
ACT-R 7 Tutorial 11-Jul-17 Unit Two

Unit 2: Perception and Motor Actions in ACT-R

2.1 ACT-R Interacting with the World

This unit will introduce some of the mechanisms which allow ACT-R to interact with the world,
which for the purposes of the tutorial will be experiments presented via the computer. This is
made possible with the addition of perceptual and motor modules which were developed by Mike
Byrne, and which were previously referred to as ACT-R/PM but are now an integrated part of the
system. These additional modules provide a model with visual, motor, auditory, and vocal
capabilities as well as the mechanisms for interfacing those modules to the world. The
mechanisms which we will use in the tutorial allow the model to interact with the computer i.e.
process visual items presented, press keys, and move and click the mouse. Other more advanced
interfaces can be developed, but that is beyond the scope of the tutorial.

2.2 The First Experiment

The demo2 model contains Lisp code to present a very simple experiment and a model that can
perform the task. The experiment consists of a window in which a single letter is presented. The
participant’s task is to press that key. When a key is pressed, the display is cleared and the
experiment ends. You should load the “demo2.lisp” file now.

After you load the model you can perform the task yourself if you are running the ACT-R
Environment or if you are using a Lisp with a GUI for which there is an existing ACT-R interface
(currently Clozure Common Lisp for Macs, Allegro Common Lisp for Windows, and
LispWorks). To run the experiment with a human participant instead of the ACT-R model you
need to call the do-demo2 function and pass it the symbol human. Thus you would enter this:

(do-demo2 'human)

at the Lisp prompt.

A window will appear with a letter (the window may be obscured by your editor or other
windows so you may have to arrange things to ensure you can see everything you want). When
you press a key (while the experiment window is the active window) the experiment window will
clear and that is the end of the experiment. The letter you typed will be returned by the do-
demo2 function.

If you call the do-demo2 function without including the symbol human then the ACT-R model
will be run through the experiment instead of waiting for a person to do the experiment. That will
produce the following trace:

0.000 GOAL SET-BUFFER-CHUNK GOAL GOAL REQUESTED NIL
0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL
0.000 PROCEDURAL CONFLICT-RESOLUTION

1

ACT-R 7 Tutorial 11-Jul-17 Unit Two

0.000 PROCEDURAL PRODUCTION-SELECTED FIND-UNATTENDED-LETTER
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL PRODUCTION-FIRED FIND-UNATTENDED-LETTER
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.050 VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0
0.050 PROCEDURAL CONFLICT-RESOLUTION
0.050 PROCEDURAL PRODUCTION-SELECTED ATTEND-LETTER
0.050 PROCEDURAL BUFFER-READ-ACTION GOAL
0.050 PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
0.050 PROCEDURAL QUERY-BUFFER-ACTION VISUAL
0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
0.100 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.100 PROCEDURAL MODULE-REQUEST VISUAL
0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.100 PROCEDURAL CLEAR-BUFFER VISUAL
0.100 VISION Move-attention VISUAL-LOCATION0-0-1 NIL
0.100 PROCEDURAL CONFLICT-RESOLUTION
0.185 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL
0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0
0.185 PROCEDURAL CONFLICT-RESOLUTION
0.185 PROCEDURAL PRODUCTION-SELECTED ENCODE-LETTER
0.185 PROCEDURAL BUFFER-READ-ACTION GOAL
0.185 PROCEDURAL BUFFER-READ-ACTION VISUAL
0.185 PROCEDURAL QUERY-BUFFER-ACTION IMAGINAL
0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
0.235 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.235 PROCEDURAL MODULE-REQUEST IMAGINAL
0.235 PROCEDURAL CLEAR-BUFFER VISUAL
0.235 PROCEDURAL CLEAR-BUFFER IMAGINAL
0.235 PROCEDURAL CONFLICT-RESOLUTION
0.435 IMAGINAL CREATE-NEW-BUFFER-CHUNK IMAGINAL
0.435 IMAGINAL SET-BUFFER-CHUNK IMAGINAL CHUNK0
0.435 PROCEDURAL CONFLICT-RESOLUTION
0.435 PROCEDURAL PRODUCTION-SELECTED RESPOND
0.435 PROCEDURAL BUFFER-READ-ACTION GOAL
0.435 PROCEDURAL BUFFER-READ-ACTION IMAGINAL
0.435 PROCEDURAL QUERY-BUFFER-ACTION MANUAL
0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
0.485 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.485 PROCEDURAL MODULE-REQUEST MANUAL
0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL
0.485 PROCEDURAL CLEAR-BUFFER MANUAL
0.485 MOTOR PRESS-KEY KEY v
0.485 PROCEDURAL CONFLICT-RESOLUTION
0.735 MOTOR PREPARATION-COMPLETE
0.735 PROCEDURAL CONFLICT-RESOLUTION
0.785 MOTOR INITIATION-COMPLETE
0.785 PROCEDURAL CONFLICT-RESOLUTION
0.885 MOTOR OUTPUT-KEY #(4 5)
0.885 PROCEDURAL CONFLICT-RESOLUTION
0.970 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL
0.970 VISION No visual-object found
0.970 PROCEDURAL CONFLICT-RESOLUTION
1.035 MOTOR FINISH-MOVEMENT
1.035 PROCEDURAL CONFLICT-RESOLUTION
1.035 ------ Stopped because no events left to process

