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A B S T R A C T

How does processing differ during purely symbolic problem solving versus when mathematical operations can
be mentally associated with meaningful (here, visuospatial) referents? Learners were trained on novel math
operations (↓, ↑), that were defined strictly symbolically or in terms of a visuospatial interpretation (operands
mapped to dimensions of shaded areas, answer = total area). During testing (scanner session), no visuospatial
representations were displayed. However, we expected visuospatially-trained learners to form mental
visuospatial representations for problems, and exhibit distinct activations. Since some solution intervals were
long (~10 s) and visuospatial representations might only be instantiated in some stages during solving, group
differences were difficult to detect when treating the solving interval as a whole. However, an HSMM-MVPA
process (Anderson and Fincham, 2014a) to parse fMRI data identified four distinct problem-solving stages in
each group, dubbed: 1) encode; 2) plan; 3) compute; and 4) respond. We assessed stage-specific differences
across groups. During encoding, several regions implicated in general semantic processing and/or mental
imagery were more active in visuospatially-trained learners, including: bilateral supramarginal, precuneus,
cuneus, parahippocampus, and left middle temporal regions. Four of these regions again emerged in the
computation stage: precuneus, right supramarginal/angular, left supramarginal/inferior parietal, and left
parahippocampal gyrus. Thus, mental visuospatial representations may not just inform initial problem
interpretation (followed by symbolic computation), but may scaffold on-going computation. In the second
stage, higher activations were found among symbolically-trained solvers in frontal regions (R. medial and
inferior and L. superior) and the right angular and middle temporal gyrus. Activations in contrasting regions
may shed light on solvers’ degree of use of symbolic versus mental visuospatial strategies, even in absence of
behavioral differences.

Introduction

Different strategies for solving a math problem can involve different
types of mental representations and different neural substrates, and
may have different implications for transfer and future achievement
(e.g., Geary, 2011; Price et al., 2013; Pyke et al., 2015). Strategies and
instructional materials involving visuospatial representations are of
particular interest. Some famous mathematicians report relying heavily
on mental imagery to guide their mathematical thinking (Tall, 2006;
see Hadamard (1945) for a discussion of Einstein), and students’
spontaneous construction and use of effective visuospatial representa-
tions can predict their math problem-solving performance (Blatto-
Vallee et al., 2007; Hembree, 1992; van Garderen, 2006). Such
strategies presumably contribute to correlations between spatial ability
and math performance (e.g., Clements and Battista, 1992; Gathercole

and Pickering, 2000; Kyttälä and Lehto, 2008; Reuhkala, 2001; for a
review see Mix and Cheng (2011). That said, the use of visuospatial
representations is not always helpful (Berends and van Lieshout, 2009;
Booth and Koedinger, 2012; Hegarty and Kozhevnikov, 1999; Larkin
and Simon, 1987; Presmeg, 1997, 2006). Such research contrasting
behavioral performance across symbolic versus visuospatial strategies
of various types and in various contexts is on-going (e.g., for reviews
see Arcavi (2003), Hembree (1992) and Presmeg (2006)). However, far
less research has investigated the neural substrates supporting visuos-
patial mental strategies during math problem solving. More generally,
we regard visuospatial referents as a way to operationalize a more
fundamental contrast of interest: between solution processes when the
operations have semantic meaning versus solution processes charac-
terized by rote calculation.

As a very simple example, one might interpret a problem like 4*5 in
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abstract symbolic terms, or in visuospatial terms, such that the answer
represents the area of a rectangle of width 4 and height 5. Regardless of
whether the problem is interpreted symbolically or visuospatially, one
might compute the numerical answer using the same arithmetic steps
(e.g., 4*5 = 4+4+4+4+4), however in the latter case the answer and
operands are associated with visuospatial meanings.

The present research was motivated by two main questions. First,
do neural substrates differ when learners solve math problems with
purely symbolic procedures versus when learners can mentally associ-
ate the problems with meaningful – here, visuospatial - referents?
Second, is the role of visuospatial and/or semantic processing re-
stricted to specific stages during problem solving (e.g., initial inter-
pretation vs. computation)? To explore these questions, we introduced
learners to novel math operations (↓, ↑), that were defined either in
terms of purely symbolic computation algorithms (symbolically-trained
group) or included visuospatial referents (visuospatially-trained
group). Both groups then mentally solved problems in a scanner. We
then applied a relatively novel analysis processes to segment the fMRI
solving-interval data into distinct mental stages (Anderson and
Fincham, 2014a) – to allow us to assess whether there were stage-
specific (vs. overall) neural differences across groups.

Role of visuospatial math representations: Depicting relative
magnitudes

A general feature of effective visuospatial math representations (e.g.,
number lines, strips and graphs) is that they spatially represent the
relative magnitudes of relevant quantities (e.g., as locations, lengths or
areas) (e.g., Beckmann, 2004; Murata, 2008; Lewis, 1989). Prior research
suggests that math learning and transfer benefit from learners having
knowledge about the magnitudes of problem elements (Siegler and
Ramani, 2009; Whyte and Bull, 2008), and the magnitude relations
among these elements, which characterize the operation (Booth and
Siegler, 2008; Slavit, 1998). For example, Booth and Siegler (2008) found
that children were better able to memorize or estimate answers for specific
addition facts when, during training, they had been exposed not only to
the symbolic fact (e.g., 5 + 4 = 9; 18 + 16 = 34), but also to shaded bars
representing the magnitudes of each operand and the sum. For arithmetic
word problems, spatial representations of relative quantities with strips/
bars are commonly taught and used in countries like Singapore
(Beckmann, 2004; Lee et al., 2007; Lee et al., 2010) and Japan
(Murata, 2008), where students exhibit high math achievement as
indexed by the Programme for International Student Assessment
(Organisation for Economic Co-operation and Development: OECD,
2014). Visuospatial referents have also been used in the instruction of
more advanced math topics like quadratics (Hoong et al., 2010) and
integral calculus, where an answer can be represented as the area of a two-
dimensional region. In our experiment we investigate the impact of
training learners with two–dimensional spatial referents (vs. purely
symbolic procedures) on their activation patterns when they later
mentally solve problems.

Neural substrates for visuospatial mental representations in math
problem solving

We hypothesized that visuospatially-trained solvers might exhibit
more activation in some regions to support processing the mental
imagery and relational information inherent in (mental) visuospatial
referents of problems. Some prior research on math cognition may
shed light on which regions might be implicated in supporting such
visuospatial mental referents.

One visuospatial math representation hypothesized to support
numerical cognition is the mental number line for representing the
magnitudes of symbolic numbers. The brain region most commonly
associated with the mental number line is the horizontal intra-parietal
sulcus (HIPS; for meta-analyses see Cohen Kadosh et al. (2008)

and Dehaene et al. (2003), whose activation in is modulated by the
numerical distance between numbers in a comparison task (e.g., small:
2 vs. 3; large: 2 vs. 9; Pinel, Dehaene, Riviere & LeBihan, 2001). Other
studies have implicated the angular gyrus (AG) in mental number line
processes (e.g., Cattaneo et al., 2009; Göbel et al., 2001). The posterior
superior parietal lobule (PSPL) extending into the precuneus is also
implicated in such numerical tasks (Pinel et al., 2001) and in domain-
general visuospatial procesing, so Dehaene et al. (2003) suggest it may
modulate attention along the mental number line. If the semantic roles
of the HIPS, AG, PSPL and precuneus generalize beyond the canonical
mental number line to other visuospatial math representations that
convey magnitude relations, we might expect increased activation in
such regions when solvers can mentally associate problems with more
general visuospatial representations versus purely symbolic proce-
dures.

Neuroscience studies exploring the use of more general and varied
visuospatial math representations sometimes contrast conditions in
which the problem stimuli themselves are symbolic versus visuospatial
– for example: processing a sequences of quantities represented as
digits versus sets of dots (or mixed, Piazza et al., 2007); adding digits
versus dots (Venkatraman et al., 2005); comparing graphs versus
equations (Thomas et al., 2010); and solving for relations depicted as
bar lengths versus symbolic expressions (Lee et al., 2010).

Note, however, that we are ultimately interested in a slightly
different type of contrast: when a solvers’ mental interpretation may
be either purely symbolic (e.g., 4+4+4+4+4) or visuospatial (area of
rectangle) for the same problem stimulus (4*5). However, since mental
imagery is known to share many neural substrates with perception
(Ganis et al., 2004), neural differences in processing visuospatial versus
symbolic math stimuli may foreshadow neural differences in proces-
sing visuospatial versus symbolic mental interpretations (of a
common problem stimulus).

Interestingly, some studies emphasize the similarity of activation
patterns in some regions across symbolic and visuospatial math
stimuli. For example, Piazza et al. (2007) found that when learners
saw a sequence of similar quantities (e.g., 18, 17, 19, 17, 19, 18,…)
followed by a new quantity (20 or 50), the response to the new quantity
in the HIPS and frontal regions depended on the difference between
the new quantity and the familiar quantities (e.g., 20 is near; 50 is far).
Importantly this effect was notation-independent – that is, it occurred
regardless of whether or not the new quantity was displayed in the
same format (digits or dots) as the quantities in the original sequence.
They did however report that the fusiform gyrii and left lingual gyrus
were sensitive to a format change.

Other stimulus-contrast studies report differences in other regions.
For example, Thomas et al. (2010) reported greater activity when
participants processed graphs (vs. corresponding linear and quadratic
equations) not only in a bi-lateral occipital region but also in the right
posterior superior parietal lobe (PSPL), precuneus, right postcentral
gyrus, and right middle temporal gyrus. In such experimental designs
where the stimuli differ across conditions, despite clever controls, it is
not always clear which activation differences are just due to stimulus
format differences versus distinct mental semantic and visuospatial
solution processes.

