
ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

Unit3 Model Code Description

The experiments in this unit are more involved than those of the last unit. The
experiments are more complicated, and they involve collecting data and comparing it to
existing experimental results. Many of the functions that were introduced in the last unit
will be seen again (some of them always have to be there, like run) and there will be a
few more introduced in this unit.

Because it is often necessary to run a model multiple times to understand its behavior and
then to use the average and deviation for data comparison, running the model quickly can
be important. One thing that can greatly improve the time it takes to run the model (i.e.
the real time that passes not the simulated time which the model experiences) is to have it
interact with a virtual window instead of interacting with a real window on the computer.
Virtual windows are an abstraction of a window interface that is internal to ACT-R.
From the model’s perspective there is no difference between a virtual window and a real
window, but there is much less overhead involved with virtual windows because they
exist entirely within Lisp. The only down side to using a virtual window is that you
cannot see it, which can make debugging the model more difficult. To help with that, the
tools that were introduced in the last unit for building and manipulating windows work
exactly the same for real windows and virtual windows. All that is necessary to switch
between them is one parameter when the window is opened. Thus, you can build the
experiment and debug the model using a window that you can see. Then with one small
change make the window virtual and run the model quickly over many runs. How to do
that will be described below.

Here is the experiment code from the Sperling model.

(defvar *responses* nil)
(defvar *show-responses* nil)

(defvar *sperling-exp-data* '(3.03 2.40 2.03 1.50))

(defun do-sperling-trial (onset-time)

 (reset)

 (let* ((lis (permute-list '("B" "C" "D" "F" "G" "H" "J"
 "K" "L" "M" "N" "P" "Q" "R"
 "S" "T" "V" "W" "X" "Y" "Z")))
 (answers nil)
 (tone (act-r-random 3))
 (window (open-exp-window "Sperling Experiment"
 :visible t
 :width 300
 :height 300)))

 (dotimes (i 3)
 (dotimes (j 4)
 (let ((txt (nth (+ j (* i 4)) lis)))
 (when (= i tone)
 (push txt answers))
 (add-text-to-exp-window :text txt

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

 :width 40
 :x (+ 75 (* j 50))
 :y (+ 101 (* i 50))))))

 (install-device window)
 (new-tone-sound (case tone (0 2000) (1 1000) (2 500)) .5 onset-time)
 (schedule-event-relative (+ .9 (act-r-random .2)) 'clear-screen)

 (proc-display)
 (setf *responses* nil)
 (run 30 :real-time t)

 (when *show-responses*
 (format t "~%~%answers: ~S~%responses: ~S~%" answers *responses*))

 (compute-score answers)))

(defun compute-score (answers)
 (let ((score 0))
 (dolist (x answers score)
 (when (member x *responses* :test 'string-equal)
 (incf score)))))

(defun clear-screen ()
 (clear-exp-window)
 (proc-display))

(defmethod rpm-window-key-event-handler ((win rpm-window) key)
 (unless (string= key " ")
 (push (string key) *responses*)))

(defun report-data (data)
 (correlation data *sperling-exp-data*)
 (mean-deviation data *sperling-exp-data*)
 (print-results data))

(defun print-results (data)
 (format t "~%Condition Current Participant Original Experiment~%")
 (do ((condition '(0.00 0.15 0.30 1.00) (cdr condition))
 (temp1 data (cdr temp1))
 (temp2 *sperling-exp-data* (cdr temp2)))
 ((null temp1))
 (format t " ~4,2F sec. ~6,2F ~6,2F~%"
 (car condition) (car temp1) (car temp2))))

(defun run-block ()
 (let ((times (permute-list '(0.0 .15 .30 1.0)))
 (result nil))
 (dolist (x times)
 (push (cons x (do-sperling-trial x)) result))
 (sort result '< :key 'car)))

(defun run-sperling (n)
 (let ((results (list 0 0 0 0)))
 (dotimes (i n)
 (setf results (mapcar '+ results (mapcar 'cdr (run-block)))))

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

 (report-data (mapcar (lambda (x) (/ x n)) results))))

First, two global variables are defined. *responses* will hold the list of keys pressed by
the participant and *show-responses* is used as a flag to indicate whether or not to print
out the participant’s responses every trial.

