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The goal of this research was to investigate the cogni-
tive processing that occurs during the brief period when 
someone retrieves a well-known fact. To take a current 
example, most people would have no problem answer-
ing the question “Who won the 2016 U.S. election?” 
They are unlikely to introspect on how they answer 
this question, nor would they come up with much 
insight if they did (they would be much more likely to 
report on how they felt about the answer they retrieved). 
Answers to such questions seem to come effortlessly, 
but they do not come instantaneously. The goal of this 
research was to identify the stages in generating such 
answers, what brain regions they involve, how the stage 
durations vary on a trial-by-trial basis, and especially 
how these processes generalize across tasks. We found 
that tasks with rather different memory contents—word 
pairs versus arithmetic facts—show surprisingly similar 
stage structures.

The first stage in answering such a question must 
involve encoding the terms in question, and the last 
stage must involve programming and executing the 

answer. While the identities of these two stages are 
fairly certain, there is still uncertainty as to their dura-
tions. There is much greater uncertainty about what 
happens in between. One class of models (e.g., Shiffrin 
& Steyvers, 1997; Starns & Ratcliff, 2014; Wixted & 
Stretch, 2004) implies a continuous growth of evidence 
for an answer. When a threshold is met, that answer is 
converted into a response. A second class of models, 
often applied to neuroimaging data (e.g., Badre & 
Wagner, 2007; Thompson-Schill, D’Esposito, & Kan, 
1999), proposes two stages: an initial access to some 
relevant knowledge in memory and then a postretrieval 
process that determines an answer from what is 
retrieved. An instance of such a two-stage model is the 
adaptive control of thought–rational (ACT-R) model of 
recognition memory and recall (e.g., Schneider & 
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Abstract
Magnetoencephalography (MEG) was used to compare memory processes in two experiments, one involving recognition 
of word pairs and the other involving recall of newly learned arithmetic facts. A combination of hidden semi-Markov 
models and multivariate pattern analysis was used to locate brief “bumps” in the sensor data that marked the onset of 
different stages of cognitive processing. These bumps identified a separation between a retrieval stage that identified 
relevant information in memory and a decision stage that determined what response was implied by that information. 
The encoding, retrieval, decision, and response stages displayed striking similarities across the two experiments in 
their duration and brain activation patterns. Retrieval and decision processes involve distinct brain activation patterns. 
We conclude that memory processes for two different tasks, associative recognition versus arithmetic retrieval, follow 
a common spatiotemporal neural pattern and that both tasks have distinct retrieval and decision stages.
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Anderson, 2012; Sohn et al., 2005), which involves sepa-
rate retrieval and decision stages. In this article, we 
provide neural imaging evidence that at least two dis-
tinct stages intervene between encoding and response 
in associative memory tasks.

In recent work (Anderson, Zhang, Borst, & Walsh, 
2016; Zhang, Walsh, & Anderson, 2017), we have used 
the temporal resolution of electroencephalography 
(EEG) to identify the stages and when they were occur-
ring in single trials. To cope with the trial-by-trial vari-
ability in the onset latencies of event-related-potential 
(ERP) components, we developed a novel method that 
involves applying hidden semi-Markov models (HSMMs) 
and multivariate pattern analysis (MVPA) to EEG data. 
Transitions from one cognitive stage to the next are 
signaled by bumps that are added to the task-irrelevant 
oscillatory activity in the EEG signal (see Fig. 1). The 
bumps have finite durations, amplitudes, and topo-
graphical distributions. The bumps are separated by 
variable duration flat regions (or flats) in which the 
signal is treated as sinusoidal noise around 0. The pos-
tulation that processing stages are signaled by such 
bumps is consistent with theories of ERP generation in 
EEG data (Makeig et al., 2002; Yeung, Bogacz, Holroyd, 
& Cohen, 2004), which corresponds closely to event-
related-field (ERF) generation in magnetoencephalog-
raphy (MEG) data. The HSMM-MVPA attempts to recover 
the number, timing, and topographical distributions of 
these bumps.