Other studies have controlled stimulus format (e.g., symbolic expres-
sions or word problems) but still found distinct activation patterns when
learners used visuospatial mental strategies (e.g., Lee et al., 2007; Zago
et al., 2001; Zago et al., 2008; Zarnhofer et al., 2013). For word problems,
Zarnhofer et al. (2013) found that a measure reflecting the self-reported
degree of use of mental visualization strategies was correlated in both
hemispheres with activation in occipital regions, the lingual gyrus, calcarine
gyrus, cuneus, and thalamus; and with right hemisphere (only) activation in
the fusiform and superior, middle and inferior temporal gyrii.

Additional evidence comes from learners who can use mental abacus
imagery to solve problems. When children trained on abacus use did exact
mental addition in a scanner, several regions were more active than among
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children who had not been abacus-trained (Du et al., 2013): medial
prefrontal cortex (MPFC), right caudate, right thalamus, right superior
temporal cortex, and right angular gyrus. Another study by Chen et al.
(2006) also implicates the PSPL and precuneus (among others) in mental
abacus imagery, though the contrast was between adding a sequence of 10
4-digit versus 1-digit numbers within abacus-experts, rather than a between
group contrast between abacus experts and non-experts. Further, the
difficulty contrast (4-digit > 1-digit serial addition) also implicated
PSPL/precuneus regions among non-experts.

Adders unfamiliar with abacus use may nonetheless use mental imagery
to visualize the multi-digit addends in a vertically aligned format to facilitate
mental computation. A visualization strategy of this type (involving
symbolic representations) was reported in studies by Zago et al. (2001)
by learners solving horizontally presented multi-digit multiplication and
addition problems (Zago et al., 2008). When learners used mental imagery
to support symbolic multiplication (37×14 vs. 3×4) they had more activity
in occipital and cerebellar regions, in bi-lateral IPS and fusiform, and left
supramarginal, superior frontal and precentral areas. They attributed
increased fusiform activity to demands of visually processing the numerical
stimuli (see also Dehaene and Cohen, 1995; Schmithorst and Brown,
2004). However, the fusiform has been otherwise implicated in mental
imagery during math problem solving (Zarnhofer et al., 2103) and in non-
math contexts such as visualizing images for concrete nouns (D’Esposito
et al., 1997), imagining faces (O’Craven and Kanwisher, 2000), and other
items (Ishai et al., 2000).

In summary, based on the prior research discussed above, several
regions might be expected to show increased activity to support visuospatial
mental referents of math problems (e.g., among others: HIPs, AG, PSPL,
precuneus, supramarginal, middle and superior temporal, fusiform, and
lingual gyrus). The further question of interest was whether any such neural
differences would be localized to specific stages during problem solving.

Parsing the solving process into a sequence of distinct solving stages
(HSMM-MVPA)

While solving a complex problem, the solver presumably goes

through a sequence of ‘unobservable’ mental stages. As a high-level
example, the solving process could be subdivided into stages for
problem representation versus problem solution (e.g., Lewis, 1989).
It seemed highly plausible that processing differences (e.g., temporal
and neurological) across strategies might only occur in certain stages,
so we wanted to explore this possibility.

One approach that has been used to gain insight on intermediate
processes is to segment the solving task into explicit subtasks (e.g.,
problem representation: Lee et al., 2007; Lewis, 1989; vs. problem
solution: Lee et al., 2010). However, in the current research, we applied
a relatively novel method for parsing fMRI data that affords us insight
on the solving sub-stages while learners progress naturally through
them. This method combines Hidden Semi-Markov Modeling with
Multi-Voxel Pattern Analysis (HSMM-MVPA; Anderson and Fincham,
2014a, 2014b).

In HSMM-MVPA, a stage identified by this process reflects a period
of time with a relatively constant brain activation pattern, the stage's
brain signature. Due to the temporal resolution of fMRI data, these
stages will typically be on the order of a second to several seconds in
length. This method has been used to discover brain signatures and
stage durations in contexts where learners were all initially trained on a
common solution strategy (e.g., symbolic, Anderson and Fincham,
2014a, 2014b), and when data were collapsed across learning condi-
tions (instruction vs. discovery learning, Anderson et al., 2014). In the
current research, one objective was to extend this stage-parsing process
to discover possible differences in the problem-solving stage structure
among learners trained symbolically versus visuospatially, by creating
separate models for each group and then comparing them (i.e., in
terms of the number, nature and durations of stages).

In another experiment that involved only symbolic training with
problems somewhat similar to ours, Anderson and Fincham (2014a,
2014b) reported that problem-solving appeared to consist of 4 stages,
which they interpreted as: i) encode, ii) plan, iii) compute; and iv)
respond. Beyond the obvious requirement for input (encode) and
output processes (response), their middle two stages are compatible
with Mayer's (1985) suggestion that the problem solution stage is

Fig. 1. An illustration of the HSMM–MVPA process yielding a 4-stage solution. As an alternative to treating each solving interval as a homogenous boxcar, the intermediate stages can
provide finer grained event regressors in a GLM analysis of brain activity. Input to the HSMM–MVPA are scans organized within trials, where each scan consists of 20 PCA scores. The
stage model characterizes each stage via 20 PCA means that define its brain signature (individual scans are normally distributed around these means) and parameters that define the
gamma distribution for a stage's duration.
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subdivided into solution planning (selecting a solution procedure) and
solution execution (carrying out the computations).

The ability to find the stage structure via HSMM-MVPA affords
important opportunities for additional insight and analysis. For
example, beyond exploring brain activation patterns in a traditional
manner that treats the solving interval as a whole (i.e., modeling it as a
homogenous boxcar regressor in a GLM), our objective was also to
model activation patterns within each of the intermediate problem
solving stages. Thus, as shown in Fig. 1, the HSMM-MVPA furnishes
stage boundaries that allow each stage to be modeled as an event in a
GLM design matrix. We specifically hoped to gain insight about when a
visuospatial interpretation would play a role during solving. One
possibility was that distinctive (i.e., visuospatial) processing might be
localized only to the initial stage(s) of solving to reveal the needed
computation, but that arithmetic computation would then progress
without further reference to the visuospatial interpretation. If so, brain
signatures in the computation stage would be comparable across
groups (symbolic and visuospatial). Alternately, the influence and use
of a visuospatial mental representation might be ongoing during
computation. For example, solvers might use visuospatial mental
representations to support piecemeal computation - doing one arith-
metic step and then referring back to their mental representation to
update their progress or determine the next step.

The present study

Differences in solution strategies and problem interpretations are
not always evident in behavioral measures, so we sought to explore
brain activation differences during mental problem solving among
learners trained to form visuospatial referents versus learners trained
to use purely symbolic procedures. We introduced students to two new
mathematical operators designated by ↓ and ↑. During the training
session (day 1, not in scanner), both groups were asked to solve the
same sets of problems (e.g., 3↑4=; 5↓2=), but the symbolic versus
visuospatial training differed in three key respects. First, the operators
(↓ and ↑) were initially defined either via a purely symbolic formula
(e.g., Fig. 2b) or via a visuospatial interpretation (e.g., Fig. 2d). These
visuospatial representations conveyed magnitude relations: operands
governed the dimensions of two-dimensional graphical regions and the
answer was represented by total area. Second, on two training blocks,
problem solving was scaffolded such that before computing the
numerical answer, the symbolically-trained group had to complete
the appropriate formula (e.g., Fig. 3b), whereas the visuospatially-
trained group had to generate the graphical representation (Fig. 3d).
Finally, on core (vs. scaffolded) training blocks, learners initially just
saw the problem and had to mentally compute the answer, but, after
each response (as feedback) visuospatially-trained learners saw the
appropriate visuospatial representation for the problem and symboli-
cally-trained learners saw the appropriate formula.

After mastering the processes for solving problems during the
training session (outside the scanner), learners were tested the follow-
ing day in the scanner. In the scanner the two groups were presented
with identical problem stimuli – that is, just the problems themselves
(e.g., 3↑4=), which had to be mentally solved. This problem-only
presentation and mental problem-solving task matched that in the
core training blocks, however, in the scanner, no visuospatial repre-
sentations or formulae were displayed even as feedback. Having
matched stimuli across groups in the scanner was advantageous
because it allowed us to attribute any differential processing to different
mental interpretations (vs. stimulus formats) (cf. Lee et al., 2010;
Thomas et al., 2010; Venkatraman et al., 2005).

This work extends a previous analysis (Pyke et al., 2015), which did
not include HSMM-MVPA modeling and was based on only a subset of
the current data (N=40 vs. 80). That work contrasted only the
visuospatial training exemplified in Fig. 2c versus the symbolic training
exemplified in Fig. 2b. However, those two characterizations differ not

only in the presence (or not) of a visuospatial interpretation, but also in
the sequence of arithmetic computation steps required to reach an
answer. We resolved this potential confound in the current work by
introducing a symbolic analog (Fig. 2a) with the same computation
steps as required for Fig. 2c; and a visuospatial analog (Fig. 2d) with
the same computation steps as those in Fig. 2b. Thus, overall, the
arithmetic steps needed to compute answers for these problems were
matched across the symbolic and corresponding visuospatial condi-
tions; all that differed was whether or not operands/answers were also
associated with visuospatial dimensions/areas. Having items that
include two symbolic operationalizations for our arrow operations
(Fig. 2a & b), each with its own corresponding visuospatial inter-
pretation (Fig. 2c & d, respectively) also helps make our materials
more general than using a single item/operationalization.

