
Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 1

Learning Rapid and Precise Skills1

John R. Anderson

Carnegie Mellon University

Shawn Betts

Carnegie Mellon University

Daniel Bothell

Carnegie Mellon University

Ryan Hope

Carnegie Mellon University

Christian Lebiere

Carnegie Mellon University

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1 This work was supported by the Office of Naval Research Grant N00014-15-1-2151. We would
like to thank Cvetomir Dimov, Niels Taatgen and Matthew Walsh for their comments on the paper.
We also thank Samuel Schneider for his work on the initial design of Space Track. Some of the
results of these experiments were described at the 2018 ACT-R workshop and in a presentation
at the 2018 meeting of the Japanese Cognitive Science society. An earlier version of this paper
was archived at Anderson, J., Betts, S., Bothell, D., Hope, R. M., & Lebiere, C. (2018, June 4).
Three Aspects of Skill Acquisition. https://doi.org/10.31234/osf.io/rh6zt. The model, data, and
video demos are available at http://act-r.psy.cmu.edu/?post_type=publications&p=31435.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 2

Abstract

A theory is presented about how instruction and experience combine to produce human fluency

in a complex skill. The theory depends critically on four aspects of the ACT-R architecture.

The first is the timing of various modules, particularly motor timing, which results in behavior

that closely matches human behavior. The second is the ability to interpret declarative

representations of instruction so that they lead to action. The third aspect concerns how practice

converts this declarative knowledge into a procedural form so that appropriate actions can be

quickly executed. The fourth component, newly added to the architecture, is a Controller

module that learns the setting of control variables for actions. The overall theory is implemented

in a computational model that is capable of simulating human learning. Its predictions are

confirmed in a first experiment involving two games derived from the experimental video game

Space Fortress. The second experiment tests predictions from the Controller module about lack

of transfer between video games. Across the two experiments a single model, with the same

parameter settings, is shown to simulate human learning of three video games.

Keywords: skill acquisition, cognitive architecture, computational modeling, learning, video

games

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 3

 The course of our species has been determined by learning skills as varied as hunting with

a bow and arrow to driving a car. This paper describes a general theory of the mechanisms that

underlie human ability to acquire skills that require rapid and precise actions, which we have

applied to learning a video game. Like many interesting skills, learning to play a video game

involves simultaneously mastering components at perceptual, motor, and cognitive levels. The

level of expertise players can achieve with extensive practice in these games is truly remarkable

(e.g., Gray, 2017), but also remarkable is the speed with which people can acquire a serviceable

competence at playing games. There are now appearing artificial systems using deep

reinforcement learning that can out-perform humans in some video games (e.g., Mnih et al.,

2015). Whatever the judgment on the achievements of such systems, so far they have offered

little insight into how humans can learn as fast as they can. As examples of the speed of human

learning, Tessler et al. (2017) and Tsividis et al. (2017) both report that humans can achieve in a

matter of minutes the expertise that these reinforcement-learning algorithms require hundreds of

hours of game play to achieve.

 An essential feature of the task in this paper is that it requires simultaneously learning

many things at many levels. There has been considerable research on perceptual learning such

as visual patterns (Gauthier et al., 2010), motor learning (Wolpert, Diedrichsen, & Flanagam,

2011), and complex tasks like learning algebra (Anderson, 2005), but little research that has

addressed how these are put together. Our task also stresses the combination of instruction and

experience. While one cannot become good at a video game just by reading instructions, upfront

instruction certainly speeds up learning (see Appendix B). This combination of learning by

instruction and learning by practice is typical of human skill acquisition. As a test of whether

our theory has really put the many pieces together, we required that the model learn by playing

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 4

the actual game. The model is implemented within the ACT-R cognitive architecture (Anderson

et al., 2004). Using ACT-R avoids	
 the	
 irrelevant-specification problem (Newell, 1990) – that is,

the need to make a large number of under-constrained design decisions to allow the simulation to

run. This is because these details have been developed and verified in other empirical studies.

Of particular importance, ACT-R has a model of the speed and accuracy of perception and action

and so prevents us from implementing a system with super-human response speeds – as is the

case in the typical reinforcement-learning approach to video games. While existing ACT-R

theory provides many components for understanding the learning of these skills, it did lack an

essential component for mastering rapid and precise skills. This led us to develop a new

Controller module for ACT-R.

Theoretical discussions of skill acquisition (e.g., Ackerman, 1988; Anderson, 1982; Kim

et al., 2013; Rasmussen, 1986; Rosenbaum et al., 2001; VanLehn, 1986) frequently refer to the

original characterization by Fitts (1964, Fitts & Posner, 1967) of skill learning as involving a

Cognitive, Associative, and an Autonomous phase. In the Cognitive	
 phase	
 the	
 learner	

develops	
 a	
 declarative	
 encoding	
 of	
 the	
 skill.	
 	
 Performance	
 is	
 typically	
 halting	
 and	
 error	

prone.	
 	
 In	
 the	
 Associative	
 phase	
 errors	
 in	
 the	
 initial	
 understanding	
 are	
 gradually	
 detected	

and	
 eliminated	
 and	
 performance	
 speeds	
 up.	
 	
 	
 In	
 the	
 Autonomous	
 phase	
 performance	

speeds	
 up	
 further	
 and	
 achieves	
 greater	
 and	
 greater	
 degrees	
 of	
 automacity.

While Fitts’ original theory was focused on motor skills, Anderson (1982) extended it to

cognitive skills in terms of the then current ACT* theory. Anderson (1982) interpreted Fitts’

phases as successive periods in the course of skill acquisition. Fitts’ Cognitive Phase

corresponded in ACT* to the acquisition and utilization of declarative knowledge about the task

domain. While ACT* focused on acquisition and use of problem-solving operators, more recent

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 5

ACT-R models have also used declarative knowledge in analogical processes (particularly use of

examples) and instruction following (e.g., Anderson, 2005; Taatgen et al., 2008; Taatgen &

Anderson, 2002). This interpretive use of declarative knowledge is gradually converted into

procedural knowledge by a process called production compilation (both in ACT* and ACT-R).

This results in action rules that directly perform the task without retrieval of declarative

knowledge for guidance. This both speeds up performance and frees retrieval processes to

access other knowledge. Fitts’ Associative phase was interpreted as the period over which

compilation was occurring. ACT* accounted for learning in Fitts Autonomous phase in terms of

production-rule tuning, a process by which a search is carried out over the selection criteria of

productions to find the most successful combinations. Production tuning was heavily symbolic

and did not apply to learning over continuous dimensions in the skills of concern to Fitts and

Posner or in video games. Production tuning was not carried forward in the modern ACT-R

theory because it did generalize in a workable way2 to the wide range of tasks that have occupied

ACT-R. Thus, current ACT-R does not have a characterization of how a skill becomes tuned to

features that are predictive of success. This gap is filled by the new Controller module.

The Controller module has similarities to theoretical proposals in the motor learning

literature on how movements like reaching for a target are learned (Wolpert, Ghahramani, &

Jordan, 1995). This research has emphasized the development of an internal model mapping

controllable properties of the movement (forces produced by the muscles) to features of the

movement (e.g., position, velocity, and acceleration). This internal model enables selection of a

range of desired movements not just the trained movements. While our video game (controlled

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

2	
 That is to say, it produced a lot of broken or malfunctioning models.	

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 6

by discrete key presses) is not a typical motor learning task, it requires learning a model of how

parameters of one’s game play affect significant outcomes in the game.

 A challenge in learning appropriate behavior in complex environments is that the same

action choice can have different success because of variability in the environment and variability

in the learner’s behavior. A further complication is that the environment may not be stable and

payoffs might change over time (Wilson & Niv, 2011). A significant source of non-stability,

relevant in video games, is that as one’s skill changes different choices may become optimal.

The best approach to these issues in the reinforcement literature (e.g., for domains like n-arm

bandit problems, e.g., Cohen et al., 2007, Lee et al., 2011, Zhang & Yu, 2013) involves

continuously updating estimates of the payoffs of the options, choosing them with probabilities

that reflect their payoffs, and becoming more deterministic with experience. Not only does it

lead to adaptive behavior, it can be a good characterization of human learning (Daw et al., 2006).

Space Fortress Video Game

The Space Fortress video game has had a long history in the study of skill acquisition,

first used in the late 1980’s by a wide consortium of researchers (e.g., Donchin, 1989;

Frederiksen & White, 1989; Gopher et

al., 1989). Figure 1a illustrates the

critical elements of the game. Players

are supposed to try to keep a ship flying

between the two hexagons. They are

shooting “missiles” at a fortress in the

middle, while trying to avoid being shot

by “shells” from the fortress. The ship is

R"

Ang"

Thrust'Angle-

Aim-

Direc2on-
of-Flight-(a)$ (b)$

Missile&&&&
Shell&

Fortress&

Spaceship&

Star0ng&&
Vector&

Figure 1. (a) The Space Fortress screen, showing the inner and
outer hexagon, a missile shot at the fortress, and a shell shot at
the ship. The dotted lines illustrate an example path during one
game. (b) A schematic representation of critical values for
shooting and flight control.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 7

flying in a frictionless space in which to navigate the player must combine thrusts in various

directions to achieve a path around the fortress. Mastering navigation in the Space Fortress

environment is challenging. While our subjects are overwhelmingly video game players, most

have no experience in navigating in a frictionless environment.	

 Details about our version of Space Fortress are available in Appendix A. Here we

describe what is necessary to understand the results. We used the Pygame version of Space

Fortress (Destefano & Gray, 2008) where subjects interact by pressing keys on a keyboard. In

keeping with a finger mapping used in many video games, this implementation maps the keys A,

W, D onto counterclockwise turn, thrust, and clockwise turn, respectively. Subjects pressed the

space bar to shoot. The original version of Space Fortress is more complex than our version and

requires tens of hours to achieve mastery. To focus on learning in a shorter time period we

created a simpler version that just required flying the ship and destroying the fortress. The ship

starts out at the beginning of the game aimed at the fortress, at the position of the starting vector

in Figure 1a, and flying at a moderate speed (30 pixels per second) in the direction of the vector.

To avoid having their ship destroyed, subjects must avoid hitting either the inner or outer

hexagons and keep their ship flying fast enough to prevent the fortress getting an aim on it and

shooting it. When subjects are successful the ship goes around the fortress in a clockwise

direction. If their ship is destroyed it respawns after a second in the starting position flying along

the starting vector. Our version of the game eliminated much of complexity of scoring in the

original game and just kept three rules:

1. Subjects gained 100 points every time they destroyed the fortress.

2. Subjects lost 100 points every time they died.

3. To reinforce accurate shooting, every shot cost 2 points.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 8

To keep subjects from being discouraged early on, their score never went negative.

Good performance involved mastering two skills – destroying the fortress and flying the

ship in the frictionless environment. To destroy the fortress one must build up the vulnerability

of the fortress (displayed at the bottom of the screen). When the vulnerability reaches 10,

subjects can destroy the fortress with a quick double shot. Each time a shot hits the fortress the

vulnerability increments by one, provided the shots are paced at least 250 ms apart. If the inter-

shot interval is less than 250 ms the vulnerability is reset to 0 and one must begin the build up of

vulnerability anew. In contrast to the shots that build up the vulnerability, the double shot to

destroy the fortress must be a pair of shots less than 250 ms apart. While subjects could easily

make sure the shots building up vulnerability are at least 250 ms apart by putting long pauses

between them, this would mean that they would destroy few fortresses and gain few points.

Thus, they are motivated to pace the shots as close to 250 ms as they can without going less than

250 ms and producing a reset. The other aspect of shooting at the fortress is aiming (see Figure

1b). While shots need to be aimed roughly at the fortress, they do not need to be aimed at the

dead center because the fortress has a width. Not to waste time on needless aiming but not to

miss, subjects need to learn the boundary that defines an adequate aim.

The goal in flying is to maintain a trajectory that requires the fewest navigation key

presses (enabling the most shot key presses), that avoids being killed, and that optimizes one’s

ability to aim at the fortress. Subjects are instructed that they can achieve this by flying in an

approximate circular orbit (created by a sequence of legs producing a polygon-like path – see

Figure 1a). This can be achieved by applying thrust when they start to get too close to the outer

hexagon. They can only maintain a successful flight path if they control the speed of their ship.

If the ship moves too slowly the fortress can shoot it and destroy it. If they start moving too fast

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 9

they will not be able to make navigation actions in time. They can change the speed of the ship

by the direction the ship is pointed in when they thrust (thrust angle in Figure 1b). The ship can

be sped up by changing its thrust angle so that it points more in the direction it is currently going

in, while the ship can be slowed down by aiming more in the opposing direction. Exactly how

current speed, current direction, and orientation of the ship determine future speed and direction

is something that subjects must learn from experience. Also, the amount of thrust is determined

by the length of time they hold down the key and they need to learn appropriate durations for the

thrust.

Experiment 1

Thanks to the Pygame implementation of Space Fortress it is easy to create experimental

variations on the basic game and both experiments in this paper compare subject performance in

two games. The first experiment used a version, called AutoTurn, which simultaneously

reduced the demands of aiming at the fortress and of maintaining a successful flight path. In this

version the ship was automatically turned to always aim at the fortress. One can control the path

and speed of the ship by timing thrusts of appropriate durations. These two games created the

two conditions in Experiment 1, YouTurn and AutoTurn.

 While these versions were piloted with CMU student subjects, the data come from

Mechanical Turk subjects. The performances of the two populations were similar but the

Mechanical Turk subjects performed slightly better, probably because the Mechanical Turk

subjects who selected this hit were almost all video gamers. Only one subject reported no video

game experience, although no one reported experience with flying in a frictionless environment.

A minority reported having played Asteroids, which has some similarity to Space Fortress. No

subject mentioned Star Castle, which was the arcade game that Space Fortress was based on.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 10

 The subjects played 20 3-minute

games. Some subjects failed to show

learning over the course of the game and

some of these might not have been

trying. We regressed subjects’ scores on

game number and excluded subjects who

did not show a positive slope with

significance of at least .1. This mainly

eliminated poor performers, including a

number who scored 0 points for all games (Appendix B reports average results for all subjects).

There were 653 subjects in YouTurn (19-55 years, mean 31.9 years, 29 female) of which 48 met

the learning criterion for inclusion (19-55 years, mean 32.5 years, 22 female, 1 non video game

player, 6 who had played Asteroids). YouTurn subjects were paid a base pay of $7.50 for

completing the experiment and .02 cents per points (average bonus $2.11). There were 52

subjects in AutoTurn (19-41 years, mean 31.7 years, 18 female) of which 42 met the learning

criterion for inclusion (24-41 years, mean 32.5 years, 15 female, all had played video games, 10

who had played Asteroids). AutoTurn subjects were paid a base pay of $4 for completing the

experiment and .02 cents per points (average bonus $7.88).

 Figure 2 shows the average performance of subjects in the two versions of the game. To

stress the magnitude of individual differences, the error bars denote a standard deviation of the

population (not of the mean). Both populations show substantial improvement over the course

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

3	
 There	
 were	
 26	
 subjects	
 who	
 selected	
 the	
 Mechanical	
 Turk	
 hit	
 in	
 YouTurn	
 but	
 did	
 not	
 start	

the	
 experiment	
 (dropping	
 out	
 before	
 consent)	
 and	
 8	
 subjects	
 who	
 quit	
 before	
 playing	
 the	

game.	
 	
 	
 In	
 Autoturn	
 these	
 numbers	
 were	
 12	
 and	
 13.	