Previous EEG experiments (Anderson et  al., 2016; 
Zhang, Walsh, & Anderson, 2017) applied these meth-
ods to associative memory tasks and found evidence 
for an encoding phase associated with a number of 

early bumps (Bumps 1–3 in Fig. 1), a retrieval phase 
ending with another bump (Bump 4 in Fig. 1), a deci-
sion phase ending with a final bump (Bump 5 in Fig. 
1), and then a response phase. In this research, we 
extended the HSMM-MVPA methodology to two MEG 
studies with two goals. First, the greater precision in 
localization that can be obtained with MEG facilitates 
studying activity during these stages in different brain 
regions. Second, to assess the generality of the memory 
processes, we compared two tasks that might seem 
rather different in the processes and memory content 
they engaged. One experiment was a pair-recognition 
task (Borst, Ghuman, & Anderson, 2016) in which sub-
jects had to judge whether they had studied a pair of 
words together. The other was a recall task in which 
subjects had to retrieve the value of a newly learned 
arithmetic relationship (Tenison, 2017). Despite their 
differences, both tasks required retrieving associative 
information and acting on it. Moreover, both had a simi-
lar input-output structure in that two terms were 
encoded, and subjects had to hit a single key in response 
(see Fig. 2).

We expected to identify again encoding, retrieval, 
decision, and response stages. Finding a distinction 
between retrieval and decision in two different tasks with 
another imaging modality would add further support to 
the separation of retrieval and decision. To test whether 
the retrieval and decision stages are focused on memory 
processing, we partitioned the trials from the two experi-
ments according to factors known to affect memory: a 
manipulation of associative interference in the recogni-
tion task and a manipulation of practice in the arithmetic-
retrieval task. These should affect only the durations of 
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Fig. 1.  Illustration of the bumps and distribution of flat durations. The scalp distributions show electrical potential (in 
microvolts) associated with each bump between one cognitive stage and the next. The middle row shows the bumps and 
flat regions across the first dimension of a principal component analysis (PCA) of the electroencephalogram (EEG) signal. 
The bottom row shows probability density functions for the duration of each flat region. Figure reprinted from Anderson, 
Zhang, Borst, and Walsh (2016).
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the retrieval and decision stages. Beyond these tests of 
stage structure, the use of MEG allows critical additional 
tests of our understanding of memory access: If there 
are a common set of stages in these two rather different 
tasks, then they should evoke a common profile of brain 
activity and there should be distinct activity patterns for 
the retrieval and decision stages.

Method

Detailed information about the two experiments is 
available in Borst et al. (2016) and Tenison (2017). Here, 
we focus on providing the information necessary for 
understanding the two experiments and the new meth-
ods unique to this article, for processing the imaging 
data, and for performing the HSMM-MVPAs.

Subjects

All subjects were right-handed. There were 18 subjects 
in the pair-recognition experiment (6 males, 12 females; 
age: M = 23.6 years, range = 18–35) and 28 subjects in 
the arithmetic-retrieval experiment (15 males, 13 
females; age: M = 20.1 years, range = 19–27). We have 
found that approximately 20 subjects with over 100 
trials per subject are required for a robust application 
of HSMM-MVPA.

Procedure

The pair-recognition experiment consisted of two 
phases: a training phase in which subjects learned word 

pairs and a test phase in which subjects were asked to 
recognize pairs. The test phase was scheduled the day 
after the training phase and took place in the MEG 
scanner. During the test phase, subjects had to distin-
guish between targets (trained word pairs) and re-
paired foils (rearranged pairs). A critical manipulation 
was whether the words in the probe appeared uniquely 
in one pair or appeared in two pairs. This is referred 
to as a fan manipulation. Each word used in the fan 
condition appeared in two study items (A-B, A-C, D-B, 
D-C, E-F, E-G, H-F, H-G), whereas each word in the 
no-fan condition uniquely appeared in a single study 
item (W-X, Y-Z). Foils were created by re-pairing words 
from the fan condition (A-F, D-G) or from the no-fan 
condition (W-Z). Subjects completed a total of 14 blocks 
(7 left-handed, 7 right-handed) with 64 trials per block. 
To ensure that data corresponded to the arithmetic-
retrieval experiment, we used only the blocks with 
right-hand responses. Hand did not have a significant 
effect on response time but did have a major effect on 
activity patterns.