(defvar *responses* nil)
(defvar *show-responses* nil)

Next we define a global variable that holds the results of the original experiment so that
the model’s performance can be compared to it.

(defvar *sperling-exp-data* '(3.03 2.40 2.03 1.50))

The do-sperling-trial function takes one parameter which is the delay time at which to
present the auditory cue in seconds. It presents the array of letters, waits for the
responses, and returns the number of letters correctly recalled in the target row.

(defun do-sperling-trial (onset-time)

First it resets ACT-R and randomizes a list of letters

 (reset)

 (let* ((lis (permute-list '("B" "C" "D" "F" "G" "H" "J"
 "K" "L" "M" "N" "P" "Q" "R"
 "S" "T" "V" "W" "X" "Y" "Z")))

then it creates a variable to hold the list of target letters,

 (answers nil)

randomly chooses which row to be the target,

 (tone (act-r-random 3))

and opens a window to do the task. The keyword parameters used when opening this
window are new in this unit and will be described below in detail.

 (window (open-exp-window "Sperling Experiment"
 :visible t
 :width 300
 :height 300)))

Then it displays 3 rows of 4 letters recording the letters that are in the target row in the
answers variable.

 (dotimes (i 3)
 (dotimes (j 4)
 (let ((txt (nth (+ j (* i 4)) lis)))
 (when (= i tone)
 (push txt answers))
 (add-text-to-exp-window :text txt
 :width 40
 :x (+ 75 (* j 50))
 :y (+ 101 (* i 50))))))

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

The model is told that the opened window is the one to interact with

 (install-device window)

A tone is scheduled to occur for the model at the time specified which lasts for .5 seconds
and has a frequency determined by which row is to be recalled.

 (new-tone-sound (case tone (0 2000) (1 1000) (2 500)) .5 onset-time)

At a random time between .9 and 1.1 seconds the clear-screen function (which is defined
below) will be called

 (schedule-event-relative (+ .9 (act-r-random .2)) 'clear-screen)

The model is told to process the display

 (proc-display)

The variable to hold the model’s responses is cleared

 (setf *responses* nil)

The model is run for up to 30 seconds in real time

 (run 30 :real-time t)

If the *show-responses* variable is set it prints out the correct answers and the responses

 (when *show-responses*
 (format t "~%~%answers: ~S~%responses: ~S~%" answers *responses*))

Then it calls the compute-score function (defined below) to return the number of correct
responses

 (compute-score answers)))

The compute-score function takes one parameter which is a list of the letters in the target
row. It returns the number of those items that were given by the participant.

(defun compute-score (answers)
 (let ((score 0))
 (dolist (x answers score)
 (when (member x *responses* :test 'string-equal)
 (incf score)))))

The clear-screen function is called at the appropriate time when the model is performing
the task. It clears the screen and makes the model reprocess it.

(defun clear-screen ()
 (clear-exp-window)
 (proc-display))

The rpm-window-key-event-handler gets called automatically when a key is pressed and
is passed the window in which the press occurred and the key that was pressed. For this
task it pushes the keys onto the *responses* list unless the space bar is pressed.

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

(defmethod rpm-window-key-event-handler ((win rpm-window) key)
 (unless (string= key " ")
 (push (string key) *responses*)))

The report-data function takes one parameter which is a list that should represent average
data of participants in the task. Those data are compared to the original experimental
data and the correlation, mean deviation, and table of the results are printed.

(defun report-data (data)
 (correlation data *sperling-exp-data*)
 (mean-deviation data *sperling-exp-data*)
 (print-results data))

The print-results function takes one parameter which should be a list containing average
data of participants in the task. Those data are printed in a table with the onset times and
the original data.

