of 7 Different Tasks
— 4 Resting State Sessions
— fMRI + MEG data

Siemens Skyra, Multiband

TR 720 ms MB factor 8x NSlices 72
TE 331ms FOV 208 x180 mm Slice Gap Omm F
FA 52° In-planeres 2x2mm Slice thick 2mm




Tasks

Motor Buckner et al. (2011) Hand, arm, foot, leg, voice responses
Emotional Hariri et al. (2002) Fearful faces vs. Neutral Shapes
Gambling Delgado et al. (2000) “Losing” blocks vs. “Winning” blocks of choices
Language Binder et al. (2011) Language blocks vs. Math blocks
Relational Smith et al. (2007) Relational arrays vs. Control arrays
Social Whitley et al. (2007) Interacting shapes vs. Randomly moving
Working Memory Dobryshevsky et al. (2006) 2-back vs 0-back blocks r



Tasks

Task

Emotional

Reference

Hariri et al. (2002)

Description

Fearful faces vs. Neutral Shapes

Incentive

Delgado et al. (2000)

“Losing” blocks vs. “Winning” blocks of choices

Language

Binder et al. (2011)

Language blocks vs. Math blocks

Relational

Smith et al. (2007)

Relational arrays vs. Control arrays

Social

Whitley et al. (2007)

Interacting shapes vs. Randomly moving

Working Memory

Dobryshevsky et al. (2006)

2-back vs 0-back blocks




Analysis
pipeline

GLM analysis, 1st
level (canonical)
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The Results
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Canonical GLM analysis (Group-level)
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Bayesian model comparison

> Reminder
— Estimating posterior probability P(M |Y) of a model M
given data V.
> TwoO measures

— Expected probability
— Exceedance probabilities

°1 Expected ° Exceedan
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Results: Exceedance probability by task
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All tasks combined (repeated measures)

Probability

Expected Probability, All Tasks (N=168)
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Is the CMC reasonable?

> Check connectivity parameters
— Single model, all tasks

> All parameters are positive
— Except self-connections

> All parameters are likely
> Values change by task
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Same approach can be used to compare
models within architectures
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Same approach can be used to compare
models within architectures
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Ketola, Jiang, & Stocco, Comparing Models
with Effective Connectivity.
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Thank you!

... Questions?
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PSA: We are looking for a post-doc to
work on this! Email stocco@uw.edu
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