We expected that learners privy to visuospatial referents for
problems would engage in extra processing to mentally associate
problems with mental visuospatial referents. Specifically, such extra
processing might be expected in regions found to be especially active in
conditions involving visuospatial stimulus formats and/or visuospatial
mental strategies (e.g., HIPs, AG, PSPL, precuneus, supramarginal,
middle and superior temporal gyrus, fusiform, and lingual gyrus). In
contrast, we did not have clear expectations about whether any regions
might show increased activity in the group trained to use purely
symbolic procedures. Note that both groups of solvers shared a
requirement to perform similar arithmetic computations (symbol
manipulation) to obtain answers, thus it seemed possible that the
visuospatially-trained group might simply incur extra demands to
support visuospatial mental representations.

We further wanted to assess whether or not such extra processing
might be limited to certain stages during problem solving (e.g., early
encoding and interpretation). To understand activation differences as they
might occur in distinct stages during problem solving, we generated and
compared separate (symbolic vs. visuospatial) stage models based on
fMRI data using HSMM-MVPA (Anderson and Fincham 2014a, 2014b).

Method

Participants

One hundred and one right-handed participants (44 female; mean
age=24.2 years, SD=5.4) recruited from the university community were
given course credit or payment for their participation.

Procedure

The study entailed two 1.5 h sessions on consecutive days. Training
was provided in Session 1, outside the scanner. Then they were tested
in Session 2, which took place in a Siemens 3 T Verio Scanner.

Training session
As detailed in Pyke et al. (2015), learners first did an 8 min

arithmetic pre-test (French et al., 1963), then practiced using an
occluded numeric keypad to prepare them to type their answers
without looking in the scanner. Half of the learners were then assigned
to be symbolically-trained (half in A1SO, half in A2SO in Fig. 2) and
half to be visuospatially-trained (half in A1VS, half in A2VS). Each
learner was then accordingly trained on the two novel math operators:
up arrow, ↑, and down arrow, ↓. These operations were initially defined
via example problems: for example a symbolically-trained learner
might be given the examples in Fig. 2a (or 2b) to study, whereas a
visuospatially-trained learner might be given the examples in Fig. 2c
(or 2d) to study.

Training problems were of Standard form b↑h = X and b↓h = X,
where participants solved for X on the right (e.g., versus other possible
positions for the missing value, X, in Transfer problems like, 3↑X =5).
During training, b and h were integers from 1–9 and 2–6, respectively,
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yielding 90 unique training problems (45 per operation). These were
partitioned into 8 blocks, the first and last with 12 problems each and
the rest with 11 problems each.

Standard problems (e.g., 4↑3=X) were presented one at a time on the
screen in black font on a white background. Learners pressed ENTER
when they had solved the problem, then they typed the answer using an
occluded numeric keypad, and pressed ENTER again to submit it. A
problem would time out if learners took longer than 30 s to compute an
answer and/or longer than 5 s to type it. Otherwise, learners’ answers
appeared in blue font below the problem as they typed them. Upon
pressing ENTER after their response, learners got feedback which
consisted of three elements: i) their answer turned green if correct or
red if incorrect; ii) the X in the problem was replaced with the correct
answer, framed in a box; and iii) as per the learner's training condition
(Fig. 2), either a symbolic or visuospatial representation for the particular
problem appeared under the learner's answer. Thus, symbolically-trained
learners, were shown as feedback the correct expression for solving the
problem with the appropriate numerical values filled in (e.g., 4↑3=4+5+6
for A1SO or 4↑3= 4*|3| + 3(|3|−1)/2 for A2SO). Visuospatially-trained

learners saw the shaded region(s) corresponding to the problem: either a
section of a staircase (A1VS, Fig. 2c) or an appropriately scaled rectangle
and triangle (A2VS, Fig. 2d), with the appropriate numbers substituted
into the dimensions (e.g., the height of the rectangle would be labelled 3).
Feedback was displayed for 5 s when the learner's answer was correct and
7 s when incorrect.

The first and last training blocks (1 & 8) were ‘scaffolded’ – that is,
before mentally computing an answer for each problem, learners first
had to explicitly generate its symbolic or visuospatial representation (as
per their condition). The framework for this scaffolding task is
illustrated in Fig. 3. Symbolically-trained learners had to produce/
complete a numeric expression by typing in appropriate values for the
current problem (Fig. 3a, b). The values they typed into the text box(es)
appeared in blue. Visuospatially-trained learners used the mouse to
delineate the relevant area(s) that should be shaded for the current
problem on an initially un-shaded graph/grid framework (Fig. 3c, d).
Learners trained via A1VS (see Figs. 2c, 3c) clicked on the columns in
the staircase framework that were relevant to the current problem,
(e.g., columns with heights 4, 5 and 6 for 4↑3=X). Learners trained via

Fig. 2. Purely symbolic versus visuospatial characterizations for teaching arrow problems. Materials included two alternate symbolic characterizations (a) & (b), and beneath each is a
corresponding visuospatial interpretation (panels c & d, respectively). The green arrows (c, d) are included for illustrative purposes but did not appear in the training examples. On
actual training trials, the staircase framework in (c) extended from −5 to 15 on the horizontal axis and the grids in (d) were 9 by 9 (see Fig. 3) to accommodate problems with b in 1–9
and h in 2–6.

A.A. Pyke et al. NeuroImage 153 (2017) 319–335

323



A2VS (see Figs. 2d, 3d) clicked on points in the left grid to designate
the appropriate locations of the corners for the rectangle for the current
problem, and similarly clicked on points in the right grid to designate
the appropriate corners of the triangle. The shapes were always
anchored to the lower left corner of their respective grids so learners
only had to click on the remaining corners to describe each shape. The
program would shade in blue the area(s) that the visuospatially-trained
learner had selected to represent the current problem.

In these scaffolded blocks, after learners had generated a sym-
bolic or visuospatial representation for the problem (as per their

condition), they would mentally compute and enter an answer as
normal, and would receive the usual feedback, which included either
the correct symbolic expression (in black) or visuospatial represen-
tation (shaded in grey) for their condition. Additionally, however, to
help learners notice any possible mismatch between the representa-
tion they had generated and the correct one, for symbolically-trained
learners, their generated expression also remained visible (in blue)
above the correct one (in black). For visuospatially-trained learners,
their selected area(s) remained visible in blue outline superimposed
on the framework with correct region shaded in grey.

Fig. 3. Scaffolded training task for each of the Fig. 2 examples. Prior to mentally computing answers, learners generated purely symbolic (a, b) or visuospatial (c, d) representations (as
per their condition) for each problem in the first and last training blocks.
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In summary, after studying definitions for the operations via
symbolic or visuospatial examples (Fig. 2), training trials for symbo-
lically- versus visuospatially-trained learners also differed in two key
ways. First, in the initial and final block of training, prior to mentally
computing an answer, symbolically-trained learners first had to enter/
complete a symbolic expression with appropriate numbers for the
current problem, whereas visuospatially-trained learners first gener-
ated the appropriate visuospatial representation for the problem within
a grid framework provided on the screen. Second, feedback on every
training trial included the correct symbolic expression for the problem
for symbolically-trained learners, but the correct the visuospatial
representation for visuospatially-trained learners.

Testing session
To ensure learners remembered their training, for two example

problems (1↑6 and 1↓6) symbolically-trained learners were asked to
write out appropriate symbolic expressions and visuospatially-
trained learners had to designate the correct area(s) in a paper-
and-pencil version of the task in Fig. 3c/d. Feedback was provided.
The rest of the session took place in a Siemens 3 T Verio Scanner.
During the structural scan, solvers did an initial practice block (8
Standard problems with b within 2–9 and h within 2–5) to help
them acclimate to solving problems and using the keypad interface
in the novel scanner environment. Functional scanning occurred
during the remaining 8 blocks, which provide the data for the study.
Each began with a Standard practice problem (not analyzed),
followed by a randomly ordered mix of 4 Standard Problems (2
up-arrow problems: b↑h=X; and 2 down-arrow problems: b↓h=X)
and 6 Transfer Problems (an unknown b: e.g., X↑h=a, an unknown
h: e.g., b↑X=a, and 4 Relational Transfer, see Table A). Standard
problems in the scanner included some with a negative operand
(50% of problems, e.g., −4↑3; 4↑−3; −4↓3; 4↓−3). The solution
process for such problems follows readily from the positive operand
examples (Fig. 2). For example, Fig. 2c, they can intuit that a
negative second operand requires them to reverse the direction
(right or left) to extend the area from the starting column.

These standard problems (of the forms b↑h=X and b↓h=X), which
have very well-defined solution steps (see Fig. 2), provided the data for
creating models of the solving structure (stages) for visuospatially-
versus symbolically-trained solvers. Within these standard format
problems, operand type (negative vs. positive) was collapsed in our
main analyses as it was not a factor of interest. Unknown b and
unknown h problems were excluded because they do not provide
visuospatial solvers with all the necessary dimensions with which to
construct a well-defined visuospatial representation for the problem.
This issue was shared by some relational transfer problems, which had
the most variable formats and solution procedures and were character-
ized by quite poor performance, so they were also excluded from the
models. Such transfer problems were a focus in a prior paper which
was based on half of the current subjects, and which did not involve an
HSMM-MVPA stage analysis (Pyke et al., 2015).

Scanner problems were presented in a similar way to problems in
the core training blocks – that is, only the problem was displayed and
students had to mentally solve it. In the scanner, however, feedback
was always 7 s, and all students got the same type of feedback – the
correct answers (no formulae or visuospatial representations were
shown with the feedback in the scanner session). Thus, in contrast to
training, physical presentation was identical across groups, which
allows us to attribute any behavioral or neural differences to different
mental (vs. stimulus) representations across groups. To distract
participants from thinking about the prior problem and allow brain
activity to return to a relatively constant level between problems, a
repetition detection task (12 s) was inserted after the feedback on each
trial: A fixation cross (3 s) was followed by a series of letters (1.25 s
each) and learners were instructed to press ENTER when the same
letter appeared twice in a row.

fMRI acquisition and analysis

Acquisition & preprocessing. Images were acquired using gradient
echo-echo planar image (EPI) acquisition on a Siemens 3 T Verio
Scanner with a 32 channel RF head coil, with 2 s repetition time (TR),
30 ms echo time (TE), 79° flip angle, and 20 cm field of view (FOV). On
each TR, 34 axial slices (3.2 mm) were acquired using a 64×64 matrix.
Voxels were 3.2 mm high by 3.125×3.125 mm2. The anterior
commissure-posterior commissure (AC-PC) line was on the 11th slice
from the bottom.