There we see production firing being intermixed with actions of the vision, imaginal, and motor
modules as the model encodes the stimulus and issues a response. If you watch the window while

2

ACT-R 7 Tutorial 11-Jul-17 Unit Two

the model is performing the task you will also see a red circle drawn. That is a debugging aid
which indicates the model’s current point of visual attention. It can be turned off if you do not
want to see it. How that is done will be discussed in the parameters section below. You may also
notice that the task always presents the letter “V”. That is also due to a parameter setting in the
model and is done so that it always generates the same trace. You can also change that if you
would like to see how the model performs the task for different letters, and that will also be
described below.

In the following sections we will look at how the model perceives the letter being presented, how
it issues a response, and briefly discuss some parameters in ACT-R.

One thing to note is that from this point on in the tutorial all of the models will be interacting with
an experiment of some form. Thus you will always have to call the appropriate function from the
Lisp prompt to run the experiment. That experiment function will run the model as needed and
you will typically not be using the run command directly to run the models as was done in unit 1.

2.3 Control and Representation

Before looking at the details of the new buffers and modules, there is something different about
this model relative to the models that were used in unit 1 which needs to be addressed. There are
two chunk-types created for this model:

(chunk-type read-letters state)
(chunk-type array letter)

The chunk-type read-letters specifies one slot which is called state and will be used to track the
current task state for the model. The other chunk-type, array, also has only one slot, which is
called letter, and will hold a representation of the letter which is seen by the model.

In unit 1, the chunk that was placed into the goal buffer had slots which held all of the
information relevant to the task – one buffer held all of the information. That represents how
things had been done with ACT-R models in the past, but since ACT-R 6, a more distributed
representation of the model’s “state” is the preferred means of modeling. Now, we use two
buffers to hold the information. The goal buffer will be used to hold control state information –
the internal representation of what the model is doing and where it is in the task. In this model the
goal buffer will hold chunks based on the read-letters chunk-type. A different buffer, the
imaginal buffer, will hold the chunk which contains the problem state information, and in this
model that will be a chunk based on the chunk-type array.

2.3.1 The State Slot

In this model, the state slot of the chunk in the goal buffer will maintain information about what
the model is doing. It is used to explicitly indicate which productions are appropriate at any time.
This is often done when writing ACT-R models because it is easy to specify and makes them
easier to follow. It is however not always necessary to do so, and there are other means by which

3

ACT-R 7 Tutorial 11-Jul-17 Unit Two

the same control flow can be accomplished. In fact, we will see in a later unit that there are
consequences for memory retrieval depending on whether information is stored in the goal or
imaginal buffer. However, because it does make the production sequencing in a model clearer
you will see a slot named state (or something similar) in many of the models in the tutorial even if
they are not always necessary. As an additional challenge for this unit, you can try to modify the
demo2 model so that it works without needing to maintain an explicit state and thus not need to
use the goal buffer at all.

2.4 The Imaginal Module

The first new module we will describe in this unit is the imaginal module. This module has a
buffer called imaginal which is used to create new chunks. These chunks will be the model’s
internal representation of information – its internal image (thus the name imaginal module). Like
any buffer, the chunk in the imaginal buffer can be modified by the productions to build that
representation using RHS modification actions as shown in unit 1.

The important thing about the imaginal buffer is how the chunk first gets into the buffer. Unlike
the goal buffer’s chunk which we have been creating and placing there in advance of the model
starting, the imaginal module will create the chunk for the imaginal buffer in response to a
request from a production.

All requests to the imaginal module through the imaginal buffer are requests to create a new
chunk. The imaginal module will create a new chunk using the slots and values provided in the
request and place that chunk into the imaginal buffer. An example of this is shown in the
encode-letter production:

(P encode-letter
 =goal>
 ISA read-letters
 state attend
 =visual>
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 state respond
 +imaginal>
 isa array
 letter =letter
)

We will explain the details of how the chunk gets into the visual buffer in the next section. For
now, we are interested in this request on the RHS:

4

ACT-R 7 Tutorial 11-Jul-17 Unit Two

 +imaginal>
 isa array
 letter =letter

This request of the imaginal buffer is asking the imaginal module to create a chunk which has a
slot named letter that has the value of the variable =letter. We see the request and its results in
these lines of the trace:

0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
...
0.235 PROCEDURAL MODULE-REQUEST IMAGINAL
...
0.235 PROCEDURAL CLEAR-BUFFER IMAGINAL
...
0.435 IMAGINAL CREATE-NEW-BUFFER-CHUNK IMAGINAL
0.435 IMAGINAL SET-BUFFER-CHUNK IMAGINAL CHUNK0

When the encode-letter production fires it makes the request and automatically clears the buffer at
that time as happens for all buffer requests. Then, we see that the imaginal module reports that it
is creating a new chunk and that chunk is then placed into the buffer.