Tenison (2017) performed a MEG study of the learn-
ing of new arithmetic facts involving the pyramid rela-
tion. Pyramid problems (presented with a dollar symbol 
as the operator, e.g., 8$4 = X) involve a base (8) that 
is the first term in an additive sequence and a height 
(4) that determines the number of terms to add. Each 
term in the sequence is one less than the previous (e.g., 
8$4 = 8 + 7 + 6 + 5 = 26). The bases vary from 4 to 11, 
and the heights vary from 3 to 5. Subjects solved a 
subset of these problems 54 times over the course of 
the experiment. As shown in earlier functional MRI 

Correct

1,000 ms

Feedback

500 ms

ITI

Flame
Cape

Until Index or Middle
Finger Press (~1.26 s)

Probe

8$4

Until Enter Key Press
(~1.13 s)

Probe

+

400–
600 ms

Fixation

+

400–
600 ms

Fixation

8+7+6+5=26

2,500 ms

Feedback

2,000 ms

ITI

Pair Recognition

Arithmetic Retrieval

2-6-Enter

Response
Completion

Up to 5,000 ms

Period Analyzed

Fig. 2.  Timeline of a single trial in the pair-recognition task and in the arithmetic-
retrieval task. During the encoding period (highlighted here with a rectangle), sub-
jects made a binary choice (target or foil) in the recognition task and an indication 
that they were ready to enter an answer in the retrieval task. Only this period was 
analyzed in the present experiments. ITI = intertrial interval.
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(fMRI) studies (Tenison & Anderson, 2016; Tenison, 
Fincham, & Anderson, 2016), subjects quickly transition 
to just retrieving these facts instead of calculating the 
answers. We used a threshold of 2.4 s to identify 
retrieved facts and compared retrievals with relatively 
little practice (30 or fewer practice opportunities, an 
average of 21 prior trials of practice) with retrievals 
with more practice (greater than 30 practice opportuni-
ties, an average of 45 trials of prior practice).

Although these are two rather different tasks, they 
were quite similar in terms of what the subject saw and 
the physical response. Figure 2 compares the sequence 
of events for the two experiments. Each trial began with 
a variable fixation period of 400 to 600 ms. While the 
probes were different (words versus numeric expres-
sion), in both cases two things needed to be encoded 
(the two words or two numbers). The data to be ana-
lyzed for each trial ended with a key press. The key 
press in the recognition task was a binary choice pro-
viding the answer (target or foil), whereas in the 
arithmetic-retrieval task it was a signal indicating the 
subject was ready to enter the answer. The sequence 
of events diverged after this key press and was not 
analyzed: The pair-recognition experiment ended with 
feedback as to correctness and an intertrial interval 
(ITI). In the arithmetic-retrieval task, the subject had to 
then enter the answer and was shown more elaborate 
feedback explaining the answer, followed by an ITI.

MEG recording and processing

In both experiments, MEG data were recorded with the 
same 306-channel Elekta Neuromag (Elekta Oy, Helsinki, 
Finland) whole-head scanner. The 306 channels are dis-
tributed into 102 sensor triplets, each containing one 
magnetometer and two orthogonal planar gradiometers. 
Data were digitized at 1 kHz. As part of standard MEG 
testing, four head-position indicator coils were attached 
to the subject’s scalp to track the position of the head 
in the MEG helmet. In addition, we obtained anatomi-
cal MRIs for source localization. In the pair-recognition 
experiment, subjects responded with a response glove, 
and in the arithmetic-retrieval experiment, they 
responded with a numerical keyboard. The stimuli 
were projected onto a screen about 1 m in front of 
the subject. Stimulus onset was measured by a photo-
diode that was directly connected to the MEG record-
ing system.

Only trials with correct responses and only trials 
lasting between 600 and 2,400 ms (60–240 samples after 
down-sampling to 100 Hz) were used. The two resulting 
normed data sets involved 6,461 trials (781,900 samples 
of 10 ms) for pair recognition and 3,005 trials (332,889 
samples) for arithmetic retrieval. For each trial and each 

sensor, the activity was referenced to a standard base-
line by subtracting the mean activity in the 200 ms prior 
to trial onset. To normalize the variance among the 
three types of sensors (magnetometer, planar gradio
meter, axial gradiometer), we divided the activity of 
all sensors of a particular type by the standard devia-
tion for that type of sensors.

As a step of dimensionality reduction and to deal 
with the fact that individual sensors do not necessarily 
correspond across subjects, we performed a multiset 
canonical correlation analysis (MCCA) on the data 
(Zhang, Borst, et al., 2017). This analysis compresses 
the data from the 306 sensors into a reduced number 
(10 in our case) of uncorrelated dimensions that are 
common across subjects. The details of the MCCA are 
explained in the Supplemental Material available online. 
The output of the MCCAs applied to the data from the 
two experiments was a 1,114,789 × 10 matrix represent-
ing 9,466 trials and 46 subjects. The HSMM-MVPAs will 
estimate parameters that maximize the probability of 
these data.