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Po
in

ts
 p

er
 G

am
e

0

500

1000

1500

2000

2500

3000

Growth in Points

AutoTurn
YouTurn

Figure 2. Growth in mean number of points earned per game.
Error bars reflect one standard deviation of the population.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 11

of the 20 games, but throughout the experiment AutoTurn subjects are much better than

YouTurn subjects, indicating a major cost associated with having to turn one’s ship. Subjects in

YouTurn only achieve 53% as many shots at the fortress as AutoTurn subjects and averaged 3.8

times as many deaths. We postpone further discussion of the data until after the description of

the model of the task and its theoretical assumptions.

A Model that Plays Space Fortress and Learns

A single ACT-R model played either AutoTurn or YouTurn depending on the

instructions that it received. The modeling effort took advantage of many mechanisms that have

been developed within the ACT-R architecture and tested in prior research. Figure 3 shows the

module architecture of ACT-R as described in Anderson et al. (2004) and Anderson (2007).

Modules are independent computational systems that run in parallel and asynchronously. They

can communicate through limited capacity buffers where they can deposit small amounts of

information. Critical to the coordination of the overall system is the Procedural module, which

can detect patterns in the buffers of other modules and issue commands to the modules to

perform actions. It consists of

production rules, which reflect pattern-

action associations that have been built

up through experience. Execution of

production rules averages 50 ms.	

A number of other modules are

also critical to the performance of the

model in this paper. Particularly

important in these games are timing of

Figure'3.''The'module'structure'of'ACT6R.''The'boxes'represent'
high6capacity,'independent'modules,'which'process'
informa@on'in'a'parallel.'The'central'Procedural'module'can'
recognize'paCerns'in'module'buffers'and'recommend'cogni@ve'
and'motor'ac@ons.'

Manual Vocal

Visual Aural

Imaginal Declarative

Goal

Procedural

Temporal)

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 12

finger actions. ACT-R has a Manual module based on the EPIC model of Kieras & Meyer

(1997). The minimum time between most finger presses will average 250 ms (50 ms production

plus motor time) although motor timing varies around this average. The one exception to this is a

double tap of the same finger, which averages about 100 ms (50 ms production plus motor time).

Other modules and their buffers also play a critical role in the game: Information about

the screen like where the ship is held in the Game State buffer (part of the Visual module);

information about various control variables like the time to wait between shots is held in the

Goal buffer; information about passage of time is in the Temporal buffer4; information about

recent outcomes (like a shot having missed) is in the Imaginal buffer; retrieved information about

the game instructions is available in the Retrieval buffer. The development of game competence

is based on three critical theoretical mechanisms: a system of rules that interprets declarative

representations of instructions, the production compilation mechanism that converts declarative

knowledge into direct-action productions, and the new Controller module that identifies

successful control values for action. We discuss these three below.

Declarative Interpretation of Instructions

The subjects were given instructions relevant to playing YouTurn and AutoTurn (available

in the online versions of the game – http://andersonlab.net/sf-paper-2017/turning.html). We did

not encode these written instructions into the model but rather self-instructions for playing the

game that reflected the knowledge conveyed in the written instruction. For instance, where the

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

4 The Temporal module (Taatgen et al., 2007) uses ticks from a mental clock to represent time.
The delay between ticks increases according to a noisy logarithmic function. The model was
based on research by Matell and Meck (2000) who proposed a neuropsychological timekeeper
that provided an explicit representation of time.
	

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 13

instructions said “When Fortress vulnerability reaches 10, it can be destroyed with a double

shot. A double shot is firing two shots very quickly (less than 250 milliseconds apart).”

we encode a self instruction that said “When the vulnerability is greater than or equal to 10

double tap the space bar”

The instructions were represented in ACT-R’s declarative memory as a set of operators (as

in many prior ACT-R models – e.g., Anderson et al., 2004, Anderson, 2007; Taatgen et al., 2008,

Anderson & Fincham, 2014). Operators take the form of specifying a state in which they apply,

specifying the action to take in that state, and then specifying the new state that will result.

These instructions specify a strategy for playing the game and different subjects report adopting

somewhat different strategies. For instance, some subjects report choosing to thrust on the basis

of distance from the fortress while other subjects report choosing to thrust on the basis of time to

hit the outer hexagon.

(a)$Time$to$

Outer$Hexagon?$

(e)$Speed?$
(b)$Aim?$

(c)$Delay?$

(d)$Vulnerability?$

$Single$

Shot$

$Double$$

Shot$

Space$$

Bar$
Space$$

Bar$x2$

|Dif|$$

<Aim

Dif$$

>Aim

Clockwise$

Dif$$

<$HAim$

Counter$

clockwise$
Ticks$>$$

TickHThresh$

>10$<=10$

>=Ideal$<Ideal$

Decrement$

Thrust$Angle$

(f)$Oriented$to$

Thrust$Angle?$

|Dif|$$

<Aim

Dif$$

>Aim

Dif$$

<$HAim$

Tap$$

Thrust$
Counter$

clockwise$
Clockwise$

Increment$

Thrust$Angle$

>=Border$

Threshold$
<Border$

Threshold$

A$ W$ D$

A$
D$

Figure 4. A representation of the instructions in YouTurn. Each set of branching arrows is an operator
going from one state one of the next. Except for the bottom operators they test conditions to
determine the next state. The bottom operators perform actions.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 14

Figure 4 illustrates the operators behind one of the strategies we implemented. It shows

the state structure of these operators in a graph form where each node represents an operator.

This graph has a tree-like form because many of the operators in Space Fortress serve a selection

function in that their action is to test for a condition in the game and the resulting state depends

on the outcome of the test. The bottom nodes of the tree are all action operators that specify keys

to press for shooting (space bar), thrusting (w key), turning counter-clockwise (a key), and

clockwise (d key). Table 1 describes the branching operators that lead down to these action

operators.

While we cannot represent all the slightly different strategies subjects could adopt, we

created 4 variations on these declarative instructions that crossed 2 dimensions of strategy

choice. One was whether the operator specified attending to distance or to time in deciding

when to thrust (node a in Figure 4). The

other concerned whether subjects

adopted the same strategy during the one

second that the fortress was absent

before it respawned. Some subjects

reported trying to concentrate their

thrusting in that interval so that they

could concentrate on shooting when the

fortress re-appeared. There were the

same 4 strategies for AutoTurn.

The model has productions that are

designed to interpret these operators and

Figure'5.''Pseudocode'for'two'produc3ons'that'interpret'
instruc3ons'and'examples'of'buffer'contents'that'would'evoke'
these'produc3ons:''(a)'A'produc3on'that'performs'a'motor'
ac3on.''(b)'A'produc3on'that'performs'a'comparison'of'a'game'
quan3ty'with'a'control'variable.'

Produc'on:*
If!STATE!in!GOAL!BUFFER!=!DO0STEP!
!!!and!ACTION!in!RETRIEVAL!BUFFER!=!TEST0DIMENSION!!
Then!dimension!:=!ARG1!in!RETRIEVAL!BUFFER!!

*If!(dimension!in!GAME!STATE!BUFFER)!>!!(dimension!in!GOAL!BUFFER)!!
!Then!request!retrieval!of!step!SUCCESS!in!RETRIEVAL!BUFFER!

Slot* Value*

ACTION! TEST0DIMENSION!

PRE! FORTRESS!

ARG1! TIME0TO0OUTER!

FAIL! SPEED?!

SUCCESS! AIM?!

Slot* Value*

X! 243.0!

Y! 310.14!

AIM! 7.05!

VEL! 1.0!

TIME0TO0OUTER! 3.40!

RETRIEVAL*BUFFER* GAME*STATE*BUFFER*
Slot* Value*

STATE! DO0STEP!

TIME0TO0OUTER! 1.48!

TICKS! 12!

AIM! 4.70!

VULNERABILITY! 10!

GOAL*BUFFER*

(b)!

Produc'on:*
If!STATE!in!GOAL!BUFFER!=!DO0STEP!
!!!and!ACTION!in!RETRIEVAL!BUFFER!=!SPACEBAR!
Then!tap0press!right!index!finger!

Slot* Value*

ACTION! SPACEBAR!

PRE! SHOOT!

POST! DONE!

RETRIEVAL*BUFFER*

Slot* Value*

STATE! DO0STEP!

TIME0TO0OUTER! 1.48!

TICKS! 12!

AIM! 4.70!

VULNERABILITY! 10!

GOAL*BUFFER*

(a)!

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 15

others. Figure 5 illustrates two of these productions. Figure 5a shows a relatively simple

production that interprets the instruction to hit the space bar. The Retrieval buffer holds the

retrieved instruction and the Goal buffer holds the state (what the system is to do – in this case,

perform a step of instruction) plus the values of various control variables. The production

specifies that the motor module should issue a tap-press of the right index finger, which is over

the spacebar, when the state in the goal is to do a step and the step retrieved is to press the

spacebar.

Figure 5b illustrates a more complex production that applies at the binary branches a, d, and

e in Figure 4. This production responds to the retrieval of a step that specifies testing a

dimension. The dimension to be tested is in the ARG1 value of the retrieved instruction, which

in this case is time to outer hexagon (node a in Figure 4). The production applies because the

time to the outer hexagon in the Game State buffer, 3.40 seconds, is greater than the control

value of Goal buffer, 1.48 seconds. In this case it branches to retrieve the step associated with a

successful comparison, the success case of the current step in the retrieved instruction (AIM? in

Figure 5b), which concerns aim (node b in Figure 4).

 In total there are 31 instruction-following productions (see also discussion surrounding

Figure 22). Some of these, like the two productions in Figure 5, are the same as or similar to

instruction-following productions that have been used in previous models. Other instruction-

following productions, like the ones that interpret instructions to increment and decrement thrust

angle, are new because we had not previously needed to interpret this kind of instruction.

In the ACT-R model, the average time to retrieve an instruction is about 100 ms and the

average time to execute a production is 50 ms. Thus, it takes on the order of 150 ms to interpret

this operator. The time to interpret all the operators in Figure 4 leading down to a physical

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 16

action can take well over half a second with possibly some motor execution time5. The ability

to interpret such declarative instructions allows the model to immediately play the game.

However, this instruction following is much too slow for success in a fast-paced game.

Production Compilation

Without the instructions just discussed the model is not able to play the game. With these

instructions but without production compilation, the model is able to play the game but

accumulates virtually no points because it averages 4 to 8 times as many deaths as fortress kills

(see Figure 16 later in the paper). It often takes too long to step through these instructions to act

in time. (The timing parameters that control the speed through these steps are based on a history

of successful ACT-R models – Anderson, 2007.) Subjects also initially find the task

overwhelming. In YouTurn the subjects average 100 seconds to destroy their first fortress,

while they only take about 5 seconds to kill the fortress by the end of play (for the model runs the

average is 81 seconds for first kill and 5 seconds asymptotically).

Production compilation (Taatgen & Anderson, 2002) has been used in past instruction-

following models of skill acquisition (e.g., Anderson et al., 2004, Anderson, 2005, Taatgen et al.,

2008; Taatgen, 2013) to capture the transition that people make from acting on the basis of

retrieved declarative information to responding directly to the situation. If two productions fire in

sequence, then they can be combined into a single new production that is added to procedural

memory. If the first of these productions makes a request to declarative memory, and the second

production uses the retrieved fact to determine what to do, then the retrieved fact is substituted

into the new production and the retrieval step is eliminated. A compiled rule can further be

combined with another rule and so become still more specialized and more efficient. Eventually

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

5	
 Counting motor execution into the total time is complex because execution of a motor action
can overlap with retrieval of what to do next.	

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 17

rules will be created that respond to

game situations with direct actions

without requiring retrieval of any

declarative knowledge. This is critical

in games like Space Fortress that put a

premium on fast actions. Figure 6 shows

one of the direct-action productions that

are eventually acquired. This

production checks that all the tests on control variables are satisfied so that a single shot can be

taken: the ship is far enough from the border (3.40 > 1.48 seconds); the aim is good enough (3.05

< 4.70 degrees); enough time has passed between shots (15 > 12 ticks), and the fortresses’

vulnerability is under the threshold for a kill shot (6 < 10). In this case it issues a request for a

tap of the right index finger.

High levels of performance require such production rules that directly respond with key

presses to different game situations. However, the model can start to achieve positive points

even with productions rules that compile parts of the operator sequences and so speed up

performance. The development of such intermediate rules allows the model to begin to achieve

kills about midway through the first game.	

Newly compiled productions do not immediately start to take effect because they are

initially dominated by existing productions. In particular, a compiled production must compete

with the first production that it originated from (the “parent” production) since that parent

production will match in any situation that the new production will match. Utility values of

productions determine which production applies when more than one matches the current

Produc'on:*
If!STATE!in!GOAL!BUFFER!=!PLAY!
!!!!and!(TIME6TO6OUTER!in!GAME!STATE!BUFFER)!>!!(TIME6TO6OUTER!!in!GOAL!

BUFFER)!!

!!!!and!(TICKS*in!TEMPORAL!BUFFER)!>!!(TICKS*in!GOAL!BUFFER)!!
!!!!and!(AIM!in!GAME!STATE!BUFFER)!<!!(AIM!in!GOAL!BUFFER)!!

!!!!and!(VULNERABILITY!in!GAME!STATE!BUFFER)!<!!(VULNERABILITY!in!GOAL!BUFFER)!
Then!tap!press!right!index!finger!

Slot* Value*

TICKS! 15!

Slot* Value*

STATE! DO6STEP!

TIME6TO6OUTER! 1.48!

TICKS! 12!

AIM! 4.70!

VULNERABILITY! 10!

Slot* Value*

X! 243.0!

Y! 310.14!

AIM! 3.05!

VEL! 1.0!

TIME6TO6OUTER! 3.40!

VULNERABILITY! 6!

TEMPORAL*BUFFER* GOAL*BUFFER* GAME*STATE*BUFFER*

Figure'6.''Pseudocode'for'a'direct2ac3on'produc3on'that'issues'
a'single'shot'and'an'example'of'buffer'contents'that'would'
evoke'its'applica3on.''

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 18

situation. The utility of a production reflects the value of what they eventually achieve minus

the amount of time it takes to do that. What this model is trying to achieve is to press the next

key to play the game and it treats all key presses as having the same utility. Thus, the factor that

determines the relative utility of productions is how fast they lead to key presses.

This model uses the standard ACT-R utility learning (Anderson, 2007). In ACT-R new

productions start with zero utility and must learn their true utility. Thus, at first a new

production will lose in competition with its parent and will only gradually begin to take effect as

its true utility is learned. Whenever a pair of productions fire that would result in the

compilation of the same production, ACT-R will adjust the utility of the already compiled

production in the direction of the first of the pair of productions (the parent)6. ACT-R adjusts

the utility of the new production towards the parent’s utility according to a simple linear learning

rule:

Utility = Utility + α(Parent-Utility – Utility) Equation 1a

The utility values fluctuate moment by moment from the value prescribed above because of a

normal-like noise. Thus, when the utility of the new production approaches that of the parent,

the new production will have some probability of applying. When the production rule does

apply, its value can be determined, and its utility changes according to the linear learning rule:

Utility = Utility + α(Value – Utility) Equation 1b

The value of a compiled rule will be greater than its parent’s value because it is more efficient.

Eventually the compiled rule will acquire greater utility and tend to be selected rather than the

parent. Thus, new productions are only introduced slowly, which is consistent with the gradual

nature of skill acquisition. The parameter α determines how fast the utility of the new production

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

6	
 Different pairs of productions can result in the compilation of the same production and so the
parent can change from compilation to compilation.	