(defun print-results (data)
 (format t "~%Condition Current Participant Original Experiment~%")
 (do ((condition '(0.00 0.15 0.30 1.00) (cdr condition))
 (temp1 data (cdr temp1))
 (temp2 *sperling-exp-data* (cdr temp2)))
 ((null temp1))
 (format t " ~4,2F sec. ~6,2F ~6,2F~%"
 (car condition) (car temp1) (car temp2))))

The run-block function takes no parameters. It runs one trial of the task at each of the 4
onset times randomly ordered. It returns a list of conses ordered by onset time, with the
car of each cons being the onset time and the cdr being the number of correct responses.

(defun run-block ()
 (let ((times (permute-list '(0.0 .15 .30 1.0)))
 (result nil))
 (dolist (x times)
 (push (cons x (do-trial x)) result))
 (sort result '< :key 'car)))

The run-sperling function takes one parameter which is the number of blocks of the
experiment to run. A block is one trial at each of the 4 onset times. The results of those
blocks are averaged together and then the comparison of that average data to the original
experimental data is printed.

(defun run-sperling (n)
 (let ((results (list 0 0 0 0)))
 (dotimes (i n)
 (setf results (mapcar '+ results (mapcar 'cdr (run-block)))))
 (report-data (mapcar (lambda (x) (/ x n)) results))))

The new ACT-R and miscellaneous modeling functions that are used in this task are:

Open-exp-window – this was introduced in the last unit. Here we see it getting passed
keyword parameters that were not used previously. :height and :width specify the size of
the window in pixels. The :visible parameter is the flag that determines whether a real or
a virtual window is used. If :visible is t (the default value if it is not specified) then a real

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

window is used. If :visible is nil, then a virtual window is used. There are two other
parameters, :x and :y which can be used to specify the position of the upper left corner of
the window on the main display.

New-tone-sound – This function takes 2 required parameters and a third optional
parameter. The first parameter is the frequency of a tone to be presented to the model.
The second is the duration of that tone in seconds. If the third parameter is specified then
it indicates at what time the tone is to be presented, and if it is omitted then the tone is to
be presented immediately. At the requested time a tone sound will be made available to
the model’s auditory module using the requested frequency and duration.

Schedule-event-relative – This function takes 2 required parameters and a number of
additional parameters. It is used to schedule functions to be called during the running of
the model. The first parameter specifies an offset from the current time at which the
function should be called. The second parameter is the function to call. By scheduling
functions to be called during the running of the model it is possible to have the
experiment change without stopping the model to do so. More information on the
scheduling functions can be found in the ACT-R reference manual.

Correlation – this function takes 2 required parameters which must be equal length
‘sequences’ of numbers. The numbers can be in arrays or lists and they do not both need
to be in the same format (one could be an array and the other a list). The only
requirement is that they have the same number of numbers in them. This function then
extracts those numbers and computes the correlation between the two sets of numbers.
That correlation value is returned. There is a keyword parameter :output which defaults
to t. When :output is t the correlation is printed to *standard-output*. If :output is a
string, stream, or pathname then it is used to open a stream to which the results are
written.

Mean-deviation – this function operates just like correlation, except that the calculation
performed is the root mean square deviation between the data sets.

Now we will look at the subitizing experiment code.

