
NeuroImage 174 (2018) 472–484
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
CMA
Mapping working memory retrieval in space and in time: A combined
electroencephalography and electrocorticography approach

Qiong Zhang a,*, Marieke van Vugt b, Jelmer P. Borst b, John R. Anderson c

a Machine Learning Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, United States
b Department of Artificial Intelligence, University of Groningen, 9747 AG, Groningen, The Netherlands
c Psychology Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, United States
A R T I C L E I N F O

Keywords:
Spatial-temporal analysis
Sternberg task
Hidden semi-Markov model
Working memory
Electroencephalography
Electrocorticography
* Corresponding author.
E-mail addresses: qiongz@andrew.cmu.edu (Q. Z

https://doi.org/10.1016/j.neuroimage.2018.03.039
Received 23 December 2017; Received in revised f
Available online 20 March 2018
1053-8119/© 2018 Elsevier Inc. All rights reserved
A B S T R A C T

In this study, we investigated the time course and neural correlates of the retrieval process underlying visual
working memory. We made use of a rare dataset in which the same task was recorded using both scalp elec-
troencephalography (EEG) and Electrocorticography (ECoG), respectively. This allowed us to examine with
great spatial and temporal detail how the retrieval process works, and in particular how the medial temporal
lobe (MTL) is involved. In each trial, participants judged whether a probe face had been among a set of recently
studied faces. With a method that combines hidden semi-Markov models and multivariate pattern analysis, the
neural signal was decomposed into a sequence of latent cognitive stages with information about their durations
on a trial-by-trial basis. Analyzed separately, EEG and ECoG data yielded converging results on discovered
stages and their interpretation, which reflected 1) a brief pre-attention stage, 2) encoding the stimulus, 3)
retrieving the studied set, and 4) making a decision. Combining these stages with the high spatial resolution of
ECoG suggested that activity in the temporal cortex reflected item familiarity in the retrieval stage; and that
once retrieval is complete, there is active maintenance of the studied face set in the decision stage in the MTL.
During this same period, the frontal cortex guides the decision by means of theta coupling with the MTL. These
observations generalize previous findings on the role of MTL theta from long-term memory tasks to short-term
memory tasks.
Introduction

Information can be preserved in working memory across a short
delay without active maintenance (Ericsson and Kintsch, 1995; Lew-
is-Peacock et al., 2012; Oberauer, 2002). Our interest is in the process
by which this information is later retrieved. This can take place either
through an attention-based process that refocuses and refreshes the
memory traces (Lewis-Peacock et al., 2012; Souza et al., 2014), or a
cue-driven process that is very similar to cue-based retrieval from
long-term memory (Nairne, 2002). The objective of this study to map
the time course and neural correlates of this retrieval process. We focus
on a visual working memory task from a published dataset (Van Vugt
et al., 2013). Two experiments using the same task were carried out
using scalp electroencephalography (EEG) and electrocorticography
(ECoG), which allows us to harness the complementary strengths of
these two recording methods. In each trial, participants first studied a
list of faces, then, after a short delay, they were cued with a probe face
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and asked to judge if it had been among the just-studied faces (i.e., a
Sternberg task). To create a detailed mapping of the time course of the
retrieval process, we modeled the trial-to-trial variability of this process
with a novel method that combines hidden semi-Markov models with
multivariate pattern analysis (HSMM-MVPA; e.g., Anderson et al.,
2016), which we applied to both EEG and ECoG datasets. To create a
detailed mapping of the neural correlates we relied on the ECoG data-
set, which has superior spatial resolution. In the rest of this introduc-
tion, we will describe three main challenges to isolate the working
memory retrieval process in space and in time, and our approaches to
tackle these challenges. In the method section, we will provide the
technical details of these approaches.
The first challenge: trial-to-trial variability in the timing of cognitive
processes

We focus on the period of the working memory task where
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Fig. 1. Trial structure of the Sternberg task. This figure illustrates the sequence and timing of events in a trial with a set size of 3. Adopted from (Van Vugt et al., 2013)
with permission.