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 19

grows and comes to exceed the parent. It takes many opportunities before rules come to

dominate that skip all instruction-following steps and just perform the appropriate actions. The

speed with which direct-action productions are acquired also depends on their frequency in the

game. For instance, the direct-action single-shot production (i.e., Figure 6) is learned faster than

the direct-action double-shot production because the single-shot action occurs approximately 10

times as often (to build up fortress vulnerability) as the double-shot action that destroys the

fortress.

Control Tuning

A model that has the declarative instructions and production compilation still does not

learn to play at human level. Runs of such models playing YouTurn reach an average a few

hundred points per game (see Figure 16 later in the paper), much under the average of YouTurn

subjects in Figure 2. To learn how to play YouTurn well, the model must learn settings for 5

control values: shot timing, aim (see Figure 1b), thrust timing, thrust duration, and thrust angle

(see Figure 1b). Here we will use shot timing to illustrate the general principles behind control

tuning in the Controller module. Control tuning involves three critical components: selecting a

range of possible values for a parameter that will control an action, attending to relevant

feedback, and converging to good range for that parameter.

Setting a Range for a Control Value. Subjects have some sense of what good values are for

the various control dimensions. For instance, the instructions tell subjects that while they are

building the vulnerability of the fortress up to 10 their shots must be at least 250 ms apart.

Subjects have a vague idea of what constitutes 250 ms and tune that range to something more

precise. ACT-R can be sensitive to the passage of time through its Temporal module that ticks at

somewhat random and increasing intervals producing the typical logarithmic discrimination for

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 20

temporal judgments (Taatgen et al., 2007). The model places the possible range between 9 and

18 temporal ticks. Given the standard parameterization of the Temporal module, 9 to 18 ticks

correspond to a range from approximately 150 to 500 ms.

Attending to Relevant Feedback. One of the reasons human players can learn faster than the

typical deep reinforcement learners is that they know what features of the game are relevant as

feedback to the setting of each parameter. They adjust their behavior according to these features

and not raw points scored. The model looks for a control setting that yields an optimal

combination of features specific to the dimension it is controlling. For instance, subjects know

that a good setting for shot timing results in increments to vulnerability and not resets of

vulnerability. Therefore, the features that the model attends to are increments and resets,

weighting the first positively and the second negatively. For simplicity, for shot timing and all

other control variables the positive and negative weights are equal (+1 and -1). Note that the

Controller module treats increments in vulnerability as positive outcomes even though each shot

results in a 2-point decrement in score.

Convergence. The Controller module samples a candidate control setting for a while,

determines a mean rate of return per unit time for that control setting, and then tries another

control setting. It gradually builds up a sense of the payoff for different control values. It learns

a mapping of different choices onto outcomes through a function learning process (e.g., Koh &

Meyer, 1991; Kalish, Lewandowsky, & Kruschke, 2004; McDaniel & Busemeyer, 2005). As

suggested in Lucas et al. (2015) we assume a learning process that favors a simple function as

most probable and in the current context this leads to estimating a quadratic function V(S) that

describes payoff as a function of the control setting S. A quadratic function is a simple function

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 21

that has a maximum and so facilitates identification of a good point7. The model starts off

seeded with a function that gives 0 for all values in the initial range and weights this function as

if it is based on an amount of prior observations (20 seconds in the current model). It starts to

build up an estimate of the true function as observations come in.

The control settings are changed at random intervals. The durations of these intervals are

selected from an exponential probability distribution with a mean of 10 seconds8. Figure 7 shows

the quadratic function that was estimated for shot timing in one run of the model after playing a

single game (180 seconds). The red dots reflect performance of various choices during that

game. They are quite scattered reflecting the random circumstances of each interval. For

instance, note the value at 9 ticks, which is approximately 150 ms. This brief an interval would

typically lead to resets, but at the beginning of the game when instruction interpretation slows

down action, it results in about 2 hits per second.	
 As discussed with respect to reinforcement

learning, in a variable environment control tuning needs to balance exploration to find good

values with exploitation to use the best values it currently has. For this purpose, control tuning

uses a softmax equation that gives the probability of selecting a value S at time t:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 Equation	
 2a

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

7 It also is efficient to update and would generalize to multi-dimensional space.

8 It seemed unreasonable to propose that the model always used the exact same period for
evaluation. The exponential was used as an uninformed guess about the true distribution. While
having such variability in evaluation period might be important in some contexts, the results in
Space Fortress would not substantially change with a constant 10 seconds. For an analysis of the
effect of the mean duration (rather than variability) see Figure 24d.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 22

V(S) is the current value of the quadratic function for control value S. T(t) is the temperature.

As it decreases the model will more frequently select the option it thinks is best. Temperature is

a parameter used in reinforcement learning schemes (Kaebling et al., 1996) to control the trade-

off between exploration and exploitation. Frequently it is started at a high value to allow the

agent to explore options and decreased over time to allow the agent to focus on the most

profitable options. While originally introduced in artificial intelligence, it finds frequent use in

current models of human learning (e.g., Jepma et al., 2011; Kool et al., 2017). In our model,

temperature decreases over time playing the game, t, according to the function

 T(t)=A/(1+B*t) Equation 2b

where A is the initial temperature and B scales the passage of time (in the model this is set to

1/180 of a second, reflecting a 180 second game). Figure 8 illustrates convergence for one

random run of 20 games. Figure 8a shows that in this run the estimated quadratic function

became fairly tuned by game 5. However, Figure 8b shows that the choices continue to

concentrate more around the optimal value as the model plays more games.	

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 23

Summary. The Controller module learns to map a continous space onto an evaluation by

exploring that space and converging on an optimal point. While the spaces being mapped in this

task are all one-dimenisonal, the methods could be generalized to multi-dimensional spaces.

Other function-learning approaches could be applied to this task. Indeed, deep reinforcement

learning methods could apply to this task. This would differ from the typical application of deep

reinforcement learning methods to games in that they would apply to reduced spaces (e.g.

distance to border) relevant to a particular control variable rather than the full space of the game

(e.g., all pixels) and the evaluation would be specific to that control variable. Such an informed

focus seems characteristic of human learning. In some cases this focus can mean that humans

miss learning the best solutions, but the focus enables rapid learning.

Comparison of Model and Data	

Figure 9 compares subjects and model in terms of total score. We ran 100 models in each

condition. Besides matching the overall growth in points of the subjects, the models show a high

variability in performance, almost matching the range shown by the subjects. The 100 models

were created by crossing 4 different strategies, with 5 different settings for production

compilation, with 5 different settings for control tuning:

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Po
in

ts

0

200

400

600

800

1000

1200

1400

1600

(b) YouTurn
Subjects
Models

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Po
in

ts

0

500

1000

1500

2000

2500

(a) AutoTurn
Subjects
Models

Figure'9.''A'comparison'of'subject'and'model'performance:'Error'bars'reflect'one'standard'
devia<on'of'the'popula<on.'

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 24

1. Strategies. Four different strategies for navigation were implemented to reflect

different things subjects reported. The models either used distance from fortress or

time to hit the outer hexagon in deciding when to thrust. Models either uniformly

used this strategy for thrusting or emphasized thrusting when the fortress was absent

by thrusting as long as the ship was moving from the fortress. Crossing these two

factors yielded the 4 strategies. Models perform slightly better when attending to

time to outer hexagon rather than distance from fortress (1,951 vs. 1,920 mean points

in AutoTurn; 707 vs. 658 mean points in YouTurn). The benefit of emphasizing

navigation when the fortress was absent was even smaller (1,950 vs. 1,921 mean

points in AutoTurn; 684 vs. 681 mean points in YouTurn).

2. Production Learning Rate α . We used values of .025, .05, .1, .2, and .3 for this

learning parameter that controls the rate at which compiled productions replace the

productions they are compiled from. This range corresponds to values that have

been used in past models. This parameter loosely reflects differences in relevant prior

experience in subjects.. High values of α mean that models will soon start applying

productions that collapse some of the steps in taking an action, which loosely mimics

subjects starting off with such productions from past experience. This is similar to

Taatgen’s (2013) transfer model. Mean points varied strongly with this factor: 1748,

1850, 1958, 2043 and 2069 points in AutoTurn and 277, 553, 702, 893, and 990

points in YouTurn.

3. Initial temperature A. We used values of .1, .25, .5, 1, and 2. Lower temperature

will result in less random behavior and greater choice of values that have performed

best. To some degree starting with a lower temperature will correspond to more

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 25

attentive subjects who will incorporate more of their learning experiences and more

motivated subjects will weight the payoff higher. Scores showed a curvilinear

relationship to this factor with best scores for an initial temperature of 0.5: 1862,

1974, 2020, 1971, and 1851 in AutoTurn and 569, 743, 871, 737, and 596 in

YouTurn. Performance can be poor with low initial temperature because this can lead

to convergence on non-optimal values and can be poor with high initial temperature

because there never is convergence.

The goal in producing a set of different models was not to create a model of each subject’s

unique behavior, but to show that the theory predicts subject-like behavior over a range of

individual variation of the sort that is occurring in subjects. The values chosen for the learning

rate and temperature gave a reasonable approximate to human behavior and we did not make an

effort to carefully tune them to maximize fit.

While absolute levels of performance are quite similar, subjects are outperforming the

model in AutoTurn (mean points of 2,086 vs. 1,936 – t(140)=2.49, p <.05) while they are slightly

worse in YouTurn (mean points of 672 vs. 683 – t(146)=0.13). Little can be made of such direct

comparisons of level of performance. The subjects do not reflect all the variation in a larger

population that did not self-select to be in this experiment on Mechanical Turk. The models also

do not reflect all the possible models that could be created with different strategies or parameters.

Also, the models are trying all the time, something that is not true of every subject. More

important than the absolute level of scores are the learning trends over games, which are

strikingly similar. The correlation of the mean scores across the 20 games is .989 in AutoTurn

and .995 in YouTurn.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 26

 Each time the fortress is destroyed subjects gain 100 points and each time they are killed

they loose 100 points. Thus, kills and deaths largely determined their total points. The only

additional factor is the 2 points that each shot costs. Figure 10 shows the growth in fortress kills

over trials and the decrease in ship deaths. The correspondence between models and subjects is

strikingly close for fortress kills (Figures 10a and 10b). However, there are differences in

deaths. Subjects are showing a greater decrease in deaths over games than models in AutoTurn

(Figure 10c) but less decrease in YouTurn (Figure 10d). In AutoTurn the principal cause of death

for both subjects and models is being shot by the fortress (Figure 10e) when the ship is flying too

slow. In AutoTurn, because one cannot turn to easily adjust speed, ship speed is a long-term

consequence of the pattern of thrusting. Subjects are learning patterns that avoid such deaths

while the model is not. In YouTurn ship speed is largely determined by the thrust angle of the

last thrust and models are better at learning this thrust angle and show more improvement

(Figure 10f).

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 27

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 28

Given that the new addition to ACT-

R is control tuning, the remainder of these

data-model comparisons will involve results

relevant to control values being learned.	

 Shot Timing. The simplicity of

AutoTurn makes it good for assessing the

learning of shot timing. Most of the key

presses are sequences of shots in a row (an

average length of 6.3 for subjects and 7.8 for

the models). This means one can use

intershot times to get an estimate of how

subjects are pacing their shots. Figure 11a

compares subjects and models in terms of

intershot time. Subjects show a decrease

from about 650 ms to about 350 ms. Models

show a decrease from about 600 ms to about

400 ms. The asymptotic value of 350 ms is

100 ms above the minimum to avoid a reset,

but given variability in one’s ability to time

actions and the game variability, the optimal

setting for this control variable is above the

minimum. On the first game the models

average an intershot time of 600 ms even

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Fi
re

-to
-F

ire
 In

te
rv

al
 (m

se
c.

)

0

100

200

300

400

500

600

700

800
(a) Speed of Shooting

Subjects
Models

3 Minute Games
2 4 6 8 10 12 14 16 18 20

R
es

et
s

pe
r G

am
e

0

1

2

3

4

5

6

7
(b) Firing Too Quickly

Subjects
Models

Ticks
10 12 14 16 18

Av
er

ag
e

D
en

si
ty

0

0.1

0.2

0.3

0.4

0.5

0.6
(c) Delay Between Shots

After Trial 1
After Trial 5
After Trial 20

Figure'11.'Shot'Timing'in'AutoTurn:'(a)'Mean'
intershot'dura9on'per'game'for'subjects'and'
models;'''(b)'Mean'number'of'resets'per'game'
for'subjects'and'models.''(c)'Probability'of'
choosing'different'9me'thresholds,'averaged'
over'the'100'models.''Error'bars'in'(a)'and'(b)'
reflect'one'standard'devia9on'of'the'
popula9on.'

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 29

though the upper bound of their range for timing (18 ticks) is about 500 ms. They take this long

because of the time to reason through all of the steps in determining that they can shoot. We

assume the slow initial times of subjects also reflect the cost of thinking through what they

should do.

Figure 11b shows how often subjects and models reset the vulnerability to 0. Subjects

average about 4 resets. The models start at this value but decrease to about 2 resets. While

resets are not decreasing for subjects, the number of shots taken is increasing from about 250 to

450 reflecting the decrease in intershot time and other improvements in performance. So the

proportion of shots resulting in resets is decreasing in both populations.

Figure 11c shows the probability of the Controller module choosing different control

values for waiting times. This figure shows the choice behavior averaged over the 100 models.

The models tend to converge on a sweet spot between 13-14 ticks, which is about 300 ms.

(production execution adds another 50 ms to intershot times). However, 8 models converged to

very slow shooting (resulting in the upswing at 18 ticks in Figure 11c). Such slow shooting

results in no resets but more than 100 fewer shots than the other models and an average of 500

points less.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 30

Aiming. Subjects have to turn their

ship in YouTurn and turning is critical both

to aiming at the fortress and navigation.

The model uses hits and misses as feedback

on what is an adequate aim. Figure 12

displays information on aiming comparable

to Figure 11 on shot timing. Part (a) shows

how far the aim was off the fortress when a

shot was taken. Both subjects and models

show a decrease in the average angular

disparity over games. Part (b) shows the

resulting decrease in proportion of missed

shots. The results are strikingly similar.

Figure 12c shows that the models tend to

converge on a maximum disparity of about

9-10 degrees.

3 Minute Games
2 4 6 8 10 12 14 16 18 20

D
eg

re
es

0

5

10

15
(a) Aim Angle

Subjects
Models

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Pr
op

or
tio

n
of

 M
is

se
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
(b) Errors in Aiming

Subjects
Models

Angle
5 10 15 20

Av
er

ag
e

D
en

si
ty

0

0.05

0.1

0.15

0.2

0.25
(c) Maximum Offset in Aim

After Trial 1
After Trial 5
After Trial 20

Figure'12.'Aiming'in'YouTurn:'(a)'Mean'offset'of'
aim'at'shot'per'game'for'subjects'and'models;'''
(b)'Mean'proporBon'of'misses'per'game'for'
subjects'and'models.''(c)'Probability'of'choosing'
different'maximum'aim'offsets,'averaged'over'
the'100'models.'.''Error'bars'in'(a)'and'(b)'reflect'
one'standard'deviaBon'of'the'populaBon.'

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 31

When to thrust. The model chooses

to thrust according to either how soon it will

hit the outer hexagon or its distance to the

outer hexagon. If using time, the range of

the control values is between 1 and 5

seconds. If using distance, the range is

between 10% of the way to boundary to

90%. The longer the model waits to thrust

the greater chance of completing a fortress

kill. If it waits too long to thrust it will crash

into the outer border. Therefore, it treats

fortress kills as positive feedback and deaths

as negative feedback.

As is the case for shot timing, good

data on when thrust decisions are made can

be collected in AutoTurn because there is

never any need for preliminary turning.