Bump analysis of the MEG data

On a trial-by-trial basis, the HSMM-MVPA identified the 
location of bumps that mark various stages of processing. 
This analysis assumes that stage boundaries are marked 
by 50-ms half-sine bumps added to task-irrelevant oscil-
latory activity. In between these 50-ms periods are flats 
(see Fig. 1) where the activity is modeled as sinusoidal 
noise with a mean of 0. Bounded by trial onset and the 
finger press, the placement of N bumps results in N + 
1 intervening flats, and stage duration is the time 
between these bounds.

The assumptions, mathematics, and computations 
underlying the HSMM-MVPA that estimates the bump 
parameters (see Anderson et  al., 2016, for detailed 
mathematical development) can be summarized in six 
points. First, the estimation process finds a set of 
parameters that will maximize the likelihood of the data 
from all the trials, given some description of the struc-
ture of those trials. Second, the description of a trial is 
anchored by the placement of N bumps during the 
trials. The number of ways of placing N bumps in a trial 
of S samples is (S + N)!/(S! × N!) (a very large number, 
given trials averaging more than 100 samples). Every 
possible placement has a probability, and the probabil-
ity of the trial is the sum of all these probabilities. The 
essential power of the HSMM algorithms is that they 
can efficiently compute these sums. Third, any place-
ment of the N bumps results in a partition of the trial 
into N bump regions and N + 1 flats marked off by these 
bumps. The probability of such a partition is the product 
of the probabilities of the N bumps and the probabilities 
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of the N + 1 flats. Fourth, the probability of a flat varies 
with its duration. This variation is modeled as a simple 
latency-like distribution for these flats—gamma distri-
butions with shape 2 and scale parameters to be esti-
mated. Fifth, the probability of a bump is determined 
by how well it matches the profile for that bump on 
each of the 10 MCCA dimensions. Because MCCA pro-
duces orthogonal dimensions, the probability of a 
bump is the product of the probabilities on each dimen-
sion. Thus, each bump can be characterized by a set 
of 10 magnitudes that represent the mean values on 
that dimension. Sixth, for any dimension, the 50 ms 
(five samples) that constitute the bump define a half-
sine pattern that starts at 0 at the onset of the bump, 
reaches a maximum at 25 ms, and comes back down 
to 0 at 50 ms. The probability of the bump of that 
dimension is determined by how much variability in 
the sample can be explained by the assumption of such 
a bump.

Thus, an N-bump model requires estimating N + 1 
scale parameters to describe the durations of the flats 
and 10N magnitude parameters to describe the magni-
tudes of bumps. The scale parameters reflect the tem-
poral pattern of the bump locations, and the magnitude 
parameters reflect the multivariate pattern of the bumps. 
These parameters are estimated iteratively using the 
expectation maximization algorithm associated with an 
HSMM (Yu, 2010).

A single cognitive event can result in a train of 
bumps with highly correlated scalp profiles and little 
temporal separation. This can occur because of alpha 
ringing, where ERPs give lasting oscillations that are fit 
to more than one bump, or because the underlying 
width of the bump is much wider than the assumed 50 
ms. To identify only bumps signaling distinct cognitive 
processes, we constrained how strongly correlated adja-
cent bumps could be according to how close they were: 
If T ms was the mean duration of the intervening flat, 
the maximum correlation allowed between adjacent 
bumps was (T – 50)/150. This constrains nearby bumps 
to be uncorrelated and eliminates any constraints on 
the profiles of adjacent bumps more than 200 ms apart. 
In the Supplemental Material, we compare this con-
strained solution with an unconstrained solution and 
show that the only difference is elimination of highly 
correlated adjacent bumps.

Results

In all, 64.1% of the arithmetic-retrieval trials fell between 
600 and 2,400 ms (35.6% were longer than 2,400 and 
may have reflected calculation; 0.3% were briefer), and 
96.3% of these were correctly answered. There were 
1,467 correct early trials averaging 1.21 s, and 1,538 

correct late trials averaging 1.01 s. In the pair-recognition 
experiment, 2% of the no-fan trials were errors, and 6% 
of the fan trials were errors. Of the correct trials, 96.0% 
fell in the interval between 600 and 2,400 ms, with 
almost all remaining trials longer. There were 3,477 
no-fan trials averaging 1.11 s and 2,984 fan trials aver-
aging 1.33 s.