Acquired images were pre-processed and analyzed using AFNI
(Cox, 1996; Cox and Hyde, 1997). Functional images were motion-
corrected using 6-parameter 3D registration, slice-time centered at 1 s,
and normalized such that voxel time series within each block in each
subject had a mean value of 100. Functional data were then co-
registered to a common reference structural MRI by means of a 12-
parameter 3D registration and smoothed with a 6 mm full-width-at-
half-maximum 3D Gaussian filter to accommodate individual differ-
ences in anatomy.

Whole-brain analysis. In a preliminary traditional analysis, the whole
solving interval on each relevant trial (correct Standard format
problems) was treated as a single homogenous ‘stage’, as shown at
the top of Fig. 1. Estimates of engagement (beta weights) were obtained
by using a general linear model (GLM). The model involved a regressor
(boxcar) for the whole solving interval, and a separate boxcar for the
feedback interval. There was also a baseline model of an order-4
polynomial to account for general signal drift. The design matrix
regressors were constructed by convolving the boxcar functions with
the standard SPM hemodynamic function (Friston et al., 2011). Group
level analyses were performed on these first-level beta estimates.
Whole-brain exploratory analyses of average beta weight per voxel
were conducted.

We also investigated whether there were any regions that differed in
activation across groups within corresponding intermediate stages
during solving (e.g., stage 1: encode). As detailed in the next subsection
the stage models were generated using imaging data that had been
reduced in dimensionality (e.g., principal components). However, to
compare the activations across groups (visuospatial vs. symbolic) we
returned to voxel-level resolution. As shown in Fig. 1, the stage
structure from the HSMM-MVPA models for each group can effectively
be used to subdivide the solving interval into internal ‘events’ for a
general linear model (GLM). The regressors used corresponded to the n
stage occupancy probabilities. As when looking at the solving interval
as a single stage, regressors were convolved with the standard SPM
hemodynamic function and the model also included a regressor for the
feedback interval and a polynomial baseline model.

Stage modeling (HSMM-MVPA). We used the imaging data to parse
the trials into stages using a HSMM-MVPA analysis sequence similar to
that in Anderson and Fincham (2014a, 2014b). A basic overview of this
process is depicted in Fig. 1.

To reduce the dimensionality of the fMRI data for MVPA, voxels in
each slice were aggregated into larger 2×2 ‘megavoxel’ regions (12, 481
total). Excluding those with an excess of extreme values yielded 8755
regions. Excluded regions with extreme values were mostly at the edges
of the brain or in the top or bottom slice, possibly reflecting variations
in anatomy that were not entirely dealt with in co-registration. The
BOLD response in each retained megavoxel was calculated as the
percent change from a linear baseline defined from the first scan of the
trial (start of fixation prior to problem) to the first scan of the next trial.
To estimate the shape of the signal driving the BOLD response (and
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reverse the lag), it was deconvolved with an SPM hemodynamic
response function (difference of gammas: gamma(6,1)-gamma(16,1)/
6; Friston et al., 2011) with a Wiener filter (Glover, 1999) with noise
parameter of .1. Thus we had an estimate of the (unlagged) activity
during each 2 s scan in each of the 8755 megavoxel regions. To detect/
remove anomalous values, these activity estimates were also thre-
sholded ( < =5% above/below baseline).

Since activities in these regions were correlated and not indepen-
dent, to further reduce dimensionality we applied a spatial Principal
Component Analysis (PCA) of megavoxel activity. Each megavoxel was
treated as a variable that varied over scans, trials and subjects. The PCA
process allows the 3-D brain activity pattern in each scan to be
represented as a weighted sum of a set of basic patterns (components).
The first 20 components (accounting for 54% of the total variance)
were retained, and each was standardized to have a mean of 0 and
standard deviation of 1.

The data of interest for modeling were scans during the correct
solving of Standard format problems (b↑h=X or b↓h=X, solve for X).
The PCs for these scans were normalized (mean=0, std=1) within each
subject. Separate HSMM-MVPA models were generated using scans
from the visuospatially- versus symbolically-trained solvers. As shown
at the bottom of Fig. 1, the relevant trials for a group, each represented
as 20 PC values per scan, served as input to the HSMM-MVPA stage-
modeling procedure (for a detailed description see Anderson and
Fincham (2014a, 2014b)). The outputs of each model (visuospatial
vs. symbolic) include characterizations of the stages such as their
brain signatures (the mean values of the 20 PC dimensions in that
stage) and the distributions of durations (gamma distribution).
Basically, MVPA can characterize a brain activation pattern within a
temporal segment of data, and the HSMM complements the MVPA by
assessing different ways to temporally segment the data stream into a
particular number of stages. It estimates a set of parameters that
characterize the segmentation in a way that maximizes the probability
of the brain activity given a certain number of stages. The estimation
process to identify the appropriate parameters is iterative. When the
estimation process settles on a set of parameters, it provides a scan-by-
scan parse of each trial in terms of stage occupancies, which are the
probabilities of being in a particular stage on a particular scan.

Results

Of the 101 participants, twenty-one did not furnish usable fMRI data: 2

failed to master the occluded keypad during training, 11 did not master
solving problems during training (required threshold over 70% correct in the
last 4 core training blocks), 3 did not show up for the scan session, 4 could
not be scanned due to size constraints or claustrophobia, and one had a brain
abnormality identified by the fMRI technician. Thus, 80 participants
provided fMRI data for analysis (44% female, mean age = 23.6, SD = 4.9).
Of these, 40 were trained on arrow problems symbolically (half with A1SO
and half with A2SO in Fig. 2); and 40 were trained using visuospatial
referents (half with A1VS, half with A2VS). Training groups did not differ
significantly in age, gender distribution, or performance on an arithmetic
pre-test (ps < .05). A key goal was to detect differences in the neural
substrates implicated among solvers who were versus were not privy to
visuospatial referents for the problem operations. Analyses were based on
activations on correct Standard format problems. Latencies are from the
presentation of the problem stimulus until the solver pressed ENTER after
responding. The Greenhouse-Geisser adjustment was used where applicable.

Behavioral performance

Our primary focus was on performance and activation patterns
during the Testing Session in the scanner. However we also examined
performance (accuracy and correct latency) during the core (unscaf-
folded) training blocks using 2 (Training: symbolic vs. visuospatial) X 6
(Training Blocks: 2–7) ANOVAs. During training, there were no main
effects of training group (visuospatial vs. symbolic) on either accuracy,
F(1,78) = .02, ηp

2 = .00, p=.896, or correct latency, F(1,78) = .12, ηp
2 =

.00, p=.734. There were also no interactions between training group
and training block for either accuracy, F(4.16, 324.42) = .84, ηp

2 = .01,
p=.507, or correct latency, F(3.67, 286.02) = .61, ηp

2 = .01, p=.645.
Thus, as shown in Fig. 4, learning curves were comparable across the
visuospatial and symbolic training groups in the training session. In the
final core training block learners achieved a mean accuracy of 86.8%
(mean latency = 7045 ms).

In terms of performance in the testing (scanner) session on
Standard Formation problems, a 2 (Training: symbolic vs. visuospatial)
X 2 (Operand Type: positive vs. negative) ANOVA revealed that
accuracy was comparable across symbolically and visuospatially-
trained solvers (78% and 75%), F(1,78) = .98, ηp2 = .01, p=.326. The
difference in correct latencies (9.8 s and 10.9 s) also did not reach
significance, F(1,78) = 3.07, ηp2 = .04, p=.084. On problems with
negative operands solvers were less accurate (63% vs. 90%); F(1,78) =
124.77, ηp

2 = .62, p < .001, and had longer latencies (12.6 s vs. 8.1 s),

Fig. 4. Learning curves during the training session for both symbolically- and visuospatially-trained solvers for a) accuracy and b) correct latencies (in ms). Error bars are standard
error.
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F(1,78) = 351.41, ηp2 = .82, p < .001. Negative operand problems had
not been practiced prior to the scanner session and often involved
computations with negative numbers. Interactions of operand type and
training type were not significant.

Similar performance across visuospatially- and symbolically-trained
solvers may be unsurprising because the stimuli and computation steps to
solve these problems were matched overall across groups. However, in the
next sections we discuss brain imaging data, which can be useful for
providing information not behaviorally apparent about the possible use of
different cognitive representations and strategies (as in Lee et al. (2010)
and Sohn et al. (2004)). Like the above behavioral analyses, the following
analyses of neural activation patterns are based on correct Standard
Format Problems. However, for the neural models we collapsed across
operand type (positive and negative) to increase power and focus on the
factor of primary interest – visuospatial versus symbolic training. That
said, the HSMM-MVPA stage models of these groups yielded information
about the stages (duration and activity patterns) on a trial by trial basis so
we were still able to explore how operand type (positive vs. negative)
affected stage durations (Section 3.3.2) and check for group activation
differences in each stage among only positive or negative problems
(footnote 2).

