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Background
The prevalence of obesity has increased substantially over the past 30  years. We 
performed a quantitative analysis of the nature and extent of the person-to-person 
spread of obesity as a possible factor contributing to the obesity epidemic.

Methods
We evaluated a densely interconnected social network of 1 2 ,0 6 7  people assessed 
repeatedly from 1 9 7 1  to 2 0 0 3 as part of the Framingham Heart Study. The body-
mass index was available for all subjects. We used longitudinal statistical models to 
examine whether weight gain in one person was associated with weight gain in his 
or her friends, siblings, spouse, and neighbors.

Results
Discernible clusters of obese persons (body-mass index [the weight in kilograms 
divided by the square of the height in meters], ≥30 ) were present in the network at 
all time points, and the clusters extended to three degrees of separation. These 
clusters did not appear to be solely attributable to the selective formation of social 
ties among obese persons. A person’s chances of becoming obese increased by 5 7 % 
(9 5 % confidence interval [CI], 6  to 1 2 3) if he or she had a friend who became obese 
in a given interval. Among pairs of adult siblings, if one sibling became obese, the 
chance that the other would become obese increased by 40 % (9 5 % CI, 2 1  to 6 0 ). If 
one spouse became obese, the likelihood that the other spouse would become 
obese increased by 37 % (9 5 % CI, 7  to 7 3). These effects were not seen among neigh -
bors in the immediate geographic location. Persons of the same sex had relatively 
greater influence on each other than those of the opposite sex. The spread of smok-
ing cessation did not account for the spread of obesity in the network.

Conclusions
Network phenomena appear to be relevant to the biologic and behavioral trait of 
obesity, and obesity appears to spread through social ties. These findings have 
implications for clinical and public health interventions.
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General Issues
• Does at-scale social simulation need 

cognition?
• Keep it simple, stupid!
• Architecture of Complexity; Nearly 

decomposable systems
• Anderson 1991 Relevance Thesis; 

Newell bands + extension *(a la )
• Does cognition need at-scale 

simulation?
• Multi-resolution of cognitive arch; etc.
• Big data and cognition

• Are we just doing it wrong?



One Approach



Socio-Cognitive Modeling
A cognitive architectural approach to agency in at-scale social simulations 



Beyond Modular Integration of Theories
• Baseline put full challenge to each cognitive modeling team with carte blanche, social theory 

advised and provided some structure (e.g., social graph)
• CP1 integrated cognitive and social modeling into the Bayesian Decision Diagram formalism but 

with little drive for theoretical integrations (CP1 is shown in the diagram below).
• TAKEAWAY:  Modular integration between cognitive and social/economic theory is too limited
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Expanding Cognitive Architectures with
Social, Economic and Neuroscience theory
• Cognitive architectures integrate learning mechanisms

• Work together rather than in isolation
• Future of machine learning

• Convergence between machine learning and cognitive 
neuroscience
• Reinforcement learning to determine effectiveness of actions

• Neurotransmitters and policy learning
• Associative learning to build bottom up representations

• Hebbian learning and deep learning

• Economic theory to constrain reinforcement learning
• Current production utility learning requires user-supplied reward 

function
• Missing architecture module to map external events into internal reward

• No current learning of associations
• Initial Bayesian mechanism had difficulties scaling to long-term 

activity
• New mechanism inspired by Hebbian spike-timing dependent 

plasticity
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Generating Social Roles

Sub community 1 of the largest community within the pooled all-relations 
summary network. N=1046 nodes.  Layout uses the Fruchterman Rheingold 
algorithm, with post-layout adjustments for overlap and pendant (degree=1) 
placement.  Colors track roles.  Line thickness and shade capture the strength 
of the relation.

Approach: Aim to model the relational logic of 
twitter users by building shared activity (term use, 
reacting to similar messages) and interaction 
(replying to or mentioning each other networks, 
then identifying common roles across these 
networks.  Based on classic network ideas of 
White, Boorman & Breiger (1976 ): actions 
embody informal rules and norms, so 
equivalent actors should behave similarly.