We estimated models of one to eight bumps for the 
two experiments. The estimation procedure for each 
experiment was entirely independent of the estimation 
for the other experiment. The estimation process pro-
duces parameters that describe the topographies of the 
bumps and the durations of the flats. We then used 
these parameters estimated from one experiment to 
calculate the likelihood of the data from the other 
experiment. In essence, we used one experiment to 
predict the other. Figure 3 shows how well the param-
eters from one experiment can predict the data from 
the other. In both directions, the likelihood of data 
increases up to six bumps. The increase in log-likelihood 
up to five bumps is quite decisive: Data from 25 of the 
28 arithmetic subjects are better predicted by the five-
bump model than by any model with fewer bumps. 
Data from all 18 of the pair-recognition subjects are 
better predicted by the five-bump model. The improve-
ment to six bumps continues to be quite clear for the 
arithmetic-retrieval experiment (better than five bumps 
for 25 of 28 subjects). The effect is less strong for the 
pair-recognition experiment but is still better for 14 of 
the 18 subjects (p < .05 by a sign test).

The corresponding bumps for the two fits of the 
five-bump model were strongly correlated in terms of 
their magnitudes on the 10 MCCA dimensions (r = .939) 
but less so for the six-bump model (r = .784)—see the 
Supplemental Material for all individual correlations. 
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The six flat durations estimated for the two experiments 
under the five-bump model were very consistent (r = 
.995), whereas the seven flat durations for the six-bump 
model were less correlated (r = .926). The high correla-
tion for the five-bump model is quite remarkable given 
that the two fits were entirely independent. Because of 
this consistency and because it corresponds to the five-
bump results from our prior EEG study (Fig. 1), we 
focus on this model in the article. In the Supplemental 
Material, we describe the six-bump solution and com-
pare it with the five-bump solution.

The HSMM-MVPA estimation produced an estimate 
of how long each stage took on each trial. Figure 4 
shows the averages of these estimates for each condi-
tion from the separate models fit to the two experi-
ments. This displays the striking similarity in the stage 
durations for the two experiments. As in Anderson et al. 
(2016), our interpretation is that the first stage reflects 
a preattentive period before the stimulus reaches the 
brain and is attended, the second and third stages 
reflect processing of the two terms, the fourth stage is 
retrieval, the fifth stage is decision, and the last stage 
is motor execution.

The large effect of condition appears to be on dura-
tion of the decision stage but small differences appear 
in other stages. One complication in interpreting any 
differences in stage duration is that the five bumps, 
while very similar, are not identical in the fits to the 
two experiments. Thus, the stage durations measure 
slightly different things for the two experiments. How-
ever, almost the same pattern of data appears when we 
fitted one model with a common set of bumps to both 
experiments.

Another problem in interpreting stage durations is 
that to the degree that the bumps in the data are not 
strong, the estimation of bump location is imprecise 
and biases can appear in the estimation of stage 

durations. In particular, there is a tendency for the 
estimation process to distribute any effect of condition 
duration across all of the stages (see discussion in the 
Supplemental Material). To determine which differences 
in stage durations are strongly supported, we allowed 
the HSMM to estimate different duration for a flat in 
different conditions.1 We fit 26 = 64 models, which 
represented all possible ways of allowing a flat to vary 
with condition or not. The goal was to identify the 
model that had the fewest flats varying that could char-
acterize the data. We both predicted the data of the odd 
subjects using flat durations estimated from the even 
subjects and vice versa, keeping constant the bump 
magnitudes of the overall five-bump model. Of the 
models that had just one flat varying, letting the fifth 
flat vary had the largest improvement over having no 
flats (improved 21 of 23 odd subjects, p < .001; mean 
gain in log likelihood of 9.62; 18 of 23 even subjects, 
p < .01, with a mean gain of 6.65). Allowing the fourth 
flat to vary had the second largest effect for the odd 
subjects (18 of 23 subjects, p < .01, mean gain of 6.13) 
but was not significant for the even subjects (12 of 23 
subjects, mean gain of 1.78). Varying any other flat 
duration did not lead to significant improvement for 
either odd or even subjects. Allowing both the fourth 
and fifth flat to vary led to a significant improvement 
over just the fifth for the odd subjects (17 of 23 subjects, 
p < .05, mean gain of 5.02) but actually slightly decreased 
the mean fit for the even subjects (12 of 23, mean gain 
of −1.0). None of the other models were significantly 
superior to the model with just flat 5 varying for either 
the odd or even subjects. While we cannot reject the 
possibility of an effect on some other stage (particularly 
the retrieval stage given the significant effects for the 
odd subjects), the only strongly supported effect of con-
dition is on the decision stage, as Figure 4 suggests.