Whole-brain analysis of the full solving interval

This section discusses analyses of activation levels (betas) when
modeling the solving interval as a whole (homogenous boxcar), as
depicted at the top of Fig. 1, rather than partitioned into stages in accord
with the HSMM-MVPA models. Our voxel-wise significance threshold of
p=.001 yielded a whole-brain alpha estimated to be less than 0.05 by
simulation for clusters with more than 20 contiguous voxels (Cox, 1996;
Cox and Hyde, 1997).

Regions mutually active in visuospatial and symbolic groups
Although our primary interest was in regions with distinctive activa-

tions across groups, a preliminary conjunction analysis revealed extensive
areas of significant activation shared across the visuospatially- and
symbolically-trained solvers. As shown in Fig. 5 (top panel), these mutual
activation patterns include key regions found in other studies involving
numeric and arithmetic tasks (for reviews see Arsalidou and Taylor (2011)
and Dehaene et al. (2003)) such as: HIPS, PSPL, insula, caudate, fusiform
and (pre)frontal regions like BA10 and the lateral inferior pre-frontal
cortex (LIPFC; Anderson and Fincham, 2014b).

Regions showing significant contrasts (visuospatial vs. symbolic)
The between-groups contrast modeling the solving interval as a whole

yielded no significant clusters with greater visuospatial than symbolic
activation, nor any clusters with greater symbolic than visuospatial
activation. Since solution intervals were long (~10 s) and mental repre-
sentations might only be instantiated during some stages during solving
(e.g., to initially interpret the problem), it is perhaps not surprising that
differences might become undetectable if treating the whole solving
interval as a homogeneous event in a GLM. In the next section we discuss
the results of the stage modeling process to parse the solving interval into
a sequence of mental sub-stages. This allowed us assess whether there
were any activation differences across groups local to each stage.

Stage models: visuospatial versus symbolic

Using an HSMM-MVPA methodology (Anderson and Fincham,
2014a), separate models were created to discover the temporal
structure (sequence of stages with distinctive brain signatures) of the
problem-solving process for visuospatially- versus symbolically-trained
learners. This allowed us to discover the number of distinctive stages in
each group, the durations of these stages and their brain activation
patterns, and to compare these characteristics across groups.

Number of stages
To determine the appropriate number of stages for a group (say,

visuospatial), we created five hypothetical models, with the number of
stages ranging from 1 to 5. To select which model (how many stages)
was most appropriate, we used split-half validation. An n-stage model
was created based on half the learners in a group, and the fit (likelihood
of the data) was assessed for the other half of the learners who were
excluded from the model. For the visuospatial group, the model
subjects (N=20) and test subjects (N=20) each consisted of 10 learners
trained via Fig. 2b and 10 via Fig. 2c. Similarly, for the symbolic group
the model and test sets each contained an equal number of learners
trained via Fig. 2a and Fig. 2b.

This process was repeated for an n+1 stage model. If a significant
majority (sign test: > = 15 of 20) of the test subjects (i.e., the half
excluded from the model) were better fit by the n+1 than the n stage
model, then the n+1 stage model was preferred.

The split-half analysis process was applied to each group (visuos-
patial vs. symbolic) separately, and in each case indicated a 4-stage
model was appropriate.1 For symbolically-trained subjects, the number
of test subjects with better fits for n+1 versus n-stage models, for n=1–
5 were, respectively: 19 subjects (2-stages better than 1), 18 (3-stages
better than 2), 15 (4 stages better than 3), and 13 (ns, 5 stages not
better than 4). For the visuospatial group the numbers were: 17 (2
stages better than 1), 16 (3 stages better than 2), 16 (4 stages better
than 3), and 9 (ns: 5 stages not better than 4). The 4-stage models are
compatible with a model found for another experiment with only
symbolic learners solving a subset of similar problems (Anderson and
Fincham, 2014a; Anderson and Fincham, 2014b). In keeping with that
work, the stages were interpreted as: i) encode; ii) plan; iii) compute;
and iv) respond. To support the interpretation that the four stages in
two current groups (visuospatial and symbolic) roughly corresponded
in character, we verified that correlations of brain signatures (principle
components) were higher between corresponding stages (r values
ranged from .50 to .97) than between non-aligned stages (r values
ranged from −.59 to .35).

Duration of stages
Within each group (model), stage durations varied from trial to

trial. Mean stage durations for correct Standard problems (upon which
the models were based) are displayed in Fig. 6. The models were
generated using data from all Standard Format problems (collapsed
across positive and negative operands), but since they yield stage
duration estimates on a trial by trial basis, this allowed us to also break
down durations by operand type. Durations were analyzed with a 2
(Training: visuospatial vs. symbolic) X 4 (Stage: encode, plan, compute,
respond) X 2 (Operand Type: positive vs. negative) ANOVA. The
Greenhouse-Geisser adjustment was used where applicable. There
was an interaction of stage with operand type, F(1.75,136.56) =
47.06, ηp2 = .38, p < .001. Problems with negative operands exhibited
only slightly longer encoding and response stages ( < 0.5 s), likely
because there was an extra negative sign character in the problem to
encode, and sometimes an extra negative sign character in the response

1 A leave-out-out-cross-validation (LOOCV) approach was also explored, but, when the
same data is used in different plies for estimation and prediction LOOCV has
complications due to non-independence of the plies (Bengio and Grandvalet, 2004).
This approach suggested there might be as many as 6 solving stages, but examination
revealed that the 6 stage models included 3 stages that closely matched the first 3 stages
in the corresponding four-stage model (mean PCA correlation = 0.95), and two final
stages that were quite similar to each other and to the last stage in the 4-stage models
(mean PCA r = 0.95). The main difference in the 6 stage models was the inclusion of an
extra stage that straddled (was similar to) two of the stages in the 4-stage models (e.g.,
Spatial stage 3 of 6 correlated 0.44 with stage 2 of 4 and 0.47 with stage 3 of 4). Some
stage transitions occur within a scan so activity patterns in such scans are hybrids of the
straddled stages. Treating hybrid scans as separate stages in their own right may
sometimes improve fit, but, our focus was on identifying a set of distinct stages in like the
4-stage models supported by the split-half approach (max. inter-state PCA correlation in
4-stage models = 0.12 vs. 0.82 in 6-stage models).
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to type (e.g., 4↓2 = 9 vs. −4↓2 = −9). The durations of the middle stages
(planning and computation) exhibited more dramatic effects of nega-
tive operands (Fig. 6), as would be expected, since solvers have to adapt
to and/or perform arithmetic with negative numbers.

There was also two-way interaction of training group and stage,
F(2.10,163.92) = 15.82, ηp

2 = .17, p < .001. The mean duration of the
response stage in the testing session was almost exactly matched across
the visuospatially- and symbolically-trained groups, t(78)=−0.15,
p=.880 (ns). This makes sense because the groups were exposed to
equivalent sets of problems, and thus incurred comparable demands
for typing answers. However, on average visuospatially-trained solvers
had faster encoding times to interpret the problems, t(78)=4.36,p
< .001, but longer planning stages, t(78)=−2.42, p=.018, and computa-
tion stages, t(78) = −3.28, p =.002, than solvers trained to form purely
symbolic interpretations.

There was also a 3-way interaction of training type, stage and
operand type (positive or negative), F(1.75, 136.56) = 13.48, ηp

2 = .15,
p < .001. This mainly reflects the particularly long computation stage
for negative operand problems in the visuospatial group.

Fig. 5. Regions mutually active among Visuospatially- and Symbolically-trained solvers in the solving interval as a whole (top panel), and within each of the four solving stages. For
reference, dark boxes (underlay) roughly delineate regions commonly associated with math tasks: AG (Angular Gyrus, Talairach center: ± 41,−65, 37; voxels:4x4×4), BA10 (Brodmann
Area 10, ± 34,47,8; voxels:5x5×4); Caudate ( ± 13,10,7; voxels:4x4×4); Fusiform ( ± 42,−60,−8; voxels: 4x4×3); HIPS ( ± 34,−49,45; voxels:4x4×4; adapted from Cohen Kadosh et al.
(2008)), Insula ( ± 31,20,5; voxels:2x3×4), LIPFC ( ± 43,23,24; voxels:5x5×4); Motor ( ± 49,−19,50; voxels:5x5×4); and PSPL ( ± 19,−68,55; voxels:4x4×4). For each brain slice the z-
coordinate provided is for x=y=0 in Talairach coordinates (radiological convention: image left = participant's right).

Fig. 6. Mean stage durations (s) for the 4 solving stages in the models of Visuospatially-
trained versus Symbolically-trained solvers, for correct Standard Format Problems (b↑
h=X or b↓h=X) with positive operands (e.g., 4↑3=X) or with a negative operand (e.g., −4↑
3=X.; 4↑−3=X). Error bars are standard error.
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Activation patterns in the stages
For these whole-brain analyses, each stage furnished a GLM regressor,

as shown in the second time-line in Fig. 1. The HSMM-MVPA model
provides information about the stage durations for each individual trial, so
this information was used to generate stage regressors appropriate to each
trial. Thus, stage regressors that are temporally tailored to each trial to
manage differences in stage durations across trials and groups.

Mutual visuospatial and symbolic activations within each solving
stage. Fig. 5 shows the large regions of mutual activation (conjunction
analysis) for each stage, and gives a sense of the patterns of activation
differentiating the stages. For example, during encoding and
responding, solvers observe problems and/or their own responses as
they type them, so these stages are characterized by more activity in
visual processing regions like the occipital lobe. Similarly, the response
stage has pronounced activity in the precentral motor region of the left
hemisphere (Fig. 4, slice z = 52) associated with the requirement to
type answers with the right hand. In the computation stage, activation
seems the least wide-spread and is especially localized to areas like
PSPL, HIPS, right frontal areas (Fig. 4, slice z = 39 mm), which are
commonly associated with arithmetic (Arsalidou and Taylor, 2011),
and also the cuneus (slice z = −3). Although perhaps not obvious in
Fig. 5, the planning stage, which involves metacognitive processing to
identify, retrieve and/or adapt an procedure to use to reach a solution
was characterized by greater activation in frontal regions like BA10 and
BA8 relative to their mean activation in the other stages (see also
Anderson and Fincham, 2014b).