Something to notice in the trace is that the chunk was not immediately placed into the buffer as a
result of the request. It took .2 seconds before the chunk was made available. This is an
important aspect of the imaginal module – it takes time to build a representation. The amount of
time that it takes the imaginal module to create a chunk is a fixed cost, and the default time is .2
seconds (that can be changed with a parameter). In addition to the time cost, the imaginal module
is only able to create one new chunk at a time. That does not impact this model because it is only
creating the one new chunk in the imaginal buffer, but there are times where that does matter. In
such situations one may need to verify that the module is available to create a new chunk and that
is done with a query of the buffer in the conditions, as this production does. More details on
querying modules will be described later in the unit.

In this model, the imaginal buffer will hold a chunk which contains a representation of the letter
which the model reads from the screen. For this simple task, that representation is not strictly
necessary because the model could use the information directly from the vision module to do the
task, but for most tasks there will be more information which must be maintained thus requiring
such a chunk to be created. In particular, for this unit’s assignment the model will need to read
multiple letters which must be considered before responding.

2.5 The Vision Module

Many tasks involve interacting with visible stimuli and the vision module provides a model with a
means for acquiring visual information. It is designed as a system for modeling visual attention.
It assumes that there are lower-level perceptual processes that generate the representations with
which it operates, but it does not model those perceptual processes in detail. It includes some
default mechanisms for parsing text and other simple visual features from a window and it has an
interface that one can use to extend it when necessary for more complicated features.

5

ACT-R 7 Tutorial 11-Jul-17 Unit Two

The vision module has two buffers. There is a visual buffer that holds a chunk which represents
an object in the visual scene and a visual-location buffer that holds a chunk which represents the
location of an object in the visual scene. As with all modules, it also responds to queries of the
buffers about the state of the buffer and module. Visual interaction is shown in the demo2 model
in the two productions find-unattended-letter and attend-letter.

2.5.1 Visual-Location buffer

The find-unattended-letter production applies whenever the goal buffer’s chunk has the value
start in the state slot (which is how the chunk is initially created):

(P find-unattended-letter
 =goal>
 ISA read-letters
 state start
 ==>
 +visual-location>
 :attended nil
 =goal>
 state find-location
)

It makes a request of the visual-location buffer and it changes the goal state slot to find-location.
The following portion of the trace reflects the actions of this production:

0.050 PROCEDURAL PRODUCTION-FIRED FIND-UNATTENDED-LETTER
0.050 PROCEDURAL MOD-BUFFER-CHUNK GOAL
0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
0.050 VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0

You should ignore the earlier line of the trace related to the vision module that looks like this:

0.000 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0 REQUESTED NIL

for now. That is the result of a mechanism which we will not discuss until the next unit.

A visual-location request asks the vision module to find the location of an object in its visual
scene (which for this model is the current experiment’s window) that meets the specified
requirements, build a chunk to represent the location of that object if one exists, and place that
chunk in the visual-location buffer.

Looking at the trace, these events are a result of that request:

0.050 PROCEDURAL MODULE-REQUEST VISUAL-LOCATION
0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

6

ACT-R 7 Tutorial 11-Jul-17 Unit Two

0.050 VISION Find-location
0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION VISUAL-LOCATION0-0

We see the notice of the request and then the automatic clearing of the buffer due to the request
being made by the procedural module. Then the vision module reports that it is finding a location
and then it places a chunk into the buffer. Notice that there was no time involved in handling the
request – all those actions took place at time 0.050 seconds. The visual-location requests always
finish immediately which reflects the concept that there is a perceptual system operating in
parallel within the vision module that makes these visual features immediately available.

If you step through the model using the Stepper you can use the “Buffer Contents” tool to see that
the chunk visual-location0-0-1 will be in the visual-location buffer after that last event:

VISUAL-LOCATION0-0-1
 VALUE TEXT
 COLOR BLACK
 HEIGHT 10
 WIDTH 7
 SCREEN-X 130
 SCREEN-Y 156
 DISTANCE 1080
 KIND TEXT
 SIZE 0.19999999

There are a lot of slots in the chunk placed into the visuallocation buffer, and when making the
request to find a location all of those features can be used to constrain the results. None of them
are important for this unit, but we will describe the screenx and screeny slots here. They
encode the exact coordinates of the object in the visual scene. The upperleft corner of an
experiment window is screenx 0 and screeny 0. The x coordinates increase from left to right,
and the y coordinates increase from top to bottom. In general, the specific values are not that
important for the model, and do not need to be specified when making a request for a location.
There is a set of descriptive specifiers that can be used for requests on those slots, like lowest or
highest, but those details will not be discussed until unit 3.