1 In contrast, there are limited opportunities to collect many subjects of ECoG
data.
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participates are asked to judge whether the presented probe is one of the
recently studied faces. Each trial analyzed starts with encoding a probe
face and ends with a motor response (the period marked as ‘probe’ in
Fig. 1), but the intermediate cognitive processes (including the retrieval
process) can vary greatly from trial to trial given the self-paced nature of
the task. Event-related potentials (ERP) are commonly used in EEG
literature to identify the occurrence of important cognitive events by
averaging stimulus-locked or response-locked signal across trials. How-
ever, cognitive events that are further away from stimulus or response
will have higher trial-to-trial temporal variability and are often distorted
or lost in the averaged waveforms (Luck, 2014). Therefore, in order to
isolate the full range of cognitive processes in the visual working memory
task, we need to apply a method that can capture the trial-to-trial vari-
ability in when they occur.

In the past, we have combined hidden semi-Markov models and
multivariate pattern analysis (i.e. HSMM-MVPA) to decompose the
neural signal (i.e. EEG, MEG) into a sequence of latent stages (Anderson
et al., 2016; Borst and Anderson, 2015; Zhang et al., 2017b. This
approach assumes that transitions from one processing stage to the next
are accompanied by a significant change in the information processing
and therefore in the underlying neural signal. HSMM-MVPA shares the
same notion as the microstate analysis developed by Lehmann and col-
leagues, which is to extract a sequence of non-overlapping mental states
from neural data during a specific task (Lehmann, 1987; Pascual-Marqui
et al., 1995). In addition, the HSMM-MVPA method also captures the
trial-to-trial variability of the durations in each state. This is in contrast to
the microstate analysis that was applied to average ERP data (Pascual--
Marqui et al., 1995).

The HSMM-MVPA model identifies brief, distinctive profiles of scalp
activity (i.e., bumps) with variable latencies in single trial EEG data. A
bump is modeled as a half-sine multidimensional peak across the scalp
that signifies a significant change in the information processing. This
assumption is inspired by two theories of ERP generation (Yeung et al.,
2004; Makeig, 2002; Shah et al., 2004; Basar, 1980). According to the
classical theory, significant cognitive events generate bursts of activity in
discrete brain regions (Shah et al., 2004). Therefore, the EEG signal can
be described as a sum of sinusoidal peaks and ongoing neural signal of
uncorrelated sinusoidal variation. According to the second theory of ERP
generation, the synchronized oscillation theory, significant cognitive
events reset the phase of the oscillation at a certain frequency (Basar,
1980). Under both theories, averaging neural signal across trials will
reveal the peaks as averaged ERP waveforms that we see, and the ERP
waveforms are indistinguishable between the two theories under simu-
lated datasets (Yeung et al., 2007).

In the current work, we will apply this method to both the EEG and
ECoG datasets to identify and isolate the cognitive processes in our visual
working memory task. Details on parameter estimation and model fitting
can be found in the Method section.
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The second challenge: isolate the retrieval process from the discovered stages

The HSMM-MVPA method gives a sequence of latent stages that
correspond to different cognitive processes. We are particularly inter-
ested in when the retrieval process takes place. In order to isolate this
retrieval process among the set of stages uncovered by HSMM-MVPA, we
need to find the mapping between the obtained model stages and the
series of cognitive processes thought to be involved in our task.
Extending an existing stage model based on an HSMM-MVPA analysis of
a Sternberg task involving digits (Anderson et al., 2016), we expect to
find the following five stages of processing:

1) Pre-attention: the time for the visual signal to reach the brain and to
be attended to;

2) Encoding: encode the probe presented;
3) Retrieval: reactivate face(s) from the studied memory set;
4) Decision: compare and decide if the probe face is part of the reac-

tivated set;
5) Motor response: press a key that reflects the decision.

To confirm this mapping for the current task, we will also examine
how stage durations vary given the manipulation of different experi-
mental factors. If a particular stage corresponds to a given cognitive
process, the way that different experimental factors alter the duration of
this stage should be consistent with our knowledge of the corresponding
cognitive process. We use regular scalp EEG with normal populations to
identify such condition effects, because there is more power associated
with larger number of subjects.1
The third challenge: identify the neural correlates associated with the
retrieval process

Processing stages obtained in the HSMM-MVPA method provide us
with the fine temporal resolution of when the retrieval process takes
place on single trials. We can further examine which brain regions are
activated during these discovered periods in a combined spatio-temporal
analysis. With EEG data, we can identify the mapping fromHSMM-MVPA
stages to individual cognitive processes with high temporal precision, but
poor spatial resolution limits our ability to determine how different brain
regions are engaged during these periods. To achieve a better spatial
resolution, we look into the ECoG activity during the periods of interest.
ECoG recordings from epileptic patients not only give finer spatial res-
olution in the cortical regions, but also make it possible to examine
subcortical activity such as that of MTL, which plays an important role in



Table 1
Number of patients and electrodes in each of the five ROIs.