Figure 13a displays the mean distance at

which subjects and models chose to thrust.

Both populations show a bit of a downward

drift but subjects are thrusting on average 10-

20 pixels earlier. Figures 13b and 13c show

the average probability of the choices that

3 Minute Games
2 4 6 8 10 12 14 16 18 20

M
ea

n
D

is
ta

nc
e

fro
m

 C
en

te
r (

pi
xe

ls
)

0

20

40

60

80

100

120

140

160
(a) Distance at Thrust

Subjects
Models

Seconds from Outer Hex
1 2 3 4 5

Av
er

ag
e

De
ns

ity

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32
(b) Time Threshold for Thrust

After Trial 1
After Trial 5
After Trial 20

Proportion of Distance to Outer Hex
0.2 0.4 0.6 0.8

Av
er

ag
e

De
ns

ity

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
(c) Distance Threshold for Thrust

After Trial 1
After Trial 5
After Trial 20

Figure'13.'Distance'in'AutoTurn:'(a)'Mean'
distance'from'fortress'at'which'subjects'and'
models'chose'to'thrust;'''(b)'Probability'of'
choosing'different'Dme'thresholds,'averaged'
over'50'models..''(c)'Probability'of'choosing'
different'distance'thresholds,'averaged'over'50'
models.'Error'bars'in'(a)'reflect'one'standard'
deviaDon'of'the'populaDon.''

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 32

determine when the model chooses to thrust.

Thrust time. The effect of a thrust increases linearly with the duration that the thrust key

is depressed (a vector of .3 pixels per second in the direction pointed is added each game tick,

which is a 30th of a second). The model searches between 67 ms (which is 2 game ticks, the

typical time associated with a tap) to 167 ms (5 game ticks, a noticeable duration of sustained

pressing). While the model may choose to press for a certain period, motor noise and

asynchrony between model and game will result in the thrust key being depressed for a duration

somewhat different than the selected time. A thrust that is very long may result in driving the

ship into the inner hex. A thrust that is too brief may result in a slow ship speed and the ship

3 Minute Games
2 4 6 8 10 12 14 16 18 20

M
ea

n
D

ur
at

on
 o

f T
hr

us
t (

m
se

c)

0

50

100

150

200
(a) Thrust Duration in Autoturn

Subjects
Models

3 Minute Games
2 4 6 8 10 12 14 16 18 20

M
ea

n
D

ur
at

on
 o

f T
hr

us
t (

m
se

c)

0

50

100

150

200
(b) Thrust Duration in Youturn

Subjects
Models

Thrust Duration (sec.)
0.08 0.1 0.12 0.14 0.16

Av
er

ag
e

D
en

si
ty

4

6

8

10

12

14

16

18
(c) Duration Choice in Autoturn

After Trial 1
After Trial 5
After Trial 20

Thrust Duration (sec.)
0.08 0.1 0.12 0.14 0.16

Av
er

ag
e

D
en

si
ty

6

7

8

9

10

11

12

13

14

15
(d) Duration Choice in Youturn

After Trial 1
After Trial 5
After Trial 20

Figure'14.'Thrust'Dura1on'in'AutoTurn'(a)'and'YouTurn:'(b)'Choice'of'thrust'dura1ons'in'the'models'
for'AutoTurn'(c)'and'YouTurn'(d).''Error'bars'in'(a)'and'(b)'reflect'one'standard'devia1on'of'the'
popula1on.'

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 33

being shot by the fortress. As with when to thrust, the Controller module treats fortress kills as

positive feedback and ship deaths as negative feedback.

In both AutoTurn and YouTurn the duration that the models and subjects press thrust

provides estimates of what they think is a good thrust time. Figures 14a and 14b show that the

thrust times are similar between models and subjects. In YouTurn thrusts are longer in the early

games. In the model this is because of long emergency thrusts the model takes when it gets too

close to the border. This mainly happens early in play when the model is taking too long to

decide its next action (and there are more things to decide and do before a thrust in YouTurn than

in Autoturn). Figures 14c and 14d show the choice of thrusts in the AutoTurn and YouTurn. In

AutoTurn there is little effect of thrust choice and so the average distribution (over models) of

choices stays rather flat with some preference for briefer thrusts in later games. In contrast, in

YouTurn the consequences of a thrust too long or too short can be serious in terms of controlling

speed. Here most models converge to thrusts of about 120 ms.

Thrust angle. If the ship is not at a good thrust angle, thrusts can increase the speed of the

ship and once the ship starts moving too fast it cannot be controlled. The instructions explain

that to prevent the ship from picking up speed the thrust angle (difference between flight of ship

and ship orientation – see Figure 1b) should be greater than 90 degrees. In this case the ship is

pointing somewhat away from the flight vector of the ship and will subtract from that vector.

Each subject’s thrust duration determines a thrust angle that would maintain current speed9. This

thrust angle is the control variable that the subjects need to learn. The model searches for a

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

9	
 As a reference for what a plausible thrust angle should be, if the thrust key was held down

long enough to add as much velocity in the direction of the thrust angle as the current velocity, a
thrust angle of 120 degrees would maintain current velocity. The average velocity added by the
thrust is just a little less than the average ship speed, implying an average thrust angle a little less
than 120 degrees.	

	

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 34

good value for the thrust angle between 85

and 140 degrees. The sign of a good thrust

angle is that resulting ship speed stays

within the good range (30 to 50 pixels per

second) and of a bad thrust angle that it is

slower or faster. Therefore, the model

evaluates thrust angle in terms of the speed

of the ship after the thrust, treating speeds in

the good range as positive feedback (+1)

and speeds slower or greater as negative

feedback (-1).	

Subjects are told they can adjust the

speed of the ship by adjusting the thrust

angle. Correspondingly, how the model

treats the thrust angle it has chosen for its

control value depends on the speed of the

ship (Figure 4e). It will increment the angle

it thrusts beyond the chosen thrust angle if it

is flying too fast and decrement the angle if

it is flying too slow.

Figure 15 compares subjects and models

with respect to thrust angle in YouTurn.

Part (a) shows that the average thrust angle

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Pi
xe

ls
 p

er
 S

ec
on

d

0

10

20

30

40

50

60
(b) Speed

Subjects
Models

3 Minute Games
2 4 6 8 10 12 14 16 18 20

D
eg

re
es

0

20

40

60

80

100

120

140
(a) Thrust Angle

Subjects
Models

Degrees
90 100 110 120 130 140

Av
er

ag
e

D
en

si
ty

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(c) Choice of Thrust Angle

After Trial 1
After Trial 5
After Trial 20

Figure'15.'Thrust'angle'in'YouTurn:'(a)'Mean'
thrust'angle'per'game'for'subjects'and'models;'''
(b)'Mean'speed'of'ship'for'subjects'and'models.''
(c)'Probability'of'choosing'different'thrust'
angles,'averaged'over'the'100'models.'.''Error'
bars'in'(a)'and'(b)'reflect'one'standard'deviaHon'
of'the'populaHon.'

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 35

of both subjects and models increases a little over the games to about 100 degrees. Part (b)

shows that they both converge to an average speed of about 40 pixels per second. Part (c)

illustrates how the models’ choices for a control value converge over time. Although the

preferred control value is over 110 degrees by the end, the average angles at which the ship

thrusts are just over 100 degrees. Aiming often leaves the ship a little under the chosen thrust

angle but not enough to provoke a turn.	
 	

Summary	
 of	
 Comparison	
 of	
 Model	
 and	
 Data	

Figures 9-15 provide a comparison of the play of subjects and models on multiple

dimensions. There were four strategic variations in model play in the models, but they do not

begin to cover the range of things that subjects reported (often things idiosyncratic to one

subject). So there is no reason to expect a perfect correspondence in behavior. In some cases

the differences between subjects and models were significant, but in all cases there was

considerable similarity and overlap between the subjects and models.

There are multiple reasons for the similarity between model and subject behavior. First,

the nature of games constrains what a player can do and succeed. Second, the models reflected

human limitations and thus cannot achieve the super levels of a pure AI approach. Third, the

instructions provide both subjects and models with a starting point of information about how to

play the game. Fourth, and this is a major theoretical claim, the key human learning mechanisms

in the model are the key learning mechanisms in humans: Production compilation moves the

players to the point where they can directly respond to what they see without having to think it

through. Control tuning allows players to discover the correct setting on continuous parameters

critical to successful play.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 36

To investigate the contribution of production compilation and control tuning, we created

9 variants of the original model by crossing 3 choices with respect to production compilation and

3 choices with respect to control tuning. For production compilation the three choices were:

1. Already Compiled. The model started out with the direct-action productions that

would result from production compilation.

2. Compiling. New productions were created from the instruction-following rules as in

the models reported in the prior section.

3. No Compiling. The model worked by interpreting the declarative instructions

throughout the game. Production compilation was turned off.

For control tuning the three choices were:

1. Tuned. The model started with the control variables fixed at high performing values.

2. Tuning. The control tuning mechanism was in operation as in the models reported in

the prior section.

3. No Tuning. The choice of control values stayed uniform across the full range of

values sampled. Control tuning was turned off.

All models had the strategy of attending to time to border and used a uniform navigation policy

whether fortress was present or not. For the models that were compiling, the learning rate (α in

Equation 1) was set to .2. For the models that were tuning, the initial temperature (A in Equation

2b) was set to .5.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 37

Figures 16a-c shows the average performance in YouTurn of these different

combinations extended out to 100 games to clearly identify asymptotic performance. The three

No Compiling versions are scoring close to zero points (averaging well under 100 points per

game) because they cannot act with sufficient speed to play the game properly. The Compiling

models come close to the level of models of the corresponding Compiled models over the course

of the games. They tend to perform a little worse because occasionally non-direct-action

productions will apply. The Compiled, Tuned models have nothing to learn and define the

optimal performance of the model with human performance parameters of about 1760 points

over the course of the games. The Compiled, Tuning models that are learning control values

reach an average about 1670 points by the end of the 100 games. Their slightly lower score than

3 Minute Games
0 20 40 60 80 100

Po
in

ts

0

500

1000

1500

2000

(a) No Tuning

Compiled
Compiling
No Compiling

3 Minute Games
0 20 40 60 80 100

Po
in

ts

0

500

1000

1500

2000

(b) Tuning

Compiled
Compiling
No Compiling

3 Minute Games
0 20 40 60 80 100

Po
in

ts

0

500

1000

1500

2000

(c) Tuned

Compiled
Compiling
No Compiling

3 Minute Games
0 20 40 60 80 100

Po
in

ts

0

500

1000

1500

2000

(d) Model Variants

Instant
Points
Clipped

Figure'16.''Performance'of'various'model'variants'in'YouTurn.'''Parts'(a)'–'(c)'show'a'crossing'of'a'
tuning'factor'and'a'compiling'factor.'''Part'(d)'shows'the'behavior'of'three'models'that'deviate'from'
the'architectural'assump@ons'of'the'model'in'specific'ways.'

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 38

the Compiled, Tuned models reflects that some of the models are converging to suboptimal

control choices. For instance, see the discussion involving Figure 11c.	

Figure 16d shows the results with three models that were created by changing aspects of

the ACT-R architecture, running the same model as the Compiling, Tuning model in Figure 16d:

Instant. ACT-R models the time costs of the perceptual, cognitive, and motor actions.

The line labeled “Instant” represents a model with those limitations removed, giving it an

advantage that the artificial deep reinforcement learning systems have. This version still

needs to press keys long enough to get the effects it wants and needs to pace it shots to

avoid resets, but it can begin executing an action as soon as it is needed. Not surprisingly

this model performs better than the ACT-R model (asymptotic performance of 1940

points rather than 1670), but it still has to learn appropriate settings for control variables.

This model has the advantage that the artificial deep reinforcement learning systems

have.

Points. We created a version of the model that used change in points to assess each

control variable rather than features directly relevant to that variable like resets for shot

timing and misses for aiming. Points were divided by 10 to get a magnitude of

reinforcement in the same range as the magnitudes of the ACT-R model. This version

does not do as well as the ACT-R with more direct feedback (asymptotic performance of

1379 points rather than 1670), but we were surprised by how well it did do.

Clipped. To deal uniformly with different games that have different scoring schemes,

Mnih et al. (2013) clipped the point changes to simply be plus or minus 1, reflecting

gains or losses. This scheme behaves particularly poorly when the model is applied to

Space Fortress. This is because each shot costs the player 2 points and it takes at least 12

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 39

shots to kill the fortress, which is worth 100 points. This means in the clipped version the

models suffer 11 -1’s before it gets a +1 for the kill.

Experiment 2

While the model depended on many aspects of the ACT-R architecture, what was new

was the Controller module. The Controller module learns control values that are specific to the

game. For instance, the parameters it is learning for controlling the ship orientation and flight

are specific to the goals of Space Fortress and would not generalize to flying the ship in other

circumstances. We realized this when we created another game to train the flight skills, which

are quite challenging to subjects in YouTurn. The new game, called Space Track, involved

flying a ship in the same frictionless environment with the same controls. Figure 17 provides a

schematic representation of Space Track and its contrast with Space Fortress. In Space Track the

player is flying through a series of rectangles. There are always two rectangles on the screen but

as soon as one is cleared, it disappears and a new one appears at a random angle at the end the

remaining rectangle. Points are gained as a function of the number of rectangles cleared and

points are lost if a player hits the boundaries of the rectangles. The critical feature of Space Track

is that it has the same flight dynamics as

Space Fortress. The same keys are used

to turn the ship and add thrust. In both

games the new direction the ship goes in

is determined by the vector addition of its

current velocity and direction, and the

thrust magnitude and the orientation of

the ship.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 40

One might think that learning to fly in this frictionless space involves learning an internal

model of how current direction and speed combine with angle of ship and thrust to determine

future angle and speed. Subjects would choose angle and thrusts for their ship to achieve the

desired angle and speed of flight. By practicing Space Track, subjects would learn how to

achieve the desired angle and thrust by the duration that they press the desired keys. If they

learned this first, then when they had to play Space Fortress they could focus on learning

shooting skills. We had thought this when we first designed Space Track, but discovered that the

model predicted otherwise. In Space Track the Controller module needed to learn a set of control

variables that were different than those needed to play in Space Fortress. As we will show, the

model predicted little or no transfer between the two games.

Subjects played two sessions of 20 3-minute games. Four conditions were created by

crossing whether they played Space Fortress or Space Track in each session. For both Space

Fortress and Space track there were three kinds of sessions:

Session 1 Learning: Performance over the 20 games in the first session. Given that

subjects did not know what game they would play in the second session, we averaged

over those who continued to play the same game in the second session and those who

switched games.

Session 2 Learning: Performance during the second set of 20 games for subjects who

continued playing the same game. The difference between this and Session 1 Learning

provides a measure of what is learned in the first 20 games.

Session 2 Transfer: Performance during the second set of 20 games for subjects who

switched to the other game. The difference between this and Session 1 Learning provides

a measure of transfer.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 41

Space Track was implemented in the same software as Space Fortress and used the same

A, W, D keys and the ship responds in the same way to the key presses. Details of its

implementation are specified in Appendix A. The scoring scheme is even simpler than Space

Fortress:

1. Subjects gained 25 points for every rectangle their ship cleared.

2. Subjects lost 100 points every time their ship flew outside the rectangle walls and

died.

Again, to keep subjects from being discouraged early on, their score never went negative.