Contrasts across visuospatial and symbolic groups within each solving
stage. Table 1 and Fig. 7 summarize the clusters exhibiting significant
contrasts between visuospatially- and symbolically-trained solvers in each
stage. As for duration differences, activation differences were detected in
the first three stages. During encoding and computation, regions tended to
be more active among visuospatially- (vs. symbolically) trained learners
but the reverse was true for contrasts in stage 2 (planning). Regions more
active in the visuospatial group during the encode stage included: bilateral
supramarginal, precuneus, cuneus, lingual, and parahippocampas gyri, as
well as left middle temporal regions and the right insula. As evident in the
yellow regions in Fig. 7, there were notable consistencies (overlaps)
among regions more active among visuospatially-trained solvers during
encoding (stage 1) and again during computation (stage 3) in the
supramarginal gyri, the precuneus, and the left parahippocampal gyrus.
This suggests that distinct (presumably visuospatial) processing is not
limited to the early interpretation of the problem but continues to play a
role during computation.

The above activation contrasts were collapsed across negative and
positive operand problems because group contrasts within only positive or
negative problems were hampered by lower power.2 To address the
question of possible differences in group contrasts among positive and
negative operand problems we did a supplementary analysis on our
Table 1 regions with separate regressors for positive and negative operand
problems in each stage to determine if any of these regions were
characterized by an interaction of Operand Type (Positive vs. Negative)
by Group (Visuospatial vs. Symbolic). Only one region, the left para-

hippocampal (stage 3, region 23 in Table 1) was characterized by a
significant interaction, F(1,78) = 3.96, ηp

2=.048, p =.050, such that the
group difference (visuospatial > symbolic) was greater among positive
than negative operand problems, though significant within each subset,
t(55.3)3 = 2.73, p=.008 and t(78) = 2.77, p=.007, respectively.

Discussion

The present research explored how training solvers to form purely
symbolic versus meaningful visuospatial referents for math problems
can impact their subsequent mental solving processes. For our
problems, behavioral performance measures tended to be comparable
across our visuospatially- and symbolically-trained groups. However,
brain imaging data can be useful for providing information not
behaviorally apparent about the use of different cognitive representa-
tions and strategies (as in Lee et al. (2010) and Sohn et al. (2004)).

Problem solving stage-structure revealed by HSMM-MVPA

One key objective was to assess whether the temporal stages of the
mental solution processes were similar across solvers who had been
trained to interpret problems visuospatially versus purely symbolically.
We applied an HSMM-MVPA method for parsing fMRI data that
afforded us insight on the solving sub-stages as learners progressed
naturally through them. Separate models for the visuospatially- and
symbolically-trained solvers indicated that both could be characterized
by a basic 4-stage solution procedure: encode, plan, compute, and
respond. However the stage models also revealed that there were
temporal (Fig. 6) and neural differences (Fig. 7) across groups in all
stages but the response stage. Note that the HSMM-MVPA process
operated on the neural imaging data for the trials and was blind to any
key press events, so it inferred the boundaries of each stage, including
the response stage, based solely on a shift in brain activation patterns.
Thus, the fact that the ‘blind’ HSMM-MVPA processes applied sepa-
rately to each group produced this correspondence in the temporal and
neural characterizations for their response stages provides some
confidence in the validity of the analysis and models. Notably without
the insight afforded by the stage-parsing of the HSMM-MVPA, no
overall temporal or activation differences were found to be significant
for the solving interval as a whole. Differences that are stage-specific
may become diluted and undetectable in a traditional analysis.

Conceivably, visuospatially-trained solvers might have been able to
bypass visuospatial processing and associate problems directly with
arithmetic procedures, which, as demonstrated by the symbolic group,
are sufficient to solve the problems. Such an interpretation might seem
supported by the non-significant contrasts across groups in the solving
interval as a whole. However, stage-wise differences were detected, so
knowledge of visuospatial referents impacted mental solution pro-
cesses.

One hypothesis mentioned in the introduction was that visuospa-
tially-trained solvers might only differ from symbolically-trained
solvers in the initial stage of interpreting the problem, but that
subsequent stages would be comparable. Our results, however, support
an alternative hypothesis that processing differences persist past
encoding into the planning and computation stages.

Overview of stage interpretations

In this section, we present an interpretation of how solution
processes may be partitioned across the stages in the two groups.
This interpretation is informed by the training manipulation (visuos-
patial vs. symbolic), stage duration patterns, mutual activation pat-
terns, and evidence from stage models in other problem solving studies

2 The analysis of negative problems detected no group differences in stages 1 or 2 and
only one region with a significant difference (visuopatial > symbolic) in stage 3 which
was an 80 voxel subset of Table 1 region 20 (left inferior parietal). The group contrast
among positive problems detected no differences in stages 2 or 3, and seven regions with
differences (visuospatial > symbolic) in stage 1: Six were subsets of Table 1 regions (1, 2,
3, 4, 7 and 10), and the seventh in the medial frontal gyrus (BA10, 27 voxels). However, if
a region (or voxel) in a given stage is detected only in the analysis of positive problems
not negative problems (or vice versa) this could simply reflect an issue of power and
might not license the conclusion that the effect is only relevant to one subset of problems. 3 Equal variances not assumed since Levene's test failed.
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(e.g., Anderson and Fincham, 2014a, 2014b; Anderson et al., 2014). In
Sections 4.3 and 4.4 we will focus the regions that are differentially
active between groups in particular stages.

Stage 1: Encoding. As reflected in its name, our first problem-
solving stage includes encoding the symbols in the problem stimulus (e.g.,
“4↑3=X”). In the scanner, these problem stimuli were identical across
groups. As in the current study (Fig. 5), the encoding stage is generally
characterized by relatively high activity in visual areas (e.g., occipital and
fusiform; Anderson and Fincham, 2014a; Anderson et al., 2014).
Unsurprisingly, this stage was slightly longer in both groups for problems
which included a negative operand – that is, an extra character to encode

(−4↑3=X vs. 4↑3=X). However, since this stage could take over 2.5 s
overall, it presumably also involved some interpretation beyond basic
encoding – i.e., a preliminary characterization or classification of the
problem.

More specifically, we suggest that some heightened regional activa-
tions among visuospatially-trained solvers in this first stage support
forming a preliminary mental visuospatial representation for the problem
(see also Section 4.3). For example, a visuospatially-trained solver might
image a staircase (Fig. 1c) or a rectangle and a triangle (Fig. 1d). At this
first stage, this process may entail the retrieval and instantiation of an
abstract template with unspecified or default dimensions. As summarized

Table 1
Regions from whole-brain analyses which exhibited a significant contrast of whether learners were trained with or without a visuospatial interpretation, by solving stage.

Regions Identified in Whole-Brain Analysesa,b Taliarach Brodmann Voxels t(78)d

Peak x,y,zc Area(s) max(mean)

Stage 1 (Encoding): Visuospatial > Purely Symbolic VS-Symbolic
1. R. Post.Cingulate/Lingual/Parahipp./Cuneus 14,−53,−1 18,19,30 152 5.09(3.81)
2. R. Precuneus/Cingulate (extends to Left) 4, −54,34 7,31 142 4.26(3.69)
3. L. Cuneus (extends to R. Cuneus) −2, −78,12 17,18 91 4.62(3.77)
4. L. Precuneus −17, −72,34 7 79 4.44(3.74)
5. L. Middle/Superior Temporal Gyrus −63,−20,−3 21/22 74 5.15(3.89)
6. L. Culmen/Parahippocampal Gyrus −26,−36,−12 36 59 4.93(3.87)
7. L. Supramarginal Gyrus (into Inf. Parietal) −48,−54,31 40 58 4.26(3.70)
8. R. Supramarginal Gyrus (into Angular) 57,−57,32 39/40 43 4.31(3.75)
9. L. Middle Temporal −57,−2,−14 21 35 4.52(3.75)
10. L. Middle Temporal −45,−69,14 39 29 4.61(3.82)
11. R. Insula 35,−26,14 13/41 28 4.18(3.67)
12. L. Lingual/Fusiform Gyrus −23,−63,−6 18/19 22 4.31(3.79)
13. L. Lingual Gyrus −14,−81,−6 18 20 4.37(3.78)
14. L. Cuneus −11,−88,29 19 20 4.16(3.70)

Stage 2 (Planning): Purely Symbolic > Visuospatial
15. R. Medial Frontal Gyrus 4,37,40 8/9 63 −4.46(−3.70)
16. R. Middle Temporal Gyrus 63,−43,4 22 55 −4.41(−3.73)
17. L. Superior Frontal Gyrus −26,56,−1 10 24 −4.48(−3.71)
18. R. Inferior Frontal Gyrus 41,27,3 45/47 20 −4.19(−3.75)
19. R. Angular /Middle & Superior Temporal 48,−59,22 39 20 −4.20(−3.71)

Stage 3 (Computation): Visuospatial > Purely Symbolic
20. L. Inferior Parietal Lobule (overlaps 7) −48,−58,51 7,40 215 5.20(3.93)
21. L. Precuneus/Cingulate Gyrus (overlaps 2) −8,−48,37 7,31 63 4.78(3.82)
22. R. Angular Gyrus ( & SupraMarg.,overlaps 8) 57,−60,35 39/40 61 4.34(3.70)
23. L. Parahippocampal Gyrus (overlaps 6) −20,−27,−13 35 27 4.75(3.90)
24. L. Middle Temporal Gyrus −29,−55,25 39 20 4.77(3.86)

a Clusters were identified using a voxel-wise p =.001 (t-threshold 3.413) and cluster size threshold > 20 voxels which yields a brain-wide alpha estimated to be less than 0.05 by
simulation.

b Region labels and Brodmann numbers were obtained for the Taliarach-Tournoux Atlas using the “Where am I” function in the AFNI fMRI analysis software.
c Peak co-ordinates correspond to the maximum t-value in the cluster.
d t-values are the maximums and means of the voxel-wise t-values within each cluster from the whole-brain analysis.