2.5.1.1 The attended request parameter

If we look at the request which was made of the visuallocation buffer in the findunattended
letter production:

 +visual-location>
 :attended nil

we see that all it consists of is “:attended nil” in the request. This :attended specification is called
a request parameter. It acts like a slot in the request, but does not correspond to a slot in any of
the chunktypes specified for the model (one can print out all the chunktypes by calling the
chunktype command with no parameters). A request parameter is valid for any request to a

7

ACT-R 7 Tutorial 11-Jul-17 Unit Two

buffer regardless of any chunktype that is specified (or when no chunktype is specified as is the
case here). Request parameters are used to supply general information to the module about a
request which may not correspond to any information that would be included in a chunk that is
placed into a buffer. A request parameter is specific to a particular buffer and will always start
with a “:” which distinguishes it from an actual slot of some chunktype. We will discuss a
couple different request parameters in this unit and later units as we introduce more buffers.

For a visuallocation request one can use the :attended request parameter to specify whether the
vision module should try to find the location of an object which the model has previously looked
at (attended to) or not. If it is specified as nil, then the request is for a location which the model
has not attended, and if it is specified as t, then the request is for a location which has been
attended previously. There is also a third option, new, which means that the model has not
attended to the location and that the object has also recently appeared in the visual scene.

2.5.2 The attend-letter production

The attend-letter production applies when the goal state is find-location, there is a chunk in the
visual-location buffer, and the vision module is not currently active:

(P attend-letter
 =goal>
 ISA read-letters
 state find-location
 =visual-location>
 ?visual>
 state free
==>
 +visual>
 cmd move-attention
 screen-pos =visual-location
 =goal>
 state attend
)

On the LHS of this production are two conditions that have not been seen before. The first is a
test of the visual-location buffer. Notice that there are no constraints specified for the slots of the
chunk in that buffer test. All that is necessary for this production is that there is a chunk in the
buffer and the details of its slot values do not matter. Then, a query is made of the visual buffer.

2.5.3 Checking a module’s state

On the LHS of attend-letter a query is made of the visual buffer to test that the state of the
vision module is free. All buffers will respond to a query for the module’s state and the possible
values for that query are busy, free, or error as was shown in unit 1. The test of state free is a

8

ACT-R 7 Tutorial 11-Jul-17 Unit Two

check to make sure the buffer being queried is available for a new request. If the state is free,
then it is safe to issue a new request, but if it is busy then it is usually not safe to do so.

Typically, a module is only able to handle one request to a buffer at a time. This is the case for
both the imaginal and visual buffers which require some time to produce a result. Since all
modules operate in parallel it might be possible for the procedural module to select a production
which makes a request to a module that is still working on a previous request. If a production
were to fire at such a point and issue a request to a module which is busy and only able to handle
one request at a time, that is referred to as “jamming” the module. When a module is jammed, it
will output a warning message in the trace to let you know what has happened. What a module
does when jammed varies from module to module. Some modules ignore the new request,
whereas others abandon the previous request and start the new one. As a general practice it is
best to avoid jamming modules. Thus, when there is the possibility of jamming a module one
should query its state before making a request.

Note that we did not query the state of the visual-location buffer in the find-unattended-letter
production before issuing the visual-location request because we know that those requests always
complete immediately and thus the visual-location state is always free. We did however test the
state of the imaginal module before making the request to the imaginal buffer in the encode-
letter production. That query is not necessary in this model and removing it will not change the
way the model performs. That is because that is the only request to the imaginal module in the
model and that production will not fire again because of the change to the goal buffer chunk’s
state slot. Thus there is no risk of jamming the imaginal module in this model, but omitting
queries which appear to be unnecessary is a risky practice. It is always a good idea to query the
state in every production that makes a request that could potentially jam a module even if you
know that it will not happen because of the structure of the other productions. Doing so makes it
clear to anyone else who may read the model, and it also protects you from problems if you
decide later to apply that model to a different task where the assumption which avoids the
jamming no longer holds.

In addition to the state, there are also other queries that one can make of a buffer. Unit 1
presented the general queries that are available to all buffers. Some buffers also provide queries
that are specific to the details of the module and those will be described as needed in the tutorial.
One can also find all the queries to which a module responds in the reference manual.

2.5.4 Chunk-type for the visual-location buffer

You may have noticed that we did not specify a chunk-type with either the request to the visual-
location buffer in the find-unattended-letter production or its testing in the condition of the
attend-letter production. That was because we didn’t specify any slots in either of those places
(recall that :attended is a request parameter and not a slot) thus there is no need to specify a
chunk-type for verification that the slots used are correct. If we did need to request or test
specific features with the visual-location buffer there is a chunk-type named visual-location
which one can use that has the slots screen-x, screen-y, distance, kind, color, value, height, width,
and size.