As described in the Supplemental Material, we used 
sample-by-sample sensor activity to infer patterns of 
activity in 5,124 sources placed on the cortical surface. 
To see whether the two experiments were showing 
similar patterns, we warped the trial data to fit a com-
mon template for that experiment. This involves iden-
tifying the maximum-likelihood bump locations for 
each trial and placing these bumps at the average bump 
locations for that experiment. The flat data between the 
bumps on each trial were then stretched or shrunk to 
have the same duration as the average flat durations. 
We calculated how much activity in a region was above 
or below the global activity at each of the warped time 
points. Because the average trial was 1.11 s in arithme-
tic retrieval and 1.21 s for pair recognition, this resulted 
in 111 and 121 samples of 10 ms per trial, which we 
averaged for each subject. Figures 5a and 5b illustrate 
areas that were significant (p < .05, two-tailed) at time 
points during the encoding (120 ms), retrieval (500 ms), 
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decision (720 ms in arithmetic retrieval, 770 ms in pair 
recognition), and response (1,050 ms during arithmetic 
retrieval, 1,150 ms during pair recognition) periods. 
There appeared to be overlap between the two experi-
ments at different stages: Visual areas were active dur-
ing encoding, prefrontal areas during retrieval and 
decision, and motor areas during response.

Figures 5c and 5d examine whether the same sources 
tend to be significant for pairs of time samples, one 

sample from the arithmetic-retrieval experiment and 
the other from the pair-recognition experiment. On 
average, for any of 111 × 121 sample pairs, 10.4 source 
pairs share significantly positive ts (p < .01, one-tailed), 
and 30.1 share significantly negative ts. However, the 
number of jointly significant source pairs varies from 0 
to many hundreds for different sample pairs. In part, 
this variation reflects that different sample points in 
each experiment have different numbers of significant 
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sources, but we were interested in whether some sam-
ple pairs shared more significant sources that would be 
expected because of these marginal frequencies. Fig-
ures 5c and 5d show how significantly the number of 
significant sources at sample pair deviates from what 
would be predicted from the marginal counts for each 
experiment. Table 1 summarizes Figures 5c and 5d, with 
the average values of all the ts in pairs of periods, one 
from each experiment. It shows evidence for common 
overlap between periods (positive main diagonal), but 
in some cases there is overlap in adjacent periods. In 
particular, the retrieval period for arithmetic retrieval 
overlaps in terms of shared activity with the decision 
period for pair recognition. Similarly, the decision 
period for arithmetic retrieval overlaps with the 
response period for pair recognition.

While Figure 5 gives evidence for the common activ-
ity that produces the same stage structure for the two 
experiments, it does not provide evidence about the 
nature of the differences among the periods. To test 
this, we fitted one model to the data from both experi-
ments and looked for contrasts between periods. Fig-
ures 6a to 6c show the results of t tests comparing 
source activity in adjacent time periods. The encoding-
minus-retrieval contrast shows that the encoding period 
had greater activity in visual areas, whereas the retrieval 
period had greater activity in prefrontal regions. The 
retrieval-minus-decision contrast shows that the retrieval 
period had greater activity at the temporoparietal junc-
tion, whereas the decision period had greater activity 
in prefrontal regions. The decision-minus-response con-
trast showed that the decision period had greater activ-
ity at the right temporoparietal junction (not shown), 
whereas the response period has greater activity in left 
motor areas (shown).

These effects in Figures 6a to 6c were generally in 
the direction we would expect, given our understanding 
of the function of the stages. However, we did not have 

a priori predictions about most of the sources in such 
a brainwide analysis. We examined three a priori 
regions that past fMRI research (e.g., Anderson, Carter, 
Fincham, Ravizza, & Rosenberg-Lee, 2008; Borst & 
Anderson, 2013) has associated with relevant modules 
in ACT-R: the left fusiform as an index of encoding 
activity, the left motor region as an index of response 
activity, and the left lateral inferior prefrontal cortex 
(LIPFC) as an index of retrieval. Figure 6d displays the 
activity in these regions over the course of the two 
experiments. It has been warped to overall average time 
of 1,180 ms, and the figure plots the 118 resulting sam-
ples for each region.