Good performance depends on flying as fast as one can without flying into the sides of

the rectangles. If one is flying on a trajectory that will not hit the side of the current rectangle,

one can increase speed by pressing thrust. The challenge with flying at a fast speed is making

the Hard Turns to be able to fly down the next rectangle. In principle, a hard turn can be

achieved by first turning the ship to an angle that roughly bisects the angle between the two

rectangles. Then, if one thrusts at the right time for the right duration, the ship will turn to fly

down the middle of the next rectangle. To the extent that the timing of a hard turn is off (either in

initiation or duration), the ship will take a trajectory that would lead it to crash into one of the

two rectangles. In this case it is necessary to rapidly make some further turns and thrusts to get

the ship on a successful path down the next rectangle. The faster one is flying the less time there

is to correct the path produced by an error in turning.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 42

Subjects. 121 subjects completed both sets of 20 games10 – 31 who played Space Track

on both sets and 30 in the other 3 transfer combinations. When subjects chose this Mechanical

Turk hit they were not told what condition they would be in nor whether they would be

transferring to a different game for the second set. They were only told they would be playing a

game in which they would have to control a spacecraft in a 2D frictionless environment.

We excluded 9 subjects who averaged less than 25 points a game (the highest average of

these 9 was 19 points while the lowest average of the included subjects was 64 points per

game)11. This left 29 subjects who played Space Track both sessions, 29 who transferred from

Space Track to Space Fortress, 28 who transferred from Space Fortress to Space Track, and 26

who play both sessions in Space Fortress. There were 81 males and 31 females in the included

group with a mean age of 31 years (range 18 to 49). All had played video games: 8 reported

playing less than a hour per week, 37 reported 1-5 hours, 21 reported 10 to 20 hours, 16 reported

20 to 30 hours, and 7 reported more than 30 hours. They received a base pay of $15.00 for

completing the experiment and .02 cents per point (average bonus over the 2 set of game of

$9.11 – ranging from $0.85 to $24.58).

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

10	
 There were 59 subjects who selected the Mechanical Turk hit but did not start the experiment
(dropping out before consent), 51 subjects who did not finish the first 20 games, and 12 subjects
who did not return for the second session.	

11	
 We did not want to eliminate subjects on a learning criterion like in Experiment 1 because
such criteria might be differentially biased against some conditions (e.g., it might be harder to
improve score in one game or in transfer conditions). 	

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 43

Results

Figures 18a and b show mean points scored as a function of game in a 20-game set in

Space Fortress and Space Track. Each graph shows three learning curves. Session 1 Learning

plots performance of all subjects playing that game in the first session regardless of whether they

would stay in that condition in the second session or transfer to the other game12. Session 2

Learning plots performance of those subjects who continue to play the same game in the second

session. Session 2 Transfer plots performance of those subjects who are playing a different game

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

12 The differences between the two conditions contributing to Learning 1 were not significant
(t(52)=1.54 for Space Fortress and t(55)=0.19, both ps >.10).

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Po
in

ts

0

500

1000

1500

2000
(a) Space Fortress Data

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Po
in

ts

0

500

1000

1500
(b) Space Track Data

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Po
in

ts

0

500

1000

1500

2000
(c) Space Fortress Model

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Po
in

ts

0

500

1000

1500
(d) Space Track Model

Session 1 Learning
Session 2 Learning
Session 2 Transfer

Figure'18.''Increase'in'score'as'a'func2on'of'game'number'in'the'two'sessions.''Parts'(a)'and'(b)'
show'the'results'for'the'subjects'in'the'two'games.''Parts'(c)'and'(d)'show'the'results'for'the'models'
in'the'two'games.''Error'bars'are'standard'devia2ons'of'the'mean.'

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 44

in the second session than in the first session. Statistics strongly support the inferences that seem

apparent in the graphs. All conditions show significant improvements over the 20 games as

measured by slope (the least significant slope is for Session 2 learning in Space Track

(t(28)=3.28, p < .005). Looking only at subjects who played the same game in both sessions,

subjects are better on the last 5 games on Session 2 than they were on Session 1 (within subject

contrasts: t(25)=5.51 in Space Fortress, t(28)=5.91 in Space track, both ps<.0001). Finally and

most critically, there is no difference between the Session 1 Learning condition and the Session 2

Transfer for either Space Fortress or Space Track (t(80)=0.50 for Space Fortress and t(83)= 0.13

for Space Track).	

Points are mainly determined by fortress kills and ship deaths in Space Fortress and by

rectangles cleared and ship deaths in Space Track. Figures 19a and b show the positive events –

kills in Space Fortress and cleared rectangles in Space Track. Subjects show highly significant

improvement over the 20 games in all cases (the least significant slope is for Session 2 learning

in Space Track (t(28)=4.41, p < .0001). Subjects end up better for the last 5 games of their

second session on the same game (t(25)=4.30 in Space Fortress, p < .0005, and t(28)=6.80 in

Space track, p<.0001). On the other hand, there is no difference between the Session 1 Learning

condition and the Session 2 Transfer for either game (t(80)=0.57 for Space Fortress and t(83)=

0.04 for Space Track).

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 45

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Ki
lls

0

5

10

15

20

25

30
(a) Space Fortress Data

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

R
ec

ta
ng

le
s

0

10

20

30

40

50

60

70
(b) Space Track Data

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

Ki
lls

0

5

10

15

20

25

30
(c) Space Fortress Model

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

R
ec

ta
ng

le
s

0

10

20

30

40

50

60

70
(d) Space Track Model

Session 1 Learning
Session 2 Learning
Session 2 Transfer

Figure'19.'''Increase'in'point3gaining'ac4vity'(fortress'kills'in'Space'Fortress;'clearing'rectangles'in'
Space'Track)'as'a'func4on'of'game'number'in'the'two'sessions.''Parts'(a)'and'(b)'show'the'results'
for'the'subjects'in'the'two'games.''Parts'(c)'and'(d)'show'the'results'for'the'models'in'the'two'
games.''Error'bars'are'standard'devia4ons'of'the'mean.'

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 46

 Figures 20a and b show the deaths in the two games. Subjects show highly significant

decreases in deaths in both Session 1 Learning and Session 2 Transfer – the least significant for

the decreasing curves is Session 2 Transfer in Space Track (t(27)= -3.50, p < .001). However,

there is no significant improvement in the Session 2 Learning curves (t(25)=-1.39 for Space

Fortress and t(28) = 0.15 in Space Track). The improvement in the number of deaths in the last 5

games for those who play the same game in both sessions is between marginal and non-

significant (t(25)=-1.86 in Space Fortress, p < .10 and t(28)= -0.59 in Space Track). Thus,

subjects achieve most of their decrease in deaths in the first 20 games. Again, subjects coming

from the other game show no significant improvement in deaths over subjects playing that game

Figure'20.'''Decrease'in'ship'deaths'as'a'func5on'of'game'number'in'the'two'sessions.''Parts'(a)'and'
(b)'show'the'results'for'the'subjects'in'the'two'games.''Parts'(c)'and'(d)'show'the'results'for'the'
models'in'the'two'games.''Error'bars'are'standard'devia5ons'of'the'mean.'

3 Minute Games
2 4 6 8 10 12 14 16 18 20

D
ea

th
s

0

5

10

15
(a) Space Fortress Data

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

D
ea

th
s

0

5

10

15
(b) Space Track Data

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

D
ea

th
s

0

5

10

15
(c) Space Fortress Model

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

D
ea

th
s

0

5

10

15
(d) Space Track Model

Session 1 Learning
Session 2 Learning
Session 2 Transfer

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 47

on Session 1 (t(80)=0.50 for Space Fortress and t(83)=- 0.33 for Space Track). In Space Track,

there does appear to be an advantage for Session 2 Transfer over Session 1 Learning for the first

game in Figure 20b. The difference is significant for the first game (t(83)=2.59, p <.01) but not

for any of the other Space Track games in a session. There is a similar first game transfer

advantage in deaths for Space Fortress but it is not significant (t(80)=1.49, p >.10). If we were to

correct these first-game tests for the 20 possible single-game comparisons, neither would be

significant. Thus, there may be a brief advantage for the transfer players in avoiding deaths but

not substantial enough to have a significant impact on points in Figure 18.

The Same Model Plays both Space Fortress and Space Track

Parts c and d of Figures 18-20 show the results of the ACT-R model, which are strikingly

similar to the actual data. The results in these figures come from same model as in Experiment

with the same parameters. Whether the model played Space Fortress or Space Track depended

on what was on the screen, which would result in the retrieval of instructions for one game or the

other. The instructions for Space Track were the same YouTurn instructions as Experiment 1,

with the 4 strategic variations.

The Space Track instructions are illustrated in Figure 21 and described in Table 2. In

brief, these instructions specify first assuring that the ship is flying with the desired aim and

speed down the current rectangle. If that is satisfied, the model turns its ship in anticipation of

the hard turn at the end of the rectangle. When the model gets close to the end it presses an

extended thrust to try to change the direction down the new rectangle. It then applies the same

procedure to the new rectangle, which initially corrects any errors from the hard thrust.

Highlighted in Figure 21 are the portions of the instructions that require the same use of

navigation information as used in parts (b) and (f) of Figure 4.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 48

The instructions represented in Figures 4 and 21 are encoded declaratively. The model

starts with 39 productions of which 31 retrieve individual pieces of these instructions and

execute them. The other 8 involve recognizing game start up, explosions, and game ending.

The 31 instruction-following rules involve 17 rules used in both games (for retrieving

instructions, making the comparisons that result in the branching in Figures 4 and 21, for making

the turns, and for converting knowledge about the roles of individual keys into actions). There

are 14 instruction-following rules that deal with instructions about situations that only come up

in one of the games – 11 rules only used in Space Fortress that calculate changes to the Thrust

angle and deal with shooting, and 3 rules in Space Track that deal with unique angle calculations

and the closed-loop hard thrust.

(a)$Flight$of$Ship$Avoids$
SidesofRectangle?$

(c)$Speed?$
>=Ideal$

<Ideal$

(b)$Oriented$to$
Correc@on$Angle?$

|Dif|$$
<Aim

Dif$$
>Aim

Dif$$
<$DAim$

Tap$$
Thrust$

Counter$
clockwise$

Clockwise$

No$ Yes$

(e)$Oriented$to$
Turn$Angle?$

|Dif|$$
<Aim

Dif$$
>Aim

Dif$$
<$DAim$

(f)$Reached$
Press$Point?$

Counter$
clockwise$

Clockwise(d)Orientedto
Flight$Angle?$

|Dif|$$
<Aim

Dif$$
>Aim

Dif$$
<$DAim$

Tap$$
Thrust$

Counter$
clockwise$

Clockwise$
(g)$Flight$Path$Difference?$

W$down$

<$Stop$Angle$

Stop$Thrust$
A$ W$

D$
A$

D$
A$ W$

Wup

D$

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 49

 As game play progresses many new rules are learned through production compilation

eventually resulting in direct-action productions. Because of the shared navigation knowledge

and the shared rules for interpreting that knowledge, some of the production rules that are

learned in one game can apply to the other game. Figure 22 shows the change in the rule mix

over the first 20 games either in the first session (Learning curves) or in the transfer session

(Transfer curves). There are 2 kinds of productions for Learning and 3 kinds for Transfer:

1. Learning Session: Initial Productions. The rules that the model starts out with for

following instructions.

2. Learning Session: Acquired Productions. The rules that the model learns in the

current game.

3. Transfer Session: Initial Productions. The rules that the model started out with in

the first session.

4. Transfer Session: Previously Acquired Productions. The rules that the model

learned in the prior Session 1 game.

Figure'22.''Frequency'of'produc2on'use'in'the'first'20'games'(Learning)'and'the'second'20'games'in'
the'transfer'condi2on.'(a)'Space'Fortress;'(b)'Space'Track.'

3 Minute Games
5 10 15 20

N
um

be
r o

f P
ro

du
ct

io
ns

 E
xe

cu
te

d

0

500

1000

1500
(a) Space Fortress

Learning: Initial Productions
Learning: Acquired Productions
Transfer: Initial Productions
Transfer: Previously Acquired Productions
Transfer: Newly Acquired Productions

3 Minute Games
5 10 15 20

N
um

be
r o

f P
ro

du
ct

io
ns

 E
xe

cu
te

d

0

500

1000

1500
(b) Space Track

Learning: Initial Productions
Learning: Acquired Productions
Transfer: Initial Productions
Transfer: Previously Acquired Productions
Transfer: Newly Acquired Productions

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 50

5. Transfer Session: Newly Acquired Productions. The rules the model that learns in

the current transfer game.

In the first session, in both Space Fortress and Space Track, there is a rapid drop in the use of

instruction following rules and increase in reliance on learned rules13. In the case of

transferring to a new game in Session 2, instruction following rules are used nearly as frequently

as in the first game of the first session, but again drop off rapidly. Rules transferred from the

first game are used with a frequency that is fairly constant across the transfer games. New rules

learned in the transfer game come to be used with increased frequency. Twice as many rules are

firing in Space Fortress as Space Track, largely reflecting the fact that Space Fortress also

involves shooting rules and a shot can be taken every 250 ms. In contrast, in Space Track there

are times when the ship is flying as fast as it safely can down the rectangle, leaving the model

with nothing to do but wait until it can make the hard turn.

In the transfer games, rules learned in one game constitute about 20% of the rule executions.

These shared rules do not necessarily convey an advantage on model performance. At the

beginning of the game before the control variables are tuned, these transferred rules can often

result in taking the wrong action faster. Since no path from top to bottom is shared between

Figures 4 and 21, these shared rules are also not the most efficient direct-action productions.

Rather they reflect compilations of the shared steps and need to be further compiled with the

unique steps to become direct-action productions for the transfer game.

The instructions for Space Track involved learning 5 control variables. The control variables

were:

(a) Speed. The minimum speed for flying down a rectangle (choice point c in Figure 21).

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

13	
 If models continue to play the same game in Session 2 (not shown in Figure 22), rule use stays
at the same levels as the end of Session 1. Rarely is any new rule learned in Session 2 and used.	

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 51

(b) Press Point. How far into the new rectangle the plane should be before pressing thrust to

turn the ship (choice point f).

(c) Aim. As in the case of Space Fortress how close the orientation of a ship should be to the

desired orientation (choice points b, d, and e).

(d) Stop Angle. When holding down the thrust key, how close should the direction of the

ship be to the direction of the new rectangle before lifting thrust (choice point g).

(e) Tap Thrust Duration. How long a tap thrust should be (action under choice points b

and d).

Learning of control variables begins anew when the model transfers to a new game. However,

the state of the model is not the same because of the acquired productions that can transfer

(Figure 22). Appendix C provides a full summary of the convergence of the control variables

for both games in both learning and transfer. There seems very little difference in the

convergence between initial learning and transfer.

 Although aim and thrust duration are the same control variables as in Space Fortress, the

Controller starts their learning over again upon transfer to a new game because the same values

are not optimal. Figure 23 assesses whether there is any transfer of these shared control

variables from Space Track to Space Fortress14. Part (a) and (c) show the accuracy of aim when

a shot is taken. Part (b) and (d) show the thrust duration, which also decreases in Session 1

Learning and Session 2 Transfer. In both cases for subjects and models, there is little difference

between the learning that happens in Session 1 Learning and Session 2 Transfer.	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

14 It is hard to get a measure in Space Track about what the subjects consider an adequate aim
because one needs to know the player’s intended angle; whereas in Space Fortress it can be taken
as the direction to the fortress when a shot is taken. It is also hard to measure in Space Track
what the player considers to be the right duration for a tap thrust because there are both tap
thrusts and long hard thrusts. There is no need for long thrusts in Space Fortress.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 52

Experiment 2 Summary

Even though good performance in both Space Fortress and Space Track is based on the

same knowledge about how to control ship motion, there was virtually no transfer between the

games. The game-learning model predicted virtually no transfer in performance measures. The

model represents the navigation knowledge in a way that it could be used in both games and as a

consequence some of the productions learned in one game did transfer to the other game.