Fig. 7. Significant clusters from group contrasts in stages 1, 2 and 3 (warm colors: Visuospatial > Symbolic; cool colors: Symbolic > Visuospatial). No significant clusters were found in
stage 4 (response). Clusters are labeled with their numbers in Table 1. For each brain slice (radiological convention: image left = participant's right), the z-coordinate provided is for x = y
= 0 in Talairach coordinates.
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in Appendix A, the stimulus set not only included Standard format
problems (e.g., 4↑3=X), but also problems with the missing value, X, in
other locations (4↑X=15 and X↑3=15) and problems containing two
arrow operators (e.g., 4↓4=X↓5). For the representation scheme in Fig. 1c,
all problems with one arrow operator) can be accommodated by an
abstract single-staircase template, but for problems containing two arrow
operators (4↓4=X↓5) an appropriate visuospatial template might involve
two separate staircases that are equal in area. Thus, more generally, we
can think of forming a preliminary visuospatial interpretation as an act of
classifying the problem (e.g., 1-staircase vs. 2-staircase template).

The general act of making a preliminary classification of a stimulus
problem also applies to symbolically-trained solvers. Symbolically-
trained solvers, being unaware of visuospatial interpretations, must
interpret problems solely on their symbolic stimulus structure.
Procedurally they could compare the format of the current problem
against stored templates representing other encountered problem
formats. Thus, these different problems (4↑3=X and X↑3=15 and 4↑
X=15) would match distinct format templates in symbolic classification
(n↑m=X vs. X↑n=m vs. n↑X=m, where n and m are unspecified integer
variables). This grain size of classification is logical for the symbolic
group because these different formats then correspond to the require-
ment to select different algorithms in the subsequent planning stage. In
absence of a higher-level ‘meaning’, the focus of the symbolic group
would be on what to do (vs. what the representation looks like). This
finer grain size of symbolic classification might account for the slightly
longer stage 1 duration in the symbolic group. However, the symbolic
classification process would not as strongly engage the visuo-spatial
regions that showed heightened activation in the visually trained
group.

Stage 2: Planning. We suggest that planning involves using the
encoded operand values and problem classification from stage 1 to
identify or adapt a method to reach a solution (Anderson and Fincham,
2014b). Planning processes generally involve working memory and
frontal and prefrontal areas (Arsalidou and Taylor, 2011; Dehaene and
Cohen, 1997). Frontal areas (e.g., LIPFC and BA10) were active in this
stage (Fig. 5, also Anderson and Fincham, 2014a; 2014b), as was the
caudate. A review by Grahn et al. (2008) associates the caudate with the
excitation of correct action schemas and selection of appropriate sub-
goals.

This planning stage sometimes took longer for visuospatial solvers.
A possible reason for this effect is that the finer-grained format-based
problem classification presumed for symbolic solvers in stage 1 may
make planning very expedient by cuing the retrieval of an algorithm
customized for the specific problem format (e.g., n↑m=X vs. X↑n=m vs.
n↑X=m). Then symbolic solvers could just initialize the variables in this
customized equation/algorithm with the operand values they encoded
in stage 1 and proceed to the computation stage.

Visuospatially-trained solvers also have to initialize the values of
the spatial dimensions for their visuospatial templates with the
operand values they encoded in stage 1. Some spatial dimension values
are transparent from the given operands. For example, for 4↑3=X, the
first operand, 4, directly specifies the location and height of the first
column (Fig. 1c) or the base of the rectangle (Fig. 1d). Such transparent
dimensions might even be initialized in stage 1. However, the operand
values to not directly specify other dimensions (e.g., the base of the
triangle in Fig. 1d). Having initialized relevant dimensions for the
representation, visuospatial solvers may proceed to determine how to
compute the missing ‘dimension’ X – which, for Standard Problems,
amounts to computing area. They can retrieve the equation/algorithm
to compute area and initialize it with their dimension values. As such,
planning may sometimes be slightly longer in the visuospatial group
because it may be mediated by their visuospatial representation – that
is, they may first initialize their visuospatial representation dimensions
then determine and initialize the needed computation algorithm with
these dimensions. In the symbolic group, the fine-grained symbolic
classification in stage 1 may directly index the appropriate algorithm

and they just have to initialize the values in this algorithm.4 This
possible mediation by a visuospatial representation may reduce some
demands in executive function and working memory that may be
required by the symbolic group to mentally represent the abstract
purely symbolic equations/algorithms during planning. This may
account for higher activations in some frontal regions in the symbolic
group during planning.

The presence of negative operands increased planning duration
substantially in both groups. Since both groups practiced problems
with only positive operands prior to the scanner session, we suspect
that even when solvers initially encounter a problem with a negative
operand (−4↑3=X or 4↑−3=X), their default classification process may
function as if all operands were positive. Then during planning, solvers
in both groups tailor must their representation/approach to accom-
modate negative operands if present (for a more detailed procedural
discussion, please see Anderson and Fincham (2014b)).

Stage 3: Computation. The computation stage involves per-
forming the arithmetic required to calculate the answer. The duration
of this stage is related to the number of arithmetic steps required (e.g.,
Anderson et al., 2016; Anderson and Fincham, 2014a). In the current
context, arithmetic demands were balanced overall across visuospatial
and symbolic solvers. However, computation duration was longer in
the visuospatial group and there was evidence of distinct processing
(visuospatial > symbolic activations) in several regions common to
those in the interpretation stage 1. These differences may reflect the
demands of maintaining or referring back to the mental visuospatial
representation during computation – for example, to track their
progress or re-derive the next required computation step.

As was the case in the planning stage, negative operands increased
computation durations in both groups. Negative operands often
necessitated doing arithmetic with negative numbers which is less
practiced than arithmetic with positive numbers. The computation
durations were especially extended on negative operand problems for
visuospatially-trained solvers. One reason for this may be the counter-
intuitive nature of computing areas for regions (columns, rectangles,
triangles) with negative dimensions like height.

Stage 4: Response. This final stage involves planning and
executing a motor sequence to type the obtained answer. In this and
other studies (e.g., Anderson and Fincham, 2014a; Anderson et al.,
2014), this stage is characterized by relatively high activity in the motor
cortex controlling the response hand (Fig. 5). Duration tends to
increase with the complexity of the response (e.g., number of digits,
Anderson and Fincham, 2014a), which is consistent with our longer
response durations for negative operand problems, which often involve
an extra negative sign character in the answer (e.g., 4↓2 = 9 vs. −4↓2 =
−9). Since response demands were equalized across visuospatially- and
symbolically-trained solvers, it was unsurprising (but methodologically
validating) that our models revealed no group differences in this stage.

Regions with higher activation in visuospatially-trained solvers

During the encoding and computation stages we detected regions
more active among visuospatially- versus symbolically-trained solvers.5

During encoding these regions included: bilateral supramarginal,
precuneus, cuneus, posterior cingulate, parahippocampus, and left
lingual/fusiform gyri and left middle and superior temporal regions
and right insula. Four of these regions again emerged in the computa-
tion stage: precuneus, right supramarginal/angular, left supramargi-
nal/inferior parietal, and left parahippocampal gyrus.

In our stage interpretations (Section 4.2), we suggested that
visuospatially-trained solvers may image a general visuospatial repre-

4 Negative operands however may introduce additional planning demands for the
symbolic group. This is detailed in Anderson and Fincham (2014b) for the case in Fig. 1a.

5 We detected no regions significantly more active in the symbolic group in these
stages.
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sentation for the problem in stage 1, and may refer back to that
representation during stage 3 computation to track their progress or
deduce the next required computation step. Given that visuospatially-
trained solvers were trained to interpret problems visuospatially, the
suggestion that they mentally did so in the scanner seems plausible.

All of our clusters which were more active among visuospatially-
trained solvers are in anatomical regions that have been previously
implicated in mental imagery (Ganis et al., 2004). Some of these
regions have been identified in prior studies contrasting visuospatial
versus symbolic stimulus formats also emerged in our contrast of
visuospatial versus symbolic mental interpretations of common pro-
blem stimuli (e.g., 3↑4=X): Specifically, the precuneus (Thomas et al.,
2010); cuneus (Lee et al., 2010); insula (Venkatraman et al., 2005); and
lingual/fusiform gyri (Lee et al., 2010; Piazza et al., 2007; Thomas
et al., 2010). Also, some of these stimulus-contrast regions (precuneus,
cuneus & lingual/fusiform) have also been implicated in math studies
associated with the use of mental visuopatial strategies and/or
imagery: precuneus (Chen et al., 2006; Dehaene et al., 2003; Pinel
et al., 2001); cuneus (Lee et al., 2010; Zarnhofer et al., 2013); lingual
and/or fusiform gyri (Lee et al., 2007; Zago et al., 2001; Zarnhofer
et al., 2013). Such studies also implicated other regions similar to our
encode and compute regions including: left supramarginal gyrus (Zago
et al., 2001), left middle temporal lobe (Lee et al., 2007); and right
angular gyrus (Du et al., 2013).