9

ACT-R 7 Tutorial 11-Jul-17 Unit Two

2.5.5 Visual buffer

On the RHS of attend-letter it makes a request of the visual buffer which specifies two slots:
cmd and screen-pos:

 +visual>
 cmd move-attention
 screen-pos =visual-location

Unlike the other buffers which we have seen so far the visual buffer is capable of performing
different actions in response to a request. The cmd slot in a request to the visual buffer indicates
which specific action is being requested. In this request that is the value move-attention which
indicates that the production is asking the vision module to move its attention to some location,
create a chunk which encodes the object that is there, and place that chunk into the visual buffer.
The location to which the module should move its attention is specified in the screen-pos (short
for screen-position) slot of the request. In this case that location is the chunk that is in the visual-
location buffer. The following portion of the trace shows this request and the results:

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
...
0.100 PROCEDURAL MODULE-REQUEST VISUAL
...
0.100 PROCEDURAL CLEAR-BUFFER VISUAL
0.100 VISION Move-attention VISUAL-LOCATION0-0-1 NIL
...
0.185 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL
0.185 VISION SET-BUFFER-CHUNK VISUAL TEXT0

The request to move-attention is made at time 0.100 seconds and the vision module indicates that
at that time as well. Then 0.085 seconds pass before the vision module reports that it has
completed encoding the object at that location and places a chunk into the visual buffer at time
0.185 seconds. Those 85 ms represent the time to shift attention and create the visual object.
Altogether, counting the two production firings (one to request the location and one to request the
attention shift) and the 85 ms to execute the attention shift and object encoding, it takes 185 ms to
create the chunk that encodes the letter on the screen.

As you step through the model you will find this chunk in the visual buffer after those actions
have occurred:

TEXT0-0
 SCREEN-POS VISUAL-LOCATION0-0-0
 VALUE "v"
 COLOR BLACK
 HEIGHT 10
 WIDTH 7
 TEXT T

Most of the chunks created for the visual buffer by the vision module are going to have a
common set of slots in them. Those will include the screen-pos slot which holds the location
chunk which represents where the object is located (which will typically have the same

10

ACT-R 7 Tutorial 11-Jul-17 Unit Two

information as the location to which attention was moved) and then color, height, and width slots
which hold information about the visual features of the object that was attended. In addition,
depending on the details of the object which was attended, other slots may provide more details.
When the object is text, the value slot will hold a string that contains the text encoded from the
screen. As seen above for the text item there is also a slot named text which has the value t (the
Lisp truth symbol) to indicate that the item is classified as text. Information about the chunk-
types available for visual items will be described below.

After a chunk has been placed in the visual buffer this model harvests that chunk with the
encode-letter production:

(P encode-letter
 =goal>
 ISA read-letters
 state attend
 =visual>
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 state respond
 +imaginal>
 isa array
 letter =letter
)

which makes a request to the imaginal buffer to create a new chunk which will hold a
representation of the letter as was described in the section on the imaginal module.

2.5.6 Chunk-types for the visual buffer

As with the visual-location buffer you may have noticed that we also didn’t specify a chunk-type
with the request of the visual buffer in the attend-letter production or the harvesting of the chunk
in the encode-letter production. Unlike the visual-location buffer, there actually are slots
specified in both of those cases for the visual buffer. Thus, for added safety we should have
specified a chunk-type in both of those places to validate the slots being used.

For the chunks placed into the visual buffer by the vision module when attending to an item there
is a chunk-type called visual-object which provides these slots: screen-pos, value, status, color,
height, and width. For the objects which the vision module can process by default the visual-
object chunk-type is always an acceptable choice. Therefore a safer specification of the encode-
letter production would include this:

11

ACT-R 7 Tutorial 11-Jul-17 Unit Two

(P encode-letter
 =goal>
 ISA read-letters
 state attend
 =visual>
 isa visual-object
 value =letter
 ?imaginal>
 state free
==> ...)

If one extends the capabilities of the vision module so that it can process other items in the visual
scene then different chunk-types which include additional features may be required. As was
noted above, there is also a slot named text in the chunk in the visual buffer for this task. We will
come back to that in a later unit of the tutorial.

For the request to the visual buffer there are a couple of options available for how to include a
chunk-type to verify the slots. The first option is to use the chunk-type named vision-command
which includes all of the slots for all of the requests which can be made to the visual buffer:

 +visual>
 isa vision-command
 cmd move-attention
 screen-pos =visual-location

Because that contains slots for all of the different requests which the visual buffer can handle it is
not as safe as a more specific chunk-type which only contains the slots for the specific command
being used. For the move-attention command there is another chunk-type called move-attention
which only contains the slots that are valid for the move-attention request. Therefore, a more
specific request to the visual buffer for the vision module to move attention to an object would
be:

 +visual>
 isa move-attention
 cmd move-attention
 screen-pos =visual-location

Specifying move-attention twice in that request looks a little awkward. There is a way to avoid
that redundancy and still maintain the safety of the chunk-type declaration, but we will not
describe that until later in the tutorial.