However, control variables needed to be tuned to the specific games. Before they became tuned

in the transfer game, the transferred production rules often were allowing the model to make the

wrong action faster.

3 Minute Games
2 4 6 8 10 12 14 16 18 20

D
eg

re
es

0

5

10

15
(a) Aim Data

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

D
eg

re
es

0

5

10

15
(c) Aim Model

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

M
illi

se
co

nd
s

0

0.05

0.1

0.15

0.2

0.25
(b) Thrust Duration Data

Session 1 Learning
Session 2 Learning
Session 2 Transfer

3 Minute Games
2 4 6 8 10 12 14 16 18 20

M
illi

se
co

nd
s

0

0.05

0.1

0.15

0.2

0.25
(d) Thrust Duration Model

Session 1 Learning
Session 2 Learning
Session 2 Transfer

Figure'23.'''Change'in'aim'and'thrust'dura3on'in'Space'Fortress'as'a'func3on'of'game'number'in'the'
two'sessions.''.''Parts'(a)'and'(b)'show'the'results'for'subjects'while'Parts'(c)'and'(d)'show'the'
results'for'the'models..''Error'bars'are'standard'devia3ons'of'the'mean.'

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 53

This striking failure of transfer would probably not be found in all tasks that require rapid

and precise skills. For instance, declarative knowledge discovered in one skill can transfer to

another. Had we not provided subjects with any game instruction and they had to discover how

to play the game, presumably they could carry such knowledge to the transfer game and would

do better at least in the early games. Second, if the goals remain the same and the controls are

only slightly changed, it seems likely that the control parameters can become quickly retuned.

One example of such a transfer, on which many people depend, is transferring from driving one

car on city streets to driving another car. However, our situation was one where the controls

stayed the same but the goals changed. With respect to this, it is worth noting that racecar

drivers, who are undoubtedly highly skilled at driving on racetracks, do not have better off-track

records than normal drivers (Williams & O’Neill, 1974). This is like the failure of transfer

observed from Space Track to Space Fortress.

There is research showing transfer from playing video games to general cognitive skills

(e.g., Bediou et al., 2018, but not without dispute – e.g., van Ravenzwaaij et al., 2014). There are

multiple ways of reconciling our results with these. First, Space Fortress and Space Track may

not be of the kind of video game that produces such transfer (Lee et al., 2012). Second, one

hour of training is much less than typically used in studies that look for transfer of effects of

playing video games. Third, the studies finding positive transfer have focused on transfer to

general cognitive skills, not on achieving high levels of performance in another video game.

Combining these three points, while general cognitive skills may be important to learning our

games, all of the subjects in this transfer study had many prior hours of experience playing other

video games. Adding one hour of playing one of our games would add little to whatever general

skill they had. What could have transferred but did not transfer was skill at flying in a

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 54

frictionless space. Such skill failed to transfer because these flying skills had to be tuned to

achieve different goals.

General Discussion

 A single model learned to play three games – AutoTurn, YouTurn, and Space Track.

Using the same parameterization in all cases, it learns in a way that displays much similarity to

human learning, making it a plausible model of human learning. This is the first model in any

architecture that learns to achieve human-like performance playing video games15. Since the

work of Mnih et al. (2015) there have been many efforts to apply deep reinforcement learning

methods to the learning of video games. Sometimes the results are agents that play better than

humans, sometimes as good, and sometimes still not as good a humans. But the result is never

an agent that learns and plays like a human.

 While these deep reinforcement learners often come to achieve superior play to humans

(in part helped by their super-human response times) they require much more experience than

humans to achieve this level. Tsividis et al. (2017) discuss why humans can learn to play Atari

video games so much faster than the deep learning systems. As they note, humans (and this is

true of the ACT-R models) come into the task with many advantages, including the ability to

parse the screen and prior understanding about the games. The ACT-R models also start with

instructions about how to play the game. Tsividis et al. (2017, and also Tessler et al., 2017) show

such instructions confer a substantial advantage on human players (and this is true for Space

Fortress – see Appendix B). However, the performance of the No Tuning and No Compiling

models in Figure 16 provides an illustration that abstract knowledge about how to play the game

is not enough for ACT-R to achieve high human performance. Humans similarly need to perfect

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

15	
 To see a minute of model play compared to a minute of human play, both late in training, see
the videos at http://act-r.psy.cmu.edu/?post_type=publications&p=31435	

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 55

that knowledge through experience with the task at hand. In the ACT-R models, production

compilation and control tuning produced this gradual improvement in skill performance.

 A recent effort has applied the deep reinforcement learning approach to Space Fortress

(Agarwal et al., 2018). Standard state-of-the-art reinforcement algorithms were not able to learn

to play this game. A major obstacle turns on a detail of the game that might seem unimportant:

To encourage accurate shooting every shot costs the player 2 points. This means that the

reinforcement-learning agent receives a negative reinforcement every time it shoots (see also the

Clipped model in Figure 16d). There was success at using reinforcement learning when the

reward structure was changed so that every shot that incremented vulnerability received a

positive reward. This reinforcement learning approach, similar to the ACT-R model with control

tuning, uses relevant features rather than points to evaluate its choices. However, even with this

change, it took hundreds of games to reach the level humans achieved in 20 games and

thousands of games to exceed that level.

 This deep reinforcement learner is learning without receiving instruction (although the

change in reward scheme could be considered a sort of instruction). Appendix B reports a pilot

study to see if humans could learn to play Space Fortress without instruction. While they were

disadvantaged compared to instructed subjects, about half of the human learners were able to

figure the game out over the course of the 20 games. It remains a challenge how to model their

discovery learning.

 The new theoretical addition to the ACT-R architecture is the Controller module, which

allows ACT-R to learn a parametric relationship between continuous variables and outcomes.

There are a number of parameters underlying the implementation of the Controller module, only

one of which, initial temperature, was varied in the simulations. Figure 24 shows the

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 56

conseuqences of variation of four important parameters in Controller module. To go through the

four panels in the Figure.	

(a) Initial temperature was the one parameter (A in Equation 2b) varied in the simulations

(from .1 to 2) as a source of individual differences, where large values mean more

variable initial behavior. Figure 24a shows the results that would be obtained over a

larger range from .05 to 5. The best performing value for this experiment seems to be

around .5. Lower values often result in the model converging too soon on non-optimal

values and larger values mean that the model is still not selecting the best values by the

end of the game.

3 Minute Games
0 5 10 15 20

Po
in

ts

0

200

400

600

800

1000

1200
(a) Initial Temperature

0.05
0.20
0.50
2.00
5.00

3 Minute Games
0 5 10 15 20

Po
in

ts

0

200

400

600

800

1000

1200
(c) Observation Period (seconds)

 0.1
 1.0
 10
 100
1000

3 Minute Games
0 5 10 15 20

Po
in

ts

0

200

400

600

800

1000

1200

1400
(d) Weighting Functions

Equal
Exponential
Power

3 Minute Games
0 5 10 15 20

Po
in

ts

0

200

400

600

800

1000

1200
(b) Number of Games to Halve Temperature

0.01
0.10
1.0
 10
100

Figure'24.''Learning'performance'when'various'choices'in'the'Controller'module'are'varied.'''

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 57

(b) The temperature decreases from its inital value A according the the function A/(1+Bt)

where t is measured in seconds. In our model data, B was set to 1/180 meaning the

temperature is decreased in half by the end of the first game. Figure 24b shows the

results that would have been obtained had we changed B so that different durations would

cut the temperature in half. The initial temperature in all cases was .5. Of the choices

plotted, the setting in the current model produces the best results. More rapid lowering of

temperature results in inadequate exploration before focusing on a value and slower

lowering prolongs the exploration phase to the point where the model has not settled on

good values by the 20th game.

(c) One difference between the Controller module and typical reinforcement learning is it

settles on a control value for a period of time and calculates the mean rate of return over

that interval. This contrasts with looking at the return after each action and allows the

model to get a sense of the longer term consequences of a choice. The duration of these

observation periods was exponentially distributed with a mean of 10 seconds. Figure 10c

shows the consequence of different mean values for the distribution of observation times.

It shows that there is rather equivalent performance for a range of 1 to 100 seconds.

longer obsrvation periods like a 1000 seconds mean that the system takes too long to

update its control values. Shorter obsrvation periods like a tenth of a second do not

provide adequate information about a control setting.

(d) In estimating the quadratic functions the model weights equally all observations from the

beginning of the game. It does not discount old experiences which might seem a

reasonable policy in some domains. Figure 24d compares this Equal weighting with

two options for discounting experiences according to how long ago they were. A

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 58

common discount option is to exponentially decay past experiences. Therefore, we tried

a Exponential option where the weighting of a past experience was discounted by the

value .999t where t is time in seconds. There is also evidence for a power function

discounting in the tracking of continuous values (Elliott & Anderson, 1995). Therefore,

we tried a power discounting where the weight of a past experience was t-.5 where t is the

time in seconds. The three options performed comparably, which is not surprising since

the game does not change over time.. The two discount possibilities were slightly better,

probably because they allowed the system to adapt to its own increased competence in

playing the game.

Figure 24 indicates that the choices made in the model lead to good performance in the game. A

point for further experimental investigation is how stable these results are in different

environments which run at different paces and perhaps change over time.

In concluding we would like to comment on Fitts three-phase characterization of skill

learning in the light of the model. As noted in the introduction, it has been used to frame many

discussions of skill learning including early presentations of ACT theories of skill learning.

While Fitts’ three-phase characterization of skill acquisition has often been discussed as a three-

stage theory, Fitts did not originally intend it as a stage characterization. As Fitts (1964) wrote

“it is misleading to assume distinct stages in skill learning. Instead, we should think of

gradual shifts in the factor structure of skills” (p. 261).

Nonetheless, even in Fitts’ original paper he described skills as being in a particular phase and

his characterization has since been used with the understanding that a skill can be treated as in

one of the phases at most points in the course of learning. With complex skills, such phase

assignments probably only make sense as characterization of parts of the skill. For instance, in

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 59

Space Fortress the hitting of keyboard keys is highly automated at the beginning of the game

while deciding what keys to hit is slow.

Following the 1982 ACT* characterization (Anderson, 1982) one might map this ACT-R

model onto Fitts and Posner 3-phase theory as follows: The interpretation of declarative

instruction corresponds to the Cognitive phase of Fitts and Posner’s 3-phase theory. Production

compilation, which produces direct actions, corresponds to the Associative phase. Control

tuning, which produces the highly level of performance, corresponds to the Autonomous phase.

However, upon closer inspection it turns out that this mapping does not work, and what is

happening in the model is closer to what is suggested by the above quote from Fitts.

The three different processes (knowledge interpretation, production compilation, and

tuning) are progressing in parallel for each bit of knowledge that is part of the skill in the ACT-R

model. At any point in time some parts of taking a single action may depend on interpreting

declarative knowledge and other parts may be a result of compiled productions that skip

retrieving declarative instructions. Also, choices for different control variables can be at

different levels of tuning reflecting the amount of experience the player is getting on those

variables. The control values chosen will jump around over time as part of the exploration

process, only slowly converging reliably on optimal values.

The learning in ACT-R nicely instantiates Fitts’ description of “gradual shifts in the

factor structure of skills”. While there is not a truly satisfying mapping of the growth of skills

onto his phases, the best choices are probably

1. The Cognitive phase corresponds to the period of time before the model is achieving positive

points, which is typically midway through the first game. This is the period when the model

is laboriously retrieving and executing declarative instructions.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 60

2. The Associative phase is the period of time when production compilation and control tuning

are converging on a final structure.

3. The Autonomous phase would be when the model reaches asymptotic performance.

Under this characterization the Autonomous phase is when the model’s learning is

complete. The models and the subjects do come close to asymptoting after 40 games in

Experiment 2 (Session 2 Learning in Figure 18). The model takes about 60 games to asymptote

in YouTurn (the Compiling, Tuning curve in Figure 16b) and subjects may also have reached an

asymptotic score had they played that many games. Subjects did appear to asymptote after this

much practice in the Fortress-Only condition of Anderson et al. (2011), which is similar to

YouTurn. However, that condition and YouTurn are rather simple compared to many tasks

including the original Space Fortress. Improvement in the original version of Space Fortress

continues for as long as 31 hours (Destefano & Gray, 2016). Interestingly, as Destefano and

Gray describe, part of continued improvement involves discovering strategies late in the game

that go beyond what is instructed. Players deliberately try to apply what they have discovered

about the game much like they did with the initial instructions. This suggests that some of that

late learning is really declarative, the kind of learning that one might have thought was in the

Cognitive Phase.

Motor learning is another potential kind of learning that might continue beyond where the

current models asymptote. ACT-R hits individual keys rather than cording keys where pairs of

keys will be hit together. This means that the lower bound on interkey times is about 100 ms.

While this is also true of initial subject behavior, some subjects did start to simultaneously press

two keys (e.g., thrust and shoot), something that the model never comes to do.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 61

References

Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition:

Cognitive abilities and information processing. Journal of Experimental Psychology: General,

117(3), 288-318.

Agarwal, A., Hope, R., & Sycara, K. (2018). Challenges of Context and Time in

Reinforcement Learning: Introducing Space Fortress as a Benchmark. arXiv preprint

arXiv:1809.02206

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369-

406.

Anderson, J. R. (2005) Human Symbol Manipulation within an Integrated Cognitive

Architecture, Cognitive Science, 29, 313-342.

Anderson, J. R. (2007). How Can the Human Mind Occur in the Physical Universe? New

York: Oxford University Press.

Anderson, J. R., Bothell, D., Byrne, M.D., Douglass, S., Lebiere, C., Qin, Y. (2004) An

integrated theory of Mind. Psychological Review, 111, 1036-1060.

Anderson, J. R., Bothell, D., Fincham, J. M., Anderson, A. R., Poole, B., & Qin, Y.

(2011). Brain regions engaged by part-and whole-task performance in a video game: a model-

based test of the decomposition hypothesis. Journal of Cognitive Neuroscience, 23(12), 3983-

3997.

Anderson, J. R., & Fincham, J. M. (2014). Extending problem-solving procedures

through reflection. Cognitive Psychology, 74, 1-34.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 62

Bediou, B., Adams, D. M., Mayer, R. E., Tipton, E., Green, C. S., & Bavelier, D. (2018).

Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills.

Psychological Bulletin, 144(1), 77-110.

Cohen, J. D., McClure, S. M., & Angela, J. Y. (2007). Should I stay or should I go? How

the human brain manages the trade-off between exploitation and exploration. Philosophical

Transactions of the Royal Society of London B: Biological Sciences, 362(1481), 933-942.

Daw, N. D., O'Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical

substrates for exploratory decisions in humans. Nature, 441(7095), 876-879.

Destefano, M. (2010). The mechanics of multitasking: The choreography of perception,

action, and cognition over 7.05 orders of magnitude (Doctoral dissertation, Rensselaer

Polytechnic Institute).

Destefano, M., & Gray, W. D. (2008). Progress report on Pygame Space Fortress. Troy,

NY: Rensselaer Polytechnic Institute.

Destefano, M., & Gray, W. D. (2016). Where should researchers look for strategy

discoveries during the acquisition of complex task performance? The case of space fortress. In

Proceedings of the 38th Annual Conference of the Cognitive Science Society (pp. 668-673).

Donchin, E. (1989). The learning-strategies project: Introductory remarks. Acta

Psychologica, 71(1-3), 1-15.