The Superior Temporal Gyrus (region 5 in Table 1) has (also) been
associated with linguistic functions (e.g., phonological processing,
Binder et al., 1994). Nonetheless, Ganis et al. (2004) found the superior
temporal region was active during both visual perception and mental
imagery. Also Zamboni et al. (2013) found that activation and
structural density in this area were associated with success in a
visuospatial association task (Placing Test). That said, an alternate
phonological interpretation for the group contrast in this region might
be that it reflects more use of subvocalization during problem inter-
pretation in the visuospatial group, because this area has been
associated with the perception of inner speech (e.g., Shergill et al.,
2002). However, this phonological (vs. visuospatial) interpretation may
be less likely because we did not simultaneously find increased
activation in frontal areas associated with the production of inner
speech (Shergill et al., 2002).

A subset of other regions in Stage 1 have been associated with the
default mode network (Buckner et al., 2008) – for example, the posterior
cingulate (regions 1 & 2 in Table 1), lateral temporal cortex (10 in
Table 1), inferior parietal areas (7 in Table 1), and parahippocampus. As
reviewed by Buckner et al. (2008), the default mode network includes
regions that tend to be mutually correlated and more active when
participants are at rest (i.e., in absence of external stimuli and/or task
demands) - thus these regions presumably support stimulus-independent
thought such as daydreaming and reliving episodic memories. As such, a
possible interpretation of higher activity in these regions in the visuospa-
tial (vs. symbolic) group is that visuospatially-trained solvers may have
been entertaining more task-unrelated thoughts while interpreting the
problems. On the other hand, a general function of default network
regions may be to support mental imagery (Daselaar et al., 2010; Hassabis
et al., 2007). Thus, heightened activation in these regions in the
visuospatially-trained group may support mental imagery of the problems
(vs. an increase in task-unrelated thoughts).

Many of our regions implicated in visuospatial processing or mental
imagery are also implicated in the processing of stimulus ‘meaning’
more generally. Accordingly, in meta-analyses of semantic studies
(Binder et al., 2009; Wang et al., 2010) many regions implicated in
the semantic interpretation of language (e.g., words vs. non-words;
concrete vs. abstract nouns) are strikingly similar to our stage 1 regions
that were more active for participants who had been trained with
visuospatial referents: supramarginal and angular gyri; middle tem-
poral gyrus; posterior cingulate and precuneus; parahippocampus; and
fusiform. Note that several of these ‘semantic’ regions also correspond

to default network regions, which may reflect their common functional
involvement of imagery – note semantic studies often contrast image-
able vs. non-imageable nouns. In particular, such non-math studies
suggest a semantic and imagery role for the parahippocampal gyrus
(Binder et al., 2009; Ganis et al., 2005; Wang et al., 2010), which (like
the precuneus & supramarginal gyrus) had enhanced activation
among visuospatially-trained solvers during both encoding and com-
putation, but was not identified in the prior math studies we discussed.

The supramarginal and angular gyrii may also fulfill a semantic role
here. Work by Ansari (2008), Grabner et al. (2013) and Grabner et al.
(2009) has implicated the left angular and left supramarginal gyri in
the process of associating a math problem stimulus with a mental
referent (i.e., the symbol-referent mapping hypothesis). In their
context, the mental referents in question were specific numerical
answers for problems that had been over-trained to permit solution
by direct retrieval. It is possible that this mapping functionality of the
left angular and/or supramarginal gyri might generalize to associating
a problem stimulus to a mental visuospatial referent (e.g., associating
4↑3 with a mental image of a rectangle and triangle with appropriate
relative dimensions as in Fig. 2d). Our finding of increased left
supramarginal activation during stage 1 in the visuospatial group
seems potentially compatible with this extended interpretation of their
hypothesis.

Regions with higher activation in symbolically-trained solvers

Visuospatially-trained solvers had to arithmetically compute an-
swers in a similar manner to their symbolically-trained counterparts.
Due to this shared requirement, although we expected some extra
visuospatial/semantic processing in the visuospatial group, we were
unsure whether there would be regions more active among symbolic
solvers at any stage of solving. However, in the current study, we found
heightened activations in the symbolically-trained group during the
planning stage.

Above (Section 4.2) we had suggested a possible interpretation for
higher frontal activations among symbolic solvers during planning.
Specifically, for visuospatial solvers, their planning process might be
mediated by their visuospatial representation in a way that might incur
a time cost but reduce executive and working memory demands
incurred by symbolic solvers to mentally represent abstract purely
symbolic equations/algorithms during planning.

More specifically, several of the regions more active in the symbolic
group have been previously identified as relevant to parsing and
comparing symbolic math expressions (Maruyama et al., 2012): middle
temporal gyrus, superior frontal gyrus, inferior frontal gyrus, and
angular gyrus.

Effects in the right angular gyrus are somewhat challenging to
interpret in this and other stages because although it was sometimes
more active among symbolically-trained solvers (i.e., during planning),
it was sometimes more active among visuospatially-trained solvers
(i.e., during encoding and computing). Other studies have also reported
right angular gyrus activation during both symbolic and visuospatial
conditions (Lee at al., 2007; Thomas et al., 2010). For example the
right angular gyrus was active whether participants compared symbolic
equation stimuli or graph stimuli (conjunction analysis, Thomas et al.,
2010), and also when participants formed either symbolic or visuos-
patial mental representations for word problems (Lee et al., 2007). One
possibility is that, since the angular gyurs is known to support multiple
functions (Seghier, 2013), this region could be serving different
functions for the two groups. It might support symbolic representation
and processing during planning for the symbolic group (Maruyama,
2012), but visuospatial processing (e.g., Arsalidou and Taylor, 2011;
Cattaneo et al., 2009; Göbel et al., 2001) for the visuospatial group. For
example, transcranial magnetic stimulation of the angular gyrus was
found to disrupt performance of a visuospatial search task and a
number comparison task using the putative mental number line (Göbel
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et al., 2001). Alternately, the right angular gyrus maybe serving a
general/common visuospatial function in both groups – for mental
imagery of graphical representations in the visuospatially-trained
group and for mental imagery and manipulation of symbolic repre-
sentations in the symbolically-trained group.

Conclusions

During complex problem solving, strategy differences are not
always evident behaviorally or when analysing the fMRI data of the
solution interval as a whole. An HSMM-MVPA process allowed us to
parse the solution interval into stages (encode, plan, compute, respond)
and find stage-specific differences in stage durations and activations
across learners trained to associate math operations with visuospatial
referents versus purely symbolic algorithms. This manipulation oper-
ationalized a more general contrast of interest between solution
processes imbued with some semantic meaning versus rote calculation.
Accordingly, during the early interpretation of our math problems,
solvers able to generate visuospatial referents exhibited greater activa-
tion in regions also associated with imagery and linguistic semantics
such as the supramarginal and angular gyri; fusiform and parahippo-

campal gyri; middle temporal gyrus; posterior cingulate and precuneus
(Binder et al., 2009). Visuospatially-trained solvers also exhibited
enhanced activation in several such regions during computation.
Thus, we suggested that rather than using a proceduralized/automatic
computation algorithm like symbolically-trained solvers, visuospa-
tially-trained solvers may deduce the specific computations necessary
for the current problem on-the-fly from their mental visuospatial
representation. Since the two strategies can support similar behavioral
performance, neither is necessarily better than then other in general. In
the current context, our stage interpretations suggest the two strategies
may partition workload differently across regions and stages.

In the current research, we manipulated whether or not learners
were privy to visuospatial referents for the problem operations.
However, in future work, learners’ prior training/conceptions of an
operation may be unknown or they might exercise a choice between
visuospatial or symbolic approaches. Activations in these regions might
become useful as a potential index of a solver's use of visuospatial
interpretation strategies, because, as demonstrated in the current
study, such strategy differences are not always apparent in behavioral
measures.

Appendix A

See Table A1.

Table A1
Types of problems presented during the testing session in the scanner on Day 2.

Problem Type Example
Problems

Principle and/or Solution Process

Standard Format See Fig. 2 for solution examples
Positive Operands 3↓2=X
(16 items/subj) 3↑2=X

Negative Operand

Negative b (8 items) −3↑2=X Formulas/Examples apply as for
Positive Operands−2↓X=6

Negative h (8 items) 3↑−2=X Formulas apply as normal; Negative
h reverses direction for addition2↓−5=X

Unknown Operand

Unknown b (8 items) X↑2=7 Learners may guess at X then check
answer using solution procedure for
standard format problems

4↓X=7

Unknown h (8 items) 4↑X=9 Learners may guess at X then check
answer using solution procedure for
standard format problems

2↓X=3

Relational
Transfer

Relating Up & Down
Problems (8
items)

31↑4=31↓X For positive integers B & H,
UpDown-1: B↓H = B↑(-H) and B↑H
= B↓(-H)

19↓4=X↑4 UpDown-2: B↓H = (B-H+1)↑H

Consecutive Operand For positive integers, B & H,
Problems 35↓3=(34↓2)+X Consecutive-1: B↓H= (B-1)↓(H-1) +

B

(8 items) 26↓15=(X↓14)
+26

Task: Solve for the final constant
value to add
Consecutive 2: B↓H= (B-1)↓(H-1) +
B

(continued on next page)
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Table A1 (continued)

Problem Type Example
Problems

Principle and/or Solution Process

Task: Solve for an n or b value.
Mirror Problems 5↓5=X↓6 Mirror-1: B↓B= B↓(B+1),
(8 items) 9↓X=9↓(X+1) The origin column (area=0)

contributes nothing

50↓100 = X Mirror-2: B↓2B = B and B↓(2B+1) =
0

30↓61 =X If area crosses the origin, negative
columns cancel corresponding
positive columns, for integer B > 0.

Rule Problems 5↓X = 7↓X 0-Rule: For any integer B, B↑0=0
and B↓0=0

(8 items) 5↑2 = 11↑X 1-Rule: For any integer B, B↑1=B
and B↓1=B
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