Table 2 gives the results of pairwise t tests for dif-
ferences between different periods, and the results are 
quite clear: The fusiform was more active in the encod-
ing period than any other periods, whereas none of the 
other pairwise contrasts of periods was significant. The 
LIPFC shows the opposite effect: All the later periods 
were significantly more active than the encoding period, 
whereas there were no significant differences among 
these later periods. The motor region was significantly 
more active in the response period than any other and 
was more active in the encoding period than either the 
retrieval or decision period. With the exception that the 
motor region starts high in the encoding period (but 
not as high as in the response period), these are the 
effects we would predict. We should note that while 
condition had a large effect on the duration of the deci-
sion stage (Fig. 4), there were no significant differences 
between the conditions in either experiment for any 
stage for any of these three regions.

Conclusions and Discussion

Even though the memory judgments in these experi-
ments averaged only a little longer than a second, the 
HSMM-MVPA methodology was able to parse individual 

Table 1.  Mean ts Measuring the Number of Common Periods for Sample Pairs

Pair-recognition 
period

Arithmetic-retrieval period

Encoding Retrieval Decision Response

Pairs in Figure 5c
Encoding 4.93 (0.21) –1.18 (0.08) –3.30 (0.05) –0.89 (0.07)
Retrieval –0.18 (0.09) 1.59 (0.11) 0.01 (0.04) 0.89 (0.25)
Decision –3.50 (0.08) 0.84 (0.06) 2.50 (0.05) 0.69 (0.10)
Response –3.73 (0.20) 0.54 (0.16) 2.22 (0.11) 0.73 (0.32)

Pairs in Figure 5d
Encoding 4.05 (0.07) –1.90 (0.07) –2.88 (0.03) –0.70 (0.12)
Retrieval –0.30 (0.09) 0.94 (0.07) –0.04 (0.05) –0.46 (0.11)
Decision –4.19 (0.03) 2.05 (0.07) 2.85 (0.04) 0.03 (0.06)
Response –3.81 (0.07) –0.21 (0.06) 3.95 (0.13) 4.62 (0.51)

Note: Standard errors are given in parentheses.
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trials into periods associated with encoding, retrieval, 
decision, and response. Sensibly, the encoding and 
response times were not affected by condition, and the 
decision time was. We expected to see the retrieval time 
also affected by condition, and there was evidence for 
that but it was much weaker (only significant for odd 
subjects). In past experiments, we have seen different-
sized effects of variables intended to manipulate mem-
ory difficulty on the retrieval and decision stages, with 
the effect of retrieval being sometimes quite strong 
(Anderson et  al., 2016; Zhang, Walsh, & Anderson, 
2017). In the Supplemental Material, we show that if 
there is an effect on the duration of two adjacent stages, 
HSMM-MVPA has a bias to overestimate the effect on 
the longer stage and underestimate the effect on the 
shorter stage. This would be consistent with the pattern 
of results we have seen across experiments.

Over and above confirming the stage structure found 
in past EEG experiments, our use of MEG allowed us 
to identify the brain regions engaged during these 
stages. The results provide striking evidence for similar-
ity of the processing involved in a pair-recognition task 
and a task that involved retrieval of newly learned 
arithmetic facts. Independent HSMM-MVPA fits found 
similar bumps occurring in the two tasks at similar 
intervals (Fig. 4). As a consequence, a model fit to one 
task could successfully predict the data from the other 
task (Fig. 3). These models worked on the results of an 
MCCA performed on sensor data, and there was no 
guarantee that the same brain regions were involved in 
the two tasks. Nonetheless, when the bump analysis 
was used to temporally align the source data, the two 
tasks did show a common pattern of brain activity (Fig. 
5) during each period. Moreover, each period showed 
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a pattern of activity distinct from the other periods 
(Figs. 6a–6c).

While these data provide strong evidence for at least 
two distinct stages intervening between encoding a 
probe and generating a response, their identities are 
less certain. Our characterization of these as retrieval 
and decision follows from the ACT-R process model 
and a detailed analysis of previous stage-discovery 
results (Borst & Anderson, 2015, p. 70); other neuroim-
aging models (e.g., Badre & Wagner, 2007; Thompson-
Schill et  al., 1999) reference a similar distinction 
between retrieval and postretrieval stages. In a study 
of a task very similar to the arithmetic-retrieval task 
(Paynter, Reder, & Kieffaber, 2009; Reder & Ritter, 1992), 
it has been suggested that there is an initial familiarity 
stage followed by a recollection stage. Similarly, in Cox 
and Shiffrin’s (2017) model of associative recognition, 
item information becomes available before associative 
information. This reflects the general idea behind a 
class of theories known as dual-process theories, which 
have linked specific EEG components to these different 
processes (e.g., Diana, Reder, Arndt, & Park, 2006; Rugg 
& Curran, 2007). Thus, one could view what we have 
called the retrieval stage as a familiarity/item stage and 
what we have called the decision stage as a recollec-
tion/associative stage. Portoles, Borst, and van Vugt 
(2017), who used HSMM-MVPA to analyze EEG data of 
associative recognition, found evidence for an early 
familiarity process by inspecting connectivity patterns 
during the stages.