Elliott, S. & Anderson, J. R. (1995). The effect of memory decay on predictions from

changing categories. Journal of Experimental Psychology: Learning, Memory, and Cognition,

11, 815-836.

Fitts, P. M. (1964). Perceptual-motor skill learning. Categories of Human Learning, 47,

381-391.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 63

Fitts P.M., Posner M.I. (1967). Learning and Skilled Performance in Human

Performance. Brock-Cole, Belmont, CA.

Frederiksen, J. R., & White, B. Y. (1989). An approach to training based upon principled

task decomposition. Acta Psychologica, 71(1-3), 89-146.

Gauthier, I., Tarr, M., & Bub, D. (Eds.). (2010). Perceptual expertise: Bridging brain and

behavior. OUP USA.

Gopher, D., Weil, M., & Siegel, D. (1989). Practice under changing priorities: An

approach to training of complex skills. Acta Psychologica, 71, 147–178.

Gray, W. D. (2017). Game-­‐XP: Action Games as Experimental Paradigms for Cognitive

Science. Topics in Cognitive Science, 9(2), 289-307.

Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the

exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive

Neuroscience, 23(7), 1587-1596.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A

survey. Journal of Artificial Intelligence Research, 4, 237-285.

Kalish, M. L., Lewandowsky, S., & Kruschke, J. K. (2004). Population of linear experts:

knowledge partitioning and function learning. Psychological Review, 111(4), 1072-1099.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition

and performance with application to human-computer interaction. Human–Computer Interaction,

12(4), 391-438.

Kim, J. W., Ritter, F. E., & Koubek, R. J. (2013). An integrated theory for improved skill

acquisition and retention in the three phases of learning. Theoretical Issues in Ergonomics

Science, 14(1), 22-37.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 64

Koh, K., & Meyer, D. E. (1991). Function learning: Induction of continuous stimulus-

response relations. Journal of Experimental Psychology: Learning, Memory, and Cognition,

17(5), 811-836.

Kool, W., Gershman, S. J., & Cushman, F. A. (2017). Cost-benefit arbitration between

multiple reinforcement-learning systems. Psychological Science, 28(9), 1321-1333.

Lee, H., Boot, W. R., Basak, C., Voss, M. W., Prakash, R. S., Neider, M., ... & Low, K.

A. (2012). Performance gains from directed training do not transfer to untrained tasks. Acta

Psychologica, 139(1), 146-158.

Lee, M. D., Zhang, S., Munro, M., & Steyvers, M. (2011). Psychological models of

human and optimal performance in bandit problems. Cognitive Systems Research, 12(2), 164-

174.

Lucas, C. G., Griffiths, T. L., Williams, J. J., & Kalish, M. L. (2015). A rational model of

function learning. Psychonomic Bulletin & Review, 22(5), 1193-1215.

Matell, M.S., & Meck, W.H. (2000). Neuropsychological mechanisms of interval timing

behavior. Bioessays, 22, 94-103.

McDaniel, M. A., & Busemeyer, J. R. (2005). The conceptual basis of function learning

and extrapolation: Comparison of rule-based and associative-based models. Psychonomic

Bulletin & Review, 12(1), 24-42.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

Riedmiller, M. A., (2013). Playing Atari with Deep Reinforcement Learning. CoRR abs/1312.5.

http://arxiv.org/abs/1312.5602

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 65

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... &

Petersen, S. (2015. Human-level control through deep reinforcement learning. Nature,

518(7540), 529-533.

Moon, J., & Anderson, J. R. (2013). Timing in multitasking: Memory contamination and

time pressure bias. Cognitive Psychology, 67(1), 26-54.

Newell, A. (1990). Unified theories of cognition. Harvard University Press.

Rasmussen, J. (1986). Information Processing and Human–Machine Interaction: An

Approach to Cognitive Engineering, North-Holland Series in System Science and Engineering,

12. New York: North-Holland.

Rosenbaum, D. A., Carlson, R. A., & Gilmore, R. O. (2001). Acquisition of intellectual

and perceptual-motor skills. Annual Review of Psychology, 52(1), 453-470.

Shebilske, W. L., Volz, R. A., Gildea, K. M., Workman, J. W., Nanjanath, M., Cao, S., &

Whetzel, J. (2005). Revised Space Fortress: a validation study. Behavior Research Methods,

37(4), 591-601.

Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psychological Review,

120(3), 439-471.

Taatgen, N. A., & Anderson, J. R. (2002). Why do children learn to say “broke”? A

model of learning the past tense without feedback. Cognition, 86(2), 123-155.

Taatgen, N. A., Huss, D., Dickison, D., & Anderson, J. R. (2008). The acquisition of

robust and flexible cognitive skills. Journal of Experimental Psychology: General, 137(3), 548-

565.

Taatgen, N., & van Rijn, H. (2011). Traces of times past: representations of temporal

intervals in memory. Memory & Cognition, 39(8), 1546-1560.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 66

Taatgen, N. A., van Rijn, H., & Anderson, J. (2007). An integrated theory of prospective

time interval estimation: The role of cognition, attention, and learning. Psychological Review,

114(3), 577-598.

Tessler, M. H., Goodman, N. D., & Frank, M. C. (2017). Avoiding frostbite: It helps to

learn from others. Behavioral and Brain Sciences, 40.

Tsividis, P. A., Pouncy, T., Xu, J. L., Tenenbaum, J. B., & Gershman, S. J. (2017).

Human learning in Atari.. In The AAAI 2017 Spring Symposium on Science of Intelligence:

Computational Principles of Natural and Artificial Intelligence.

van Ravenzwaaij, D., Boekel, W., Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J.

(2014). Action video games do not improve the speed of information processing in simple

perceptual tasks. Journal of Experimental Psychology: General, 143(5), 1794-1805.

VanLehn, K. (1996). Cognitive skill acquisition. Annual Review of Psychology, 47(1),

513-539.

Williams, A. F., & O'Neill, B. (1974). On-the-road driving records of licensed race

drivers. Accident Analysis & Prevention, 6(3-4), 263-270.

Wilson, R. C., & Niv, Y. (2011). Inferring relevance in a changing world. Frontiers in

Human Neuroscience, 5.

Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor

learning. Nature Reviews Neuroscience, 12(12), 739-751.

Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for

sensorimotor integration. Science, 1880-1882.

Zhang, S., & Yu, A. (2013). Cheap but clever: human active learning in a bandit setting.

In Proceedings of the 35th Annual Conference of the Cognitive Science Society (pp. 1647-1652).

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 67

Table 1: Branching Operators in Figure 4

(a) Time to Outer Hexagon? Subjects need to decide whether they can shoot or need to thrust

to keep the ship from drifting into the outer hexagon. The operator specifies making this

decision on the basis of the time before the ship will reach the outer hexagon. If that time is

greater than a threshold, the operator specifies shooting and if it is less it specifies thrusting.

(b) Aim? The ship needs to be aiming at the fortress for a shot to hit it. The operator specifies

turning to better aim if the difference between the ship’s orientation and a direct aim (Dif in

Figure 4) is greater than a threshold (Aim in the figure).

(c) Delay? This operator specifies waiting until the time (in terms of number of ticks) since the

last shot exceeds a threshold before shooting again.

(d) Vulnerability? This operator specifies taking a single shot if the vulnerability of the fortress

is less than 10 or taking a double shot to destroy the fortress if the vulnerability is 10 or greater.

(e) Speed? Subjects are instructed to pay attention to the speed of their ship in determining how

to orient their ship before thrusting. The model is developing a sense of a thrust angle (see

Figure 1b) that will maintain the ship’s speed. This operator specifies decrementing the thrust

angle if the ship is flying slower than ideal and incrementing the thrust angle if the ship is flying

faster.

(f) Oriented to Thrust Angle? The operator specifies turning if the difference between the

ship’s orientation and the desired thrust angle is greater than a threshold.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 68

Table 2: Branching Operators in Figure 21

(a) Flight of Ship Avoids Sides of Rectangle? Players must monitor whether their ship is going

to fly into the side of the rectangle before reaching the end. This operator tests for this condition

and branches to correcting the path if necessary or otherwise goes on to make other tests.

 (b) Oriented to Correction Angle? To change the direction of the ship, the model calculates a

correction angle16. If the difference between its orientation and this correction angle is greater

than its aim threshold, this operator corrects the angle before issuing a tap thrust.

(c) Speed? This operator specifies speeding up if the ship is flying slower than its threshold for

a desired speed and preparing for the hard turn if it is flying faster.

 (d) Oriented to Flight Angle? In thrusting to increase the speed of the ship, the ship should be

oriented in the direction of the rectangle. If the difference between its orientation and the

direction of the rectangle is greater than its aim threshold, this operator corrects the angle before

issuing a tap thrust.

(e) Oriented to Turn Angle? To make a hard turn the ship needs to be oriented in a direction

that bisects the angle between the current rectangle and the next rectangle. This operator

specifies turning the ship to achieve this turn angle.

 (f) Reached Press Point? This operator specifies beginning a sustained thrust when the ship

reaches a threshold distance with respect to entering the future rectangle.

(g) Flight Path Difference. As the thrust key is held down the angle of flight will change

towards that of the future rectangle. This operator specifies releasing the thrust key when the

difference between the flight angle and the direction of the future rectangle falls below a stop

angle. It takes some time for the decision to lift the finger to result in and release the key. Thus,

the release decision action needs to be taken in advance of the flight path lining up with the

future rectangle.

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

16 If the desired direction is a degrees to the left or right it adds thrust at a+(180-a)/2 degrees to
the left or the right.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 69

Table B1. Mean Values and Standard Error of the Means

(a) First 10 Games
AutoTurn YouTurn

Instructed Uninstructed Instructed Uninstructed

Scoring
Points 1867 +/- 87 712 +/- 180 365 +/- 56 128 +/- 70
Kills 27.5 +/- 1.1 12.7 +/- 2.4 9.6 +/- 0.9 4.8 +/- 1.5

Deaths 2.4 +/- 0.6 6 +/- 1.9 9.3 +/- 0.8 13.5 +/- 1.5

Shooting

Shots 383.5 +/- 11.6 324.1 +/- 29 201.3 +/- 13.9 229 +/- 31.6
Resets 5.9 +/- 1.9 29.3 +/- 10.8 10.6 +/- 3.9 28.3 +/- 11
Misses 0.06 +/- 0.03 0.03 +/- 0.03 38 +/- 3.1 57.2 +/- 7.9

Aim 0.37 +/- 0.02 0.37 +/- 0.02 8.6 +/- 0.5 18.7 +/- 5

Navigation
Distance 104.4 +/- 2.5 108 +/- 3.8 127.7 +/- 1.5 123.3 +/- 2.4

Thrust Angle 100.5 +/- 0.9 97.1 +/- 1.9 95.3 +/- 1.3 84.6 +/- 4.9
Speed 1.11 +/- 0.02 1.09 +/- 0.03 1.41 +/- 0.03 1.33 +/- 0.05

(a) Second 10 Games

AutoTurn YouTurn
Instructed Uninstructed Instructed Uninstructed

Scoring
Points 2127 +/- 91 1124 +/- 251 678 +/- 77 384 +/- 136
Kills 30 +/- 1.2 17.5 +/- 3.2 13.8 +/- 1.1 8.2 +/- 2.3

Deaths 2.2 +/- 0.6 5.5 +/- 2.1 6.9 +/- 0.8 11.1 +/- 1.9

Shooting

Shots 402.6 +/- 13.8 328.4 +/- 33.3 252.9 +/- 17.2 240 +/- 40.7
Resets 4.1 +/- 0.5 22.9 +/- 10.1 12.6 +/- 7 32.8 +/- 17.4
Misses 0.02 +/- 0.01 0.0 +/- 0.0 36 +/- 3.1 50.2 +/- 12

Aim 0.4 +/- 0.02 0.41 +/- 0.03 8.2 +/- 0.7 18.5 +/- 5

Navigation
Distance 97 +/- 2.7 97.8 +/- 5.6 120.8 +/- 2.1 119.1 +/- 4.4

Thrust Angle 101 +/- 1 94.1 +/- 3.2 98.2 +/- 1.3 85.8 +/- 5.7
Speed 1.12 +/- 0.02 1.1 +/- 0.03 1.31 +/- 0.03 1.22 +/- 0.06

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 70

Figure Captions

Figure 1. (a) The Space Fortress screen, showing the inner and outer hexagon, a missile

shot at the fortress, and a shell shot at the ship. The dotted lines illustrate an example path

during one game. (b) A schematic representation of critical values for shooting and flight control.

Figure 2. Growth in mean number of points earned per game. Error bars reflect one

standard deviation of the population.

Figure 3. The module structure of ACT-R. The boxes represent high-capacity,

independent modules, which process information in a parallel. The central Procedural module

can recognize patterns in module buffers and recommend cognitive and motor actions.

Figure 4. A representation of the instructions in YouTurn. Each set of branching arrows

is an operator going from one state to the next. Except for the bottom operators they test

conditions to determine the next state. The bottom operators perform actions.

Figure 5. Pseudocode for two productions that interpret instructions and examples of

buffer contents that would evoke these productions: (a) A production that performs a motor

action. (b) A production that performs a comparison of a game quantity with a control variable.

Figure 6. Pseudocode for a direct-action production that issues a single shot and an

example of buffer contents that would evoke its application.

Figure 7. An example of estimating a payoff function from the first game in Space

Fortress. Each dot reflects the mean payoff for a sampled value. The function is the best fitting

quadratic to these points weight by the duration of time over which they are estimated.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 71

Figure 8. (a) The quadratic functions estimated for different delays at different points in

the one sequence of model runs through 20 learning games. (b) The probability of choosing

different delays after different numbers of games.

Figure 9. A comparison of subject and model performance: Error bars reflect one

standard deviation of the population.

Figure 10. A comparison of subjects and models on two critical factors determining

score. Parts (a) and (b) show growth in mean number of kills over games. Parts (c) and (d) show

decrease in mean number of deaths over games. Parts (e) and (f) show the average number of the

3 kinds of deaths per game. Error bars reflect one standard deviation of the population.

Figure 11. Shot Timing in AutoTurn: (a) Mean intershot duration per game for subjects

and models; (b) Mean number of resets per game for subjects and models; (c) Probability of

choosing different time thresholds, averaged over the 100 models. Error bars in (a) and (b)

reflect one standard deviation of the population.

Figure 12. Aiming in YouTurn: (a) Mean offset of aim at shot per game for subjects and

models; (b) Mean proportion of misses per game for subjects and models; (c) Probability of

choosing different maximum aim offsets, averaged over the 100 models. Error bars in (a) and

(b) reflect one standard deviation of the population.

Figure 13. Distance in AutoTurn: (a) Mean distance from fortress at which subjects and

models chose to thrust; (b) Probability of choosing different time thresholds, averaged over 50

models; (c) Probability of choosing different distance thresholds, averaged over 50 models.

Error bars in (a) reflect one standard deviation of the population.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 72

Figure 14. Thrust Duration in AutoTurn (a) and YouTurn: (b) Choice of thrust durations

in the models for AutoTurn (c) and YouTurn (d). Error bars in (a) and (b) reflect one standard

deviation of the population.

Figure 15. Thrust angle in YouTurn: (a) Mean thrust angle per game for subjects and

models; (b) Mean speed of ship for subjects and models; (c) Probability of choosing different

thrust angles, averaged over the 100 models. Error bars in (a) and (b) reflect one standard

deviation of the population.

Figure 16. Performance of various model variants in YouTurn. Parts (a)–(c) show a

crossing of a tuning factor and a compiling factor. Part (d) shows the behavior of three models

that deviate from the architectural assumptions of the model in specific ways.