2.6 Learning New Chunks

This process of seeking the location of an object in one production, switching attention to the
object in a second production, and harvesting the object in a third production is a common style in
ACT-R models. One important thing to appreciate is that this is one way in which ACT-R can

12

ACT-R 7 Tutorial 11-Jul-17 Unit Two

acquire new declarative chunks. Initially the chunks will be in the perceptual buffers, but they
will be stored in declarative memory as a permanent chunk encoding what has been perceived
once those chunks leave the buffers. That process occurs for all buffers – whenever a chunk is
cleared from a buffer it becomes part of the model’s declarative memory. Thus this is also
happening for the imaginal and goal buffers’ chunks when they are cleared.

2.7 Visual Re-encoding

There are two other lines in the trace of the model which shows the vision module doing
something which will be addressed in this unit:

0.970 VISION Encoding-complete VISUAL-LOCATION0-0-1 NIL
0.970 VISION No visual-object found

At time 0.970 seconds there is an encoding that was not the result of a request made by a
production. This is a result of the screen being cleared after the key press at time 0.885 seconds.
When the screen is updated, if the vision module is currently attending to a location it will
automatically re-encode that location to encode any changes that may have occurred there. This
re-encoding takes 85 ms just as an explicit request to attend an item does. If the visual-object
chunk representing that item is still in the visual buffer it will be updated to reflect any changes.
If there is no longer a visual item on the display at the location where the model is attending (as is
the case here) then the trace will show a line indicating that no object was found and the vision
module will note a failure in the visual buffer and indicate a state of error through the visual
buffer until there is another successful encoding (very much like a memory retrieval failure in the
retrieval buffer).

2.7.1 Buffer Status

You can see the current query information for the buffers using the “Buffer Status” button in the
Control Panel or by calling the buffer-status command. That will show the standard queries for
the buffers along with the current value (either t or nil) for such a query at this time. Some
buffers will also show additional information which can be queried and the documentation of the
module in the reference manual will describe those other queries.

2.7.2 Re-encoding Cont.

This automatic re-encoding process of the vision system requires that you be careful when writing
models that process changing displays for two reasons. The first is that you cannot be guaranteed
that the chunk in the visual buffer will not change in response to a change in the visual display.
The other is because while the re-encoding is occurring, the vision module is busy and cannot
handle a new attention shift. This is one reason it is important to query the visual state before all
visual requests to avoid jamming the vision module since there may be activity other than that
requested explicitly by the productions.

13

ACT-R 7 Tutorial 11-Jul-17 Unit Two

2.7.3 Stop Visually Attending

If you do not want the model to re-encode an item is it possible to make it stop attending to the
visual display. This is done by issuing a clear command to the vision module as an action:

+visual>
 cmd clear

This will cause the model to stop attending to any visual items until a new request to move-
attention is made and thus it will not re-encode items if the visual scene changes.

If one wants the safety of a chunk-type declaration with that, then as indicated above the vision-
command chunk-type could be used:

+visual>
 isa vision-command
 cmd clear

There are also other options for declaring the chunk-type for that which will be described later on
in the tutorial.

2.8 The Motor Module

When we speak of motor actions in ACT-R we are only concerned with hand movements. It is
possible to extend the motor module to other modes of action, but the default mechanism is built
around controlling a pair of hands. In this unit we will only be concerned with finger presses at a
keyboard, but the fingers can also be used to press other devices and the hands can also be used to
move a mouse or other device. Information about these features or extending the motor module is
available in the reference manual and the documentation on extending ACT-R.

The buffer for interacting with the motor module is called the manual buffer. Unlike other
buffers however, the manual buffer will not have any chunks placed into it by its module. It is
used only to issue commands and to query the state of the motor module. The manual buffer is
used to request actions be performed by the hands. As with the vision module, you should always
check to make sure that the motor module is free before making any requests to avoid jamming it.
The manual buffer query to test the state of the module works the same as the one described for
the vision module:

?manual>
 state free

That query will be true when the module is available.

14

ACT-R 7 Tutorial 11-Jul-17 Unit Two

The motor module actually has a more complex state than just free or busy because there are
multiple stages in the motor module, and it is possible to make a new request before the previous
one has completed by testing the individual stages. However we will not be discussing that in the
tutorial, and will only test on the overall state i.e. whether the entire module is free or busy. The
respond production from the demo2 model shows the manual buffer in use:

(P respond
 =goal>
 ISA read-letters
 state respond
 =imaginal>
 isa array
 letter =letter
 ?manual>
 state free
==>
 =goal>
 state done
 +manual>
 cmd press-key
 key =letter
)

This production fires when a letter has been encoded in the imaginal buffer, the goal state slot has
the value respond, and the manual buffer indicates that the motor module is free. A request is
made to press the key corresponding to the letter from the letter slot of the chunk in the imaginal
buffer and the state slot of the chunk in the goal buffer is changed to done. The specific action
requested of the hands is specified in a slot named cmd in a request to the manual buffer. The
press-key action used here assumes that the model’s hands are located over the home row on the
keyboard (which they are by default). From that position a press-key request will move the
appropriate finger to touch type the character specified in the key slot of the request and then
return that finger to the home row position. There are many other actions that can be performed
with the model’s hands, but for now, key presses are all we need. The motor module actions from
the trace that result from this production firing are shown here:

0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
...
0.485 PROCEDURAL MODULE-REQUEST MANUAL
...
0.485 PROCEDURAL CLEAR-BUFFER MANUAL
0.485 MOTOR PRESS-KEY KEY v
...
0.735 MOTOR PREPARATION-COMPLETE
...
0.785 MOTOR INITIATION-COMPLETE
...
0.885 MOTOR OUTPUT-KEY #(4 5)
...
1.035 MOTOR FINISH-MOVEMENT

15

ACT-R 7 Tutorial 11-Jul-17 Unit Two

When the production is fired at time 0.485 seconds a request is made to press the key, the buffer
is automatically cleared (even though the motor module does not put chunks into its buffer the
procedural module still performs the clear action), and the motor module indicates that it has
received a request to press the “v” key. However, it takes 250 ms to prepare the features of the
movement (preparation-complete), 50 ms to initiate the action (initiation-complete), another 100
ms for the key to be struck (output-key), and finally it takes another 150 ms for the finger to
return to the home row (finish-movement). Thus the time of the key press is 0.885 seconds,
however the motor module is still busy until time 1.035 seconds. The press-key request does not
model the typing skills of an expert typist, but it does represent one who is able to touch type
individual letters competently without looking at about 40 words per minute, which is often a
sufficient mechanism for modeling simple tasks.

2.8.1 Motor module chunk-types

Like the visual-location and visual buffer requests the production which makes the request to the
manual buffer did not specify a chunk-type. The manual buffer request is very similar to the
request to the visual buffer. It has a slot named cmd which contains the action to perform and
then an additional slot to specify details for performing that action. The options for declaring a
chunk-type in the request are also very similar to those for the visual buffer.

One option is to use the chunk-type named motor-command which includes all of the slots for all
of the requests which can be made to the manual buffer:

 +manual>
 isa motor-command
 cmd press-key
 key =letter

Another is to use a more specific chunk-type named press-key that only has the valid slots for the
press-key action (cmd and key):

 +manual>
 isa press-key
 cmd press-key
 key =letter

Again, that repetition is awkward and we will come back to that later in the tutorial.

2.9 Strict Harvesting

Another mechanism of ACT-R is displayed in the trace of this model. It is a process referred to
as “strict harvesting”. It states that if the chunk in a buffer is tested on the LHS of a production
(also referred to as harvesting the chunk) and that buffer is not modified on the RHS of the
production, then that buffer is automatically cleared. This mechanism is displayed in the events

16

ACT-R 7 Tutorial 11-Jul-17 Unit Two

of the attend-letter, encode-letter, and respond productions which harvest, but do not modify
the visual-location, visual, and imaginal buffers respectively:

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-LETTER
...
0.100 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION
...
0.235 PROCEDURAL PRODUCTION-FIRED ENCODE-LETTER
...
0.235 PROCEDURAL CLEAR-BUFFER VISUAL
...
0.485 PROCEDURAL PRODUCTION-FIRED RESPOND
...
0.485 PROCEDURAL CLEAR-BUFFER IMAGINAL

By default, this happens for all buffers except the goal and temporal buffers, but it is controlled
by a parameter (:do-not-harvest) which can be used to configure which (if any) of the buffers are
excluded from strict harvesting.

If one wants to keep a chunk in a buffer after a production fires without modifying the chunk then
it is valid to specify an empty modification to do so. For example, if one wanted to keep the
chunk in the visual buffer after encode-letter fired we would only need to add an =visual> action
to the RHS:

(P encode-letter-and-keep-chunk-in-visual-buffer
 =goal>
 ISA read-letters
 state attend
 =visual>
 value =letter
 ?imaginal>
 state free
==>
 =goal>
 state respond
 +imaginal>
 isa array
 letter =letter
 =visual>
)

Strict harvesting also applies to the buffer failure query. A production which makes a query for
buffer failure will also trigger the strict harvesting mechanism for that buffer and clear it as an
action unless that buffer is modified in the production. Clearing the buffer in this situation will
result in the failure notice being removed from the buffer.

17

ACT-R 7 Tutorial 11-Jul-17 Unit Two

2.10 More ACT-R Parameters

The model code description document for unit 1 introduced the sgp command for setting ACT-R
parameters. In the demo2 model the parameters are set like this:

(sgp :seed (123456 0))
(sgp :v t :needs-mouse nil :show-focus t :trace-detail high)

All of these parameters are used to control how the software operates and do not affect the
model’s performance of the task. These settings are used to make working with this model easier,
and are things that you may want to use when working with other models.