(defvar *key-time* nil)
(defvar *speak-time* nil)
(defvar *answer* nil)
(defvar *correct* nil)

(defvar *subitizing-exp-data* '(.6 .65 .7 .86 1.12 1.5 1.79 2.13 2.15 2.58))

(defun subitize-trial (n &optional who)
 (let ((points (generate-points n))
 (window (open-exp-window "Subitizing Experiment"
 :visible t
 :width 300
 :height 300
 :x 300
 :y 300))
 (rt))

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

 (dolist (point points)
 (add-text-to-exp-window :text "x"
 :width 10
 :x (first point)
 :y (second point)))

 (setf *correct* nil)
 (setf *speak-time* nil)
 (setf *key-time* nil)

 (reset)

 (if (not (eq who 'human))
 (progn
 (setf *answer* (format nil "~r" n))
 (install-device window)
 (proc-display)
 (run 30 :real-time t)
 (setf rt (if (numberp *speak-time*)
 speak-time
 30000)))
 (progn
 (let ((start-time (get-time nil)))
 (setf *answer* (format nil "~d" (if (= n 10) 0 n)))
 (while (null *key-time*)
 (allow-event-manager window))
 (setf rt (- *key-time* start-time)))))
 (list (/ rt 1000.0) *correct*)))

(defun subitize (&optional who)
 (let (result)
 (dolist (items (permute-list '(10 9 8 7 6 5 4 3 2 1)))
 (push (list items (subitize-trial items who)) result))
 (report-data (mapcar 'second (sort result '< :key 'car)))))

(defun report-data (data)
 (let ((rts (mapcar 'first data)))
 (correlation rts *subitizing-exp-data*)
 (mean-deviation rts *subitizing-exp-data*)
 (print-results data)))

(defun print-results (predictions)
 (format t "Items Current Participant Original Experiment~%")
 (dotimes (i (length predictions))
 (format t "~3d ~5,2f (~3s) ~5,2f~%"
 (1+ i) (car (nth i predictions)) (second (nth i predictions))
 (nth i *subitizing-exp-data*))))

(defun generate-points (n)
 (let ((points nil))
 (dotimes (i n points)
 (push (new-distinct-point points) points))))

(defun new-distinct-point (points)
 (do ((new-point (list (+ (act-r-random 240) 20) (+ (act-r-random 240) 20))
 (list (+ (act-r-random 240) 20) (+ (act-r-random 240) 20))))
 ((not (too-close new-point points)) new-point)))

(defun too-close (new-point points)
 (some (lambda (a) (and (< (abs (- (car new-point) (car a))) 40)
 (< (abs (- (cadr new-point) (cadr a))) 40)))
 points))

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

(defmethod rpm-window-key-event-handler ((win rpm-window) key)
 (setf *correct* (string-equal (string key) *answer*))
 (setf *key-time* (get-time nil)))

(defmethod device-speak-string ((win rpm-window) text)
 (setf *correct* (string-equal text *answer*))
 (setf *speak-time* (get-time)))

First we define some global variables to hold the times for the possible responses, the
expected answer for the current trial, and whether or not the response given was correct.

(defvar *key-time* nil)
(defvar *speak-time* nil)
(defvar *answer* nil)
(defvar *correct* nil)

Then we create a global variable that holds the data from the original experiment so that
the participant’s performance can be compared to it.

(defvar *subitizing-exp-data* '(.6 .65 .7 .86 1.12 1.5 1.79 2.13 2.15 2.58))

The subitize-trial function takes one parameter which is the number of items to present,
and an optional parameter which can be used to run a person through the task. It presents
one trial to either the model or a person as needed and then returns a list of two items.
The first item is the response time in seconds and the second item indicates whether or
not the response was correct (t) or incorrect (nil).

(defun subitize-trial (n &optional who)

First it builds a list of n points using the generate-points function (defined below), opens
a window, and creates a local variable called rt.

 (let ((points (generate-points n))
 (window (open-exp-window "Subitizing Experiment"
 :visible t
 :width 300
 :height 300
 :x 300
 :y 300))
 (rt))

Then it draws an x at each of those random points

 (dolist (point points)
 (add-text-to-exp-window :text "x"
 :width 10
 :x (first point)
 :y (second point)))

It clears the response variables and resets the model

 (setf *correct* nil)
 (setf *speak-time* nil)
 (setf *key-time* nil)

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

 (reset)

Now, if the model is doing the task it sets the correct answer to the text of the number of
items, tells the model which window to look at, makes it process the display, run for up to
30 seconds, and sets the rt variable to the time at which the model spoke the answer or
30000 if it did not speak an answer.