It is noteworthy that we found a sustained increase 
in LIPFC activation throughout the two stages that we 
call retrieval and decision. It has been argued (e.g., 
Barredo, Öztekin, & Badre, 2015) that there is a need 
to exert control on the retrieval process to ensure that 

task-relevant information is obtained and on the postre-
trieval process to select the appropriate action on the 
basis of the retrieved information. While it remains to 
be determined just what is happening between encod-
ing and response, our research indicates that associative 
memory tasks involve more than a single process accu-
mulating evidence.

There are ways of reconciling the current evidence 
with single-stage decision-accumulation models. One 
could argue that single-stage models are appropriate 
only to nonassociative tasks such as item recognition. 
Such tasks may be based on familiarity and do not have 
an associative retrieval stage. While single-stage models 
have mainly been applied to nonassociative tasks, they 
have also been applied to associative memory tasks. 
For instance, as Voskuilen and Ratcliff (2016) describe 
their model of associative memory,

Reaction time distributions are obtained by 
combining the decision time (the time taken for 
one of the evidence accumulators to reach a 
decision boundary) with a uniformly distributed 
non-decision component. The non-decision 
component . . . encompasses both encoding and 
response output processes. (p. 64)

The experiments to which these models have been 
applied typically have much less well-learned material 
than our two experiments (and so analysis of errors 
becomes critical). One might argue that only experi-
ments with high degrees of practice have a distinct 
retrieval stage.2 However, a better tack might be to 
include the retrieval phase in the nondecision compo-
nent, which is assumed to be constant across condi-
tions. The fact that there is not strong evidence for an 

Table 2.  Results of Pairwise t Tests

Region and period Retrieval Decision Response

Fusiform  
  Encoding 4.66**** 5.90**** 5.16****
  Retrieval 1.87 1.37
  Decision 0.49
Left lateral inferior prefrontal cortex  
  Encoding –7.34**** –6.30**** –3.70**
  Retrieval 0.64 0.77
  Decision 0.48
Motor  
  Encoding 3.11** 2.78* –2.16*
  Retrieval –0.24 –4.03***
  Decision –4.31***

Note: Each cell shows results for the contrast between the period identified in the row 
label minus the period identified in the column label. The significance levels are for 
two-tailed tests with 45 degrees of freedom.
*p < .05. **p < .005. ***p < .0005. ****p < .00005.
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effect of memory difficulty on the retrieval stage in 
these experiments would be consistent with that, 
although Anderson et al. (2016) and Zhang, Walsh, and 
Anderson (2017) have found clear effects on the 
retrieval stage.

However one interprets and treats the retrieval stage, 
one can view the decision stage as an evidence-
accumulation process that could be described with a 
variety of models. Some sort of evidence-accumulation 
process seems natural for both of the memory tasks. 
For instance, Zhang, Walsh, and Anderson (2017) 
manipulated foil similarity and described a process by 
which the words in the probe are compared one by 
one with the words in the retrieved memory. One could 
propose a similar comparison process for arithmetic-
memory tasks in which the elements of numbers in the 
probe are compared with the probe (as suggested by 
Sohn et al., 2005, for a different recall task). Alterna-
tively, one could characterize the decision phase as 
involving a continuous accumulation of evidence as in 
Voskuilen and Ratcliff (2016).

In summary, while there remain questions to answer 
about the exact nature of the stages and their implica-
tions for different theories of memory, we have pro-
vided strong evidence for two distinct stages between 
encoding and retrieval. We have shown that similar 
stages are found in two rather different memory tasks, 
although questions remain as to just what the boundar-
ies are of tasks that have these two stages. We have 
shown that it is possible to identify the durations of 
individual stages and their distinct brain activity. We 
think continued use of such trial-by-trial methods will 
bring further resolution to the outstanding questions.
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Notes

1. We used a constant set of bump magnitudes estimated from 
the simultaneous fit to both experiments.
2. Alternatively, one might argue that a clear separation of stages 
can be found only in highly overlearned tasks. For instance, 
if stimuli encoding was less practiced, retrieval and decision 
might overlap with the actual encoding.
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