Feed into sociological agent: Active agents 
are assigned to one of 7 substantive roles based 
on contact patterns across constituent 
subnetworks.  

Findings: About 20% of nodes are “active.”
The network of active users is highly clustered across all 
types of ties and seems to track interest topics.  There are 
two sorts of general users: “bulk users” are intermittently 
active but specific; while “Active specialists” have very high 
degree within their cluster.  The remainder roles are variants 
of bridges, either to people (communicators & followers), 
twitter content (term omnivores or message spanners) or 
both (general bridges).



Estimating Role-Specific Utility
!"($%&'%%&, $%)*+, ,-.&%) = 1(&'%%& 1%2&-$%3, -3%$ 1%2&-$%3)

log 78 = 9: + 9<=<8 + ⋯+ 9?=?8 + @8

For each individual type (roles 1—8), 3 models are developed for each reaction type (retweet, 
replies, quotes) and each tweet is modeled as

where Y is a binary variable, 7 = 0 if the tweet did not receive any reaction, 7 = 0 if it received at least one reaction.
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Instance-Based Learning Cognitive Model
• Cognitive model of action choice

• Choose between tweet, retweet, reply and quote

• Considered in one step or two (new/old content)

• Instance-based learning approach

• Model memory holds past decision instances

• Associates decision context, action chosen, resulting 
outcome(s) and outcome(s) utility

• Iterative decision process

• Iterative blending process to evaluate expected 
utility of each action

• Select action with highest expected utility

• Bounded rationality and cognitive biases

• Recency bias

• Most recent experiences have disproportionate effect

• Anchoring bias

• Most common experiences persist after relevance lost

• Sampling bias

• Initial experience can lead to lasting risk aversion
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Socio-Cognitive Modeling
The Matrix:  A social simulation platform integrating cognitive architecture at-
scale



What is The Matrix?
● The Matrix is an agent based 

modeling (ABM) framework
● The Matrix is free and open 

source software
● Specialized for `compute and 

data intensive' simulations
○ Such as large number individual 

cognitive agents

github.com/NSSAC/socioneticus-matrix



Integration of theory into ABMs

Name Model Type Prog. Lang

Freq-Stat Frequentist statistical model Python

Soc-Th Social structure theory model Python

CM-ANN Artificial neural network model C++

CM-Bayes Bayesian cognitive theory model R

CM-ACTR ACT-R cognitive theory model Common Lisp

*Some examples of past and current agent models in The Matrix.



● Ability to rapidly prototype and test heavyweight agent models
● Ability to write agents in popular programming languages

○ Python, R, C++, Java, Lisp, …
● Ability to use GPU units, and popular neural network libraries

○ TensorFlow, PyTorch, Keras, Lens, …
● Ability to use cognitive system libraries like ACT-R
● Ability to run simulations on commodity clusters

○ Amazon EC2, Google Compute Cloud, and Microsoft Azure
● Ability to efficiently store, update, and query large amounts of system 

state
○ large amounts ≈ hundreds of gigabytes

● Ability to use run simulations with millions of active agents

Integration of theory into ABMs:  Specs



Overview of Matrix ABM Runtime
Discrete Time 
simulation with 
adjustable time scale

Matrix exposes API 
interface using JSON 
RPC over TCP/IP

Subsumes complexities 
of distributed 
computation and 
synchronization



Scaling up GitHub ACT-R simulation

Reduction in simulation runtime
of GitHub ACTR simulation (CM-
ACTR)
with increasing number of cpu
cores,
for different population sizes of 
GitHub agents.



Socio-Cognitive Modeling
Does cognition matter?  Implications for population health



Benefits of Socio-Economic-Cognitive Integration
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Color KeyModel Variants:
• Standard: assignment of each user to one of 8 

role utility profiles + learning of expectations
• Default role assignment: uniform utility 

function for all users
• No expectation learning: only training and 

ground truth instances, no confirmation bias
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