 (if (not (eq who 'human))
 (progn
 (setf *answer* (format nil "~r" n))
 (install-device window)
 (proc-display)
 (run 30 :real-time t)
 (setf rt (if (numberp *speak-time*)
 speak-time
 30000)))

If a person is doing the task record the time that the trial starts

 (progn
 (let ((start-time (get-time nil)))

Set the correct answer to a string of the number or 0 if it’s 10 items

 (setf *answer* (format nil "~d" (if (= n 10) 0 n)))

Wait for a response

 (while (null *key-time*)
 (allow-event-manager window))

Set the rt variable to the difference between the start time and the time the key press was
recorded

 (setf rt (- *key-time* start-time)))))

Then for either participant the return list is generated. The response time is converted
into seconds from milliseconds and put into a list with the variable which indicates if the
correct answer was produced.

 (list (/ rt 1000.0) *correct*)))

The subitize function takes one optional parameter which can be specified as human to
run a person. It presents each of the 10 possible conditions once in random order
collecting the data. It then prints out the data and the comparison to the experimental
results.

(defun subitize (&optional who)
 (let (result)
 (dolist (items (permute-list '(10 9 8 7 6 5 4 3 2 1)))
 (push (list items (subitize-trial items who)) result))
 (report-data (mapcar 'second (sort result '< :key 'car)))))

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

The report-data function takes one parameter which is a list of response lists as are
returned by the subitize-trial function. It prints the comparison of the response times to
the experimental data and then prints a table of the response times and correctness.

(defun report-data (data)
 (let ((rts (mapcar 'first data)))
 (correlation rts *subitizing-exp-data*)
 (mean-deviation rts *subitizing-exp-data*)
 (print-results data)))

The print-results function takes one parameter which is a list of response lists as are
returned by the subitize-trial function. It prints a table of the response times and
correctness along with the original data.

(defun print-results (predictions)
 (format t "Items Current Participant Original Experiment~%")
 (dotimes (i (length predictions))
 (format t "~3d ~5,2f (~3s) ~5,2f~%"
 (1+ i) (car (nth i predictions)) (second (nth i predictions))
 (nth i *subitizing-exp-data*))))

The generate-points function takes 1 parameter which specifies how many points to
generate. It returns a list of n randomly generated points (lists of x and y coordinates) to
use for displaying the items. The points are generated such that they are not too close to
each other and within the default experiment window size.

(defun generate-points (n)
 (let ((points nil))
 (dotimes (i n points)
 (push (new-distinct-point points) points))))

The new-distinct-point function takes one parameter which is a list of points. It returns a
new point that is randomly generated within the default experiment window boundary
and which is not too close to any of the points on the list provided.

(defun new-distinct-point (points)
 (do ((new-point (list (+ (act-r-random 240) 20) (+ (act-r-random 240) 20))
 (list (+ (act-r-random 240) 20) (+ (act-r-random 240) 20))))
 ((not (too-close new-point points)) new-point)))

The too-close function takes two parameters. The first is a point and the second is a list
of points. It returns t if the first point is within 40 pixels in either the x or y direction of
any of the points on the list, otherwise it returns nil.

(defun too-close (new-point points)
 (some (lambda (a) (and (< (abs (- (car new-point) (car a))) 40)
 (< (abs (- (cadr new-point) (cadr a))) 40)))
 points))

The rpm-window-key-event-handler method is called automatically when a key is
pressed. In this task that will be collecting the response from a person doing the task. It

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

sets the correct variable to t if the key which was pressed matches the correct answer for
this trial and sets the key-time variable to the current time for a person.