The first sgp command is used to set the :seed parameter. This parameter controls the starting
point for the pseudo-random number generator used by ACT-R. Typically you do not need to use
this parameter; however by setting it to a fixed value the model will always produce the same
behavior (assuming that all the variation is attributable to randomness generated using the ACT-R
mechanisms). In this model, that is why the randomly chosen letter is always “V”. If you remove
this parameter setting from the model, save it, and then reload, you will see different letters
chosen when the experiment is run. For the tutorial models, we will often set the :seed parameter
in the demonstration model of a unit so that the model always produces exactly the same trace as
presented in the text, but you should feel free to remove that to further investigate the models.

The second sgp call sets four parameters. The :v (verbose) parameter controls whether the trace
of the model is printed in the listener. If :v is t (which is the default value) then the trace is
displayed and if :v is set to nil the trace is not printed. It is also possible to direct the trace to an
external file, and you should consult the reference manual for information on how to do that if
you would like to do so. Without printing out the trace the model runs significantly faster, and
that will be important in later units when we are running the models through the experiments
multiple times to collect data. The :needs-mouse parameter is used to specify whether or not the
model needs to control the mouse cursor. In some Lisp implementations, ACT-R can directly
control the mouse cursor and will move it around on its own as needed. While this is important
for the model to perform some tasks, it can be difficult to work with when it is not needed
because you will be fighting with the model for control of the cursor. Thus letting the system
know whether or not that is necessary and turning it off when not needed (as is done here by
specifying nil) is often a useful setting. The :show-focus parameter controls whether or not the
red visual attention ring is displayed in the experiment window when the model is performing the
task. It is a useful debugging tool, but for some displays you may not want it because it could
obscure other things you want to see. The :trace-detail parameter, which was described in the unit
1 experiment description document, is set to high so that all the actions of the modules show in
the trace for this task.

18

ACT-R 7 Tutorial 11-Jul-17 Unit Two

2.11 Unit 2 Assignment

Your assignment is to extend the abilities of the model in demo2 to do a more complex
experiment. The new experiment presents three letters. Two of those letters will be the same.
The participant's task is to press the key that corresponds to the letter that is different from the
other two. The Lisp code to perform the experiment, two initial chunk-types, and an initial goal
chunk are contained in the model file unit2-assignment.

To run the experiment, call the new do-unit2 function defined in the assignment model file. Like
the do-demo2 function, providing the symbol human to do-unit2 will cause the task to run you
instead of the model. When you press a key the function will return correct if you pressed the
right key and nil if you pressed the wrong key. This shows what happens when the right key was
pressed:

> (do-unit2 'human)
CORRECT

and this shows the result when the wrong key was pressed:

> (do-unit2 'human)
NIL

Your task is to write a model that always responds correctly when performing the task. To run
the model through the task you just need to call do-unit2 without including the symbol human.
In doing this you should take the model in demo2 as a guide. It reflects the way to interact with
the imaginal, vision, and motor modules and the productions it contains are similar to the
productions you will need to write. You will also need to write additional productions to read the
other letters and decide which key to press.

You are provided with a chunk-type you may use for specifying the goal chunk, and the starting
model already creates one and places it into the goal buffer. This chunk-type is the same as the
one used in the demo2 model and only contains a slot named state:

(chunk-type read-letters state)

The initial goal provided looks just like the one used in demo2:

(goal isa read-letters state start)

There is an additional chunk-type specified which has slots for holding the three letters which can
be used for the chunk in the imaginal buffer:

(chunk-type array letter1 letter2 letter3)

You do not have to use these chunk-types to solve the problem. If you have a different
representation you would like to use feel free to do so. There is no one “right” model for the task.
(Nonetheless, we would like your solution to keep any control state information it uses in the goal
buffer and separate from the problem representation in the imaginal buffer.)

19

ACT-R 7 Tutorial 11-Jul-17 Unit Two

In later units we will consider fitting models to data from real experiments. Then, how well the
model fits the data can be used as a way to decide between different representations and models,
but that is not the only way to decide. Cognitive plausibility is another important factor when
modeling human performance – you want the model to do the task like a person does the task. A
model that fits the data perfectly using a method completely unlike a person is probably not a very
good model of the task.

20

	Unit 2: Perception and Motor Actions in ACT-R
	2.1 ACT-R Interacting with the World
	2.2 The First Experiment
	2.3 Control and Representation
	2.3.1 The State Slot

	2.4 The Imaginal Module
	2.5 The Vision Module
	2.5.1 Visual-Location buffer
	2.5.1.1 The attended request parameter

	2.5.2 The attend-letter production
	2.5.3 Checking a module’s state
	2.5.4 Chunk-type for the visual-location buffer
	2.5.5 Visual buffer
	2.5.6 Chunk-types for the visual buffer

	2.6 Learning New Chunks
	2.7 Visual Re-encoding
	2.7.1 Buffer Status
	2.7.2 Re-encoding Cont.
	2.7.3 Stop Visually Attending

	2.8 The Motor Module
	2.8.1 Motor module chunk-types

	2.9 Strict Harvesting
	2.10 More ACT-R Parameters
	2.11 Unit 2 Assignment