Figure 17. Schematics of the two games: (a) In Space Fortress one is flying a ship

between two hexagons shooting at the fortress in the middle. (b) In Space track one is flying a

ship down a rectangle and making a turn to fly down the next rectangle.

Figure 18. Increase in score as a function of game number in the two sessions. Parts (a)

and (b) show the results for the subjects in the two games. Parts (c) and (d) show the results for

the model in the two games. Error bars are standard deviations of the mean.

Figure 19. Increase in point-gaining activity (fortress kills in Space Fortress; clearing

rectangles in Space Track) as a function of game number in the two sessions. Parts (a) and (b)

show the results for the subjects in the two games. Parts (c) and (d) show the results for the

model in the two games. Error bars are standard deviations of the mean.

Figure 20. Decrease in ship deaths as a function of game number in the two sessions.

Parts (a) and (b) show the results for the subjects in the two games. Parts (c) and (d) show the

results for the model in the two games. Error bars are standard deviations of the mean.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 73

Figure 21. Model’s instructions for playing Space Track. Shaded portions contain

navigation knowledge shared with Space Fortress.

Figure 22. Frequency of production use in the first 20 games (Learning) and the second

20 games in the transfer condition. (a) Space Fortress; (b) Space Track.

Figure 23. Change in aim and thrust duration in Space Fortress as a function of game

number in the two sessions. Parts (a) and (b) show the results for subjects while Parts (c) and (d)

show the results for the model. Error bars are standard deviations of the mean.

Figure 24. Learning performance for various choices in the Controller module.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 74

Appendix A: Game Implementation

Here is the pointer to web versions of the games subjects played, which contain the

instructions:

 http://andersonlab.net/sf-paper-2017/turning.html

Space Fortress

There have been many implementations of Space Fortress over the decades. The

development prior to the Pygame version is described in Shebilske et al. (2005) and the original

Pygame implementation is described in Destefano (2010). The most consequential change in the

Pygame implementation over previous implementations was replacing the use of the joystick for

navigation by key presses. We considerably simplified the game from the Pygame

implementation. We eliminated mines and bonus points, both of which were aspects of the

original game. We also made hitting the hexagon boundaries fatal rather than just a loss of

control points. We also simplified the death rules so that being shot or hitting the boundary

immediately resulted in death rather than building up towards death.

To review the critical parameters of the game:

1. The game updates every 30th of a second (game tick).

2. The total screen is 710 pixels wide by 626 pixels high.

3. The fortress is centered at x=355, y=315.

4. The ship starts at x=245, y=315, moving up .5 pixel and to the right .866 pixels per game

tick. Thus, its initial speed is 1 pixel per game tick.

5. The ship starts aimed horizontally aimed at the fortress. The ship automatically turns to

maintain aim in AutoTurn, but subjects must turn the ship in YouTurn.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 75

6. Every game tick that the thrust key is held down, the velocity vector will change .3 pixels

in whatever direction the ship is pointing.

7. Every game tick that a turn key is held down, the ship will turn 6 degrees.

8. If the ship does not traverse 10 degrees of arc around the fortress in a second the fortress

will shoot a shell at it.

9. For purposes of determining when the ship or fortress is hit, everything is treated as a

circle:

a. The ship has a radius of 10 pixels,

b. The fortress has a radius 18 pixels,

c. Shells have a radius of 3 pixels,

d. Missiles have a radius of 5 pixels.

10. A collision occurs if two circles intersect on a game tick.

11. Shells travel at 6 pixels per tick and missiles travel at 20 pixels per tick.

Space Track

The ship controls and responses are the same in Space Track as in Space Fortress. The display

always has 2 rectangles: the "current" rectangle, which is the rectangle the ship is in and the

"next" rectangle, which is the rectangle the ship must fly to. The rectangles are built around two

line segments, AB and BC, which share the common point, B. The "current" rectangle is built

around line segment AB and the "next" rectangle is built around line segment BC. A line

segment is 363 pixels long. The rectangle is 473 pixels long because it extends past the line

segment's end points by 55 pixels. Rectangles are 110 pixels wide.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 76

 If the ship is in the "current" rectangle, it remains alive. If the ship is in neither

rectangle, it explodes and the player loses 100 points. When the ship explodes it's position is

reset back to point A with an orientation matching line segment AB's angle and a speed of 1.0.

If the ship is not in the "current" rectangle but it's in the "next" rectangle, then a new rectangle is

created and the player is awarded 25 points.

 To create a new rectangle, the "current" rectangle is removed and the "next" rectangle

becomes the "current" rectangle. Then a new line segment is created. The new line segment

starts at point C. To create the line segment's end point, point D, the game picks a random "base

angle" between 30 and 150 degrees and a random "parity", either -1 or 1. The angle for the new

line segment CD is the line segment BC's angle plus the "base angle" multiplied by the "parity".

Point D is calculated as:

D_x = C_x + 363 * cos(CD_angle)

D_y = C_y + 363 * sin(CD_angle)

Finally, the new "next" rectangle is created around line segment CD.

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 77

Appendix B: Comparison of All Instructed Subjects with Uninstructed Subjects

 We ran 20 Mechanical Turk subjects without instruction in both AutoTurn and YouTurn.

AutoTurn subjects were only told that the relevant keys were Wand spacebar while YouTurn

subjects were told that the relevant keys were A, W, D, and spacebar. To keep mean

compensation comparable to the instructed subjects, we doubled the conversion of points earned

for bonus payment. For comparison we will use all subjects who were run with instruction,

rather than just those filtered to show signs of learning, who were the focus in the main paper.

Table B1 reports average values for the measures of performance reported in the paper. We

have broken this out into performance during the first 10 games and the last 10 games.

In terms of mean number of points, uninstructed subjects clearly are showing learning,

but they are also scoring less than instructed subjects. (first half AutoTurn, t(70) = 5.78, p <

.0001; second half AutoTurn, t(70) = 3.76, p < .0005; first half YouTurn, t(83) = 2.64, p < .01;

second half YouTurn, t(83) = 1.88, p < .1; all 2-tailed). The individual variability in both

populations is huge. Nonetheless, we can conclude that without instructions at least some game

players can learn to play these games. A measure of having some mastery by the end of the

game is averaging more than 100 points in the last two games. 48 of the 52 instructed AutoTurn

subjects achieved this measure of mastery, while just 13 of the 20 uninstructed AutoTurn

subjects did (χ2=27.90, p < .0001). 50 of the 65 instructed YouTurn subjects did while just 7 of

the 20 uninstructed YouTurn subjects did (χ2=12.17, p < .0005).

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 78

Appendix C: Model Learning of Control Variables in Experiment 2

When the model transfers to a new game it starts learning control variables for that

experiment. Even control variables that are shared start their learning over. Although the

learning begins anew, the model state is not the same because of learned productions (Figure 22).

So it is of interest to compare the learning of control variables for a game when there are no

learned productions with the transfer conditions when there are learned productions. Figures C1

– C4 provide information about the learning of control variables in the same form as Figures 11-

15. They show the average probability of selecting different values for each of the control

variables after playing different numbers of games. These are averaged over the 100 runs. Rises

at the low end or high end of the range of control values reflect cases where some models get

locked into poor choices. Control variables that show a strong intermediate peak are ones for

which the feedback provides clear signals. They are variables that are particularly important to

performance in that game.

Figure C1 shows the learning of the 6 control variables in Space Fortress in the Learning

condition. Since the model played 40 games in the Learning condition, we can see the impact of

20 more games than in Figures 11-15. For comparison, Figure C2 shows the learning of these

control variables over the 20 games in the Transfer condition when Space Fortress is the game

being transferred to. There are strong correspondences between Learning and Transfer for the

tuning of delay between shots (parts a), aim (parts b), and thrust angle (parts f). These are also

control variables where most models succeed in identifying good values. The two thresholds for

thrusting, either time to outer border (parts c) or distance to outer border (parts d) are not well

identified and are not very consistent between Learning and Transfer. There does seem to be

some better success in identifying a time threshold in Transfer (Figure C2c).

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 79

Ticks
10 12 14 16 18

Av
er

ag
e

D
en

si
ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) Delay Between Shots
After Trial 1
After Trial 5
After Trial 20
After Trial 40

Angle
5 10 15 20

Av
er

ag
e

D
en

si
ty

0

0.05

0.1

0.15

0.2

0.25

0.3
(b) Maximum Offset in Aim

After Trial 1
After Trial 5
After Trial 20
After Trial 40

Thrust Duration (sec.)
0.06 0.08 0.1 0.12 0.14 0.16 0.18

Av
er

ag
e

D
en

si
ty

6

7

8

9

10

11

12

13

14

15
(e) Duration Choice

After Trial 1
After Trial 5
After Trial 20
After Trial 40

Degrees
80 90 100 110 120 130 140

Av
er

ag
e

D
en

si
ty

0

0.02

0.04

0.06

0.08

0.1
(f) Choice of Thrust Angle

After Trial 1
After Trial 5
After Trial 20
After Trial 40

Proportion of Distance to Outer Hex
0.2 0.4 0.6 0.8

Av
er

ag
e

De
ns

ity

0.5

1

1.5

2

2.5

3

3.5
(d) Distance Threshold for Thrust

After Trial 1
After Trial 5
After Trial 20
After Trial 40

Seconds from Outer Hex
1 2 3 4 5

Av
er

ag
e

De
ns

ity

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(c) Time Threshold for Thrust

After Trial 1
After Trial 5
After Trial 20
After Trial 40

Figure'A1.'Probability'of'different'values'for'control'variables,'averaged'over'the'100'models'
that'played'40'Learning'games'in'Space'Fortress.'''

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 80

Ticks
10 12 14 16 18

Av
er

ag
e

D
en

si
ty

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) Delay Between Shots
After Trial 1
After Trial 5
After Trial 20

Seconds from Outer Hex
1 2 3 4 5

Av
er

ag
e

De
ns

ity

0.15

0.2

0.25

0.3

0.35
(c) Time Threshold for Thrust
Trial 1: r=.527
Trial 5: r=.465
Trial 20: r=.639

Proportion of Distance to Outer Hex
0.2 0.4 0.6 0.8

Av
er

ag
e

De
ns

ity

0.8

1

1.2

1.4

1.6

1.8

2

2.2
(d) Distance Threshold for Thrust

Trial 1: r=.964
Trial 5: r=.287
Trial 20: r=.810

Thrust Duration (sec.)
0.06 0.08 0.1 0.12 0.14 0.16 0.18

Av
er

ag
e

D
en

si
ty

5

6

7

8

9

10

11

12

13

14
(e) Duration Choice

Trial 1: r=.601
Trial 5: r=.648
Trial 20: r=.828

Degrees
80 90 100 110 120 130 140

Av
er

ag
e

D
en

si
ty

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
(f) Choice of Thrust Angle

Trial 1: r=.989
Trial 5: r=.992
Trial 20: r=.987

Angle
5 10 15 20

Av
er

ag
e

D
en

si
ty

0

0.05

0.1

0.15

0.2

0.25
(b) Maximum Offset in Aim

Trial 1: r=.970
Trial 5: r=.948
Trial 20: r=.975

Probability*of*different*values*for*control*variables,*averaged*over*the*100*models*that*played*20*
Transfer*games*in*Space*Fortress.**CorrelaAons*are*with*the*corresponding*curves*in*Figure*A1.**

Figure C3 shows the learning of the 5 control variables in Space Track over the 40

Learning games and Figure C4 shows their learning over the 20 Transfer games. There are

strong correlations between Learning and Transfer for the target speed that the model tries to

reach going down the rectangle (parts b), the point at which the model issues a hard press to turn

into the next rectangle (parts c), and the angle at which the model lifts its finger during to stop

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 81

the hard press (parts d). The models are more successful in finding a good aim angle in the

Learning condition than the Transfer condition (Figure C3a versus Figure C4a). The correlations

on thrust duration are comparable to those for Space Fortress (parts e in all figures).

Angle
5 10 15 20

Av
er

ag
e

D
en

si
ty

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
(a) Maximum Offset in Aim

After Trial 1
After Trial 5
After Trial 20
After Trial 40

Pixels after New Rectangle
-20 -10 0 10 20 30 40 50

Av
er

ag
e

D
en

si
ty

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
(c) Press Point

After Trial 1
After Trial 5
After Trial 20
After Trial 40

Thrust Duration (sec.)
0.06 0.08 0.1 0.12 0.14 0.16 0.18

Av
er

ag
e

D
en

si
ty

4

6

8

10

12

14

16

18

20
(e) Duration Choice

After Trial 1
After Trial 5
After Trial 20
After Trial 40

Pixels per Second
1 1.5 2 2.5 3 3.5 4

Av
er

ag
e

D
en

si
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(b) Target Ship Speed

After Trial 1
After Trial 5
After Trial 20
After Trial 40

Degrees from Target
5 10 15 20 25 30 35 40

Av
er

ag
e

D
en

si
ty

0

0.01

0.02

0.03

0.04

0.05

0.06
(d) Stop Angle

After Trial 1
After Trial 5
After Trial 20
After Trial 40

Figure'A3.'Probability'of'different'values'for'
control'variables,'averaged'over'the'100'
models'that'played'40'Learning'games'in'
Space'Track.'''

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 82

Angle
5 10 15 20

Av
er

ag
e

D
en

si
ty

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
(a) Maximum Offset in Aim

Trial 1: r=-.166
Trial 5: r=.271
Trial 20: r=.162

Pixels per Second
1 1.5 2 2.5 3 3.5 4

Av
er

ag
e

D
en

si
ty

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(b) Target Ship Speed

Trial 1: r=.834
Trial 5: r=.912
Trial 20: r=.953

Pixels after New Rectangle
-20 -10 0 10 20 30 40 50

Av
er

ag
e

D
en

si
ty

0

0.005

0.01

0.015

0.02

0.025

0.03
(c) Press Point

Trial 1: r=.907
Trial 5: r=.987
Trial 20: r=.990

Degrees from Target
5 10 15 20 25 30 35 40

Av
er

ag
e

D
en

si
ty

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

(d) Stop Angle
Trial 1: r=.959
Trial 5: r=.959
Trial 20: r=.962

Thrust Duration (sec.)
0.06 0.08 0.1 0.12 0.14 0.16 0.18

Av
er

ag
e

D
en

si
ty

5

10

15

20
(e) Duration Choice

Trial 1: r=.831
Trial 5: r=.617
Trial 20: r=.829

Figure'A4.'Probability'of'different'values'for'
control'variables,'averaged'over'the'100'
models'that'played'20'Transfer'games'in'
Space'Track.''CorrelaDons'are'with'the'
corresponding'curves'in'Figure'A3.'

There may be some differences between the learning of the control variables in the

Learning and Transfer conditions. In the Transfer condition the model has learned some

productions to more rapidly act on them. However, the differences are relatively small. In

either Learning or Transfer, control variables for which there are clear feedback signals are being

well identified and correlate highly. ‘

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 83

Learning	
 Rapid	
 and	
 Precise	
 Skills	

	
 84

Figure Captions

Figure C1. Probability of different values for control variables, averaged over the 100

models that played 40 Learning games in Space Fortress.

Figure C2. Probability of different values for control variables, averaged over the 100

models that played 20 Transfer games in Space Fortress. Correlations are with the

corresponding curves in Figure C1.

Figure C3. Probability of different values for control variables, averaged over the 100

models that played 40 Learning games in Space Track.

Figure C4. Probability of different values for control variables, averaged over the 100

models that played 20 Transfer games in Space Track. Correlations are with the corresponding

curves in Figure C3.