There is one important thing to note about this function. The subitize-trial function is
looping until the key-time variable is set when a person does the task. Because this
function gets called by the system asynchronously, it is important to set the variable
which is being used as the flag to indicate that it is finished last. If it were to set the
variables in the opposite order then the subitize-trial function might try to use the value of
the correct variable before it was actually set.

(defmethod rpm-window-key-event-handler ((win rpm-window) key)
 (setf *correct* (string-equal (string key) *answer*))
 (setf *key-time* (get-time nil)))

The device-speak-string method is very similar to the rpm-window-key-event-handler. It
is called automatically whenever the model speaks. It is passed two parameters which
are the current experiment window for the model and the text the model is speaking. In
this experiment it is setting the variables to indicate if the response spoken was correct
and the time at which that speech output occurred.

(defmethod device-speak-string ((win rpm-window) text)
 (setf *correct* (string-equal text *answer*))
 (setf *speak-time* (get-time)))

The only new ACT-R function used in this task is get-time.

get-time – this function takes an optional parameter and it returns the current time in
milliseconds. If the optional parameter is not specified, then the model’s simulated time
is returned. If the optional parameter is specified as true then the time returned is again
the model’s simulated time. If the optional parameter is specified as nil then the time is
taken from the internal Lisp timer using the command get-internal-real-time.

Buffer stuffing

The buffer stuffing mechanism was introduced in this unit text. It mentioned that one can
change the default conditions that are checked to determine which item (if any) will be
stuffed into the visual-location buffer. The function which does that is called set-visloc-
default. The parameters that you pass to it are essentially the same as you would specify
in a request to the visual-location buffer. Here are a couple of examples:

(set-visloc-default isa visual-location :attended new screen-x lowest)
(set-visloc-default screen-x current > screen-y 100 < screen-y 230))
(set-visloc-default kind text color red width highest)

set-visloc-default – This command sets the conditions that will be used to select the
visual-location that gets buffer stuffed. When the screen is processed by the model (proc-
display is called) if the visual-location buffer is empty a visual-location that matches the

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

conditions specified by this command will be placed into the visual-location buffer.
Effectively, what happens is that when proc-display gets called, if the visual-location
buffer is empty, a visual-location request is automatically executed using the slot tests set
with set-visloc-default.

Speeding up the experiments

The experiment code provided for both of the tasks in this unit uses a real window for
interaction and thus the model must be run in real time to interact with that window. In
the main unit text it mentions that it is possible to instead use a virtual window for the
model and then it does not have to be run in real time. To make the experiment window
virtual the :visible keyword parameter provided to open-exp-window must be specified as
nil instead of t. In the sperling task that call occurs in the do-sperling-trial function:

(defun do-sperling-trial (onset-time)

 (reset)

 (let* ((lis (permute-list '("B" "C" "D" "F" "G" "H" "J"
 "K" "L" "M" "N" "P" "Q" "R"
 "S" "T" "V" "W" "X" "Y" "Z")))
 (answers nil)
 (tone (act-r-random 3))
 (window (open-exp-window "Sperling Experiment"
 :visible t
 :width 300
 :height 300)))

and in the subitizing task it is in the subitize-trial function:

(defun subitize-trial (n &optional who)
 (let ((points (generate-points n))
 (window (open-exp-window "Subitizing Experiment"
 :visible t
 :width 300
 :height 300
 :x 300
 :y 300)))

Changing the highlighted t to nil in those functions will make them virtual windows.

After doing that, the call to run the model in those same functions can be changed to not
run the model in real time. Like the :visible flag those calls to run include a keyword
parameter :real-time which is specified as t as shown in this call which is used in both
experiments:

(run 30 :real-time t)

ACT-R 7 Tutorial 11-Jul-17 Unit Three Code Details

Changing that t to nil will allow the model simulation to run without being constrained
by real time. Alternatively, the real-time parameter could be removed entirely because
the default operation of the run command is to run in simulated time:

(run 30)

After making those changes to the experiment code you will have to save the file and
then load it before they will take effect.

	Unit3 Model Code Description