Numbers Electrodes Patients

Temporal Cortex 269 12
Medial Temporal Lobe 69 10
Frontal Cortex 161 9
Parietal Cortex 93 9
Occipital Cortex 22 7

2 The sampling rates vary greatly as a result of different protocols used in
three different hospitals where ECoG data were collected.
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visual (working) memory tasks (Van Vugt et al., 2010; Ranganath, 2006).
Because recording sites in ECoG data vary across subjects in both
numbers and locations, we need a method of subject alignment before
pooling data from different subjects. Multi-set canonical correlation
analysis (M-CCA) is used for this purpose to transform electrode activity
in each subject to a common neural representational space, where the
inter-subject correlations of the transformed data are maximized across
subjects. We have previously demonstrated the reliability of M-CCA in
aligning subjects in MEG data (Zhang et al., 2017a). In the current work,
we will apply M-CCA to align ECoG data from individual subjects; we will
also apply M-CCA to the EEG data, which allows us to compare the ob-
tained common dimensions and the HSMM-MVPA results across two
experiments in two different measurement modalities.

Methods

Experimental paradigm

Participants completed a Sternberg task: Following the appearance of
a fixation stimulus, participants viewed a short series of faces in sequence
(Fig. 1). After a retention interval, a probe item appeared and partici-
pants indicated with a key press whether the probe was a member of the
just presented set (target) or not (foil). After each trial, participants were
given accuracy feedback. Fig. 1 illustrates the sequence and timing of
trial events in the original report of the data used in this study (Van Vugt
et al., 2013). 16 synthetic faces, which varied along four perceptual di-
mensions, were used as stimuli (Wilson et al., 2002). A multidimensional
scaling (MDS) study was carried out on 23 participants to characterize
the psychological perceived similarities among these synthetic faces (see
Van Vugt et al., 2013; Kahana and Bennett, 1994, for details). Therefore,
we can characterize the overall similarity between a probe and the just
studied set as the average similarity between the probe and each face on
the set (i.e., set similarity). We define two levels of set similarity among
the foils (i.e., low-sim and high-sim), dividing foils into two groups with
equal numbers of trials.

In the datasets we will use, there are two versions of the visual
working memory task, adapted to the cognitive capacities of the
respective subject populations. One was administered to healthy un-
dergraduates while their EEG was recorded (Experiment 1), while the
other was adapted to epileptic patients from who ECoG was recorded
(Experiment 2). The two experiments differed in the number of faces
participants viewed in the studied set before a probe in each series (set
size). In Experiment 1, set size could be two, three or four; in Experiment
2, set size could be one, two or three (adapted to the capacity of the
patients). Sets were constructed so that items could not be repeated on
successive sets, and targets were equally likely to match a study item
from each serial position. Incorrect trials and trials with RTs shorter than
400 ms or longer than 4000 ms were removed from the analysis.

Participants

In Experiment 1, 29 adults (ages 20–32) were recruited from the
University of Pennsylvania student community. Informed consent was
obtained from all participants. Each participant completed two sessions,
with each session involving ten blocks of 30 trials. Participants with
mean accuracy lower than 60% or with mean RT longer than 4s were
excluded. All 29 participants were retained for further analysis.

Participants in Experiment 2 were 16 neurosurgical patients being
treated for medically refractory epilepsy and were monitored with arrays
of subdural and/or depth electrodes. Patients were recruited from Brig-
ham and Women's Hospital in Boston, the Hospital of the University of
Pennsylvania in Philadelphia, and Universit€ats Klinikum Freiburg in
Germany. Informed consent was obtained from all participants. Under
the same accuracy and RT criteria as Experiment 1, 12 out of 16 patients
were retained for further analysis. Each patient completed different
number of trials for the experiment (μ¼ 202, SEM¼ 41), depending on
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their availability and willingness to participate in the experiments.

Scalp EEG recordings in experiment 1

Scalp EEG signals were recorded using a 129-channel EGI Inc. system,
with an AC-coupled, high-input-impedance amplifier (200MΩ, Net
Amps, Electrical Geodesics, Inc., Eugene, OR). The sampling rate was
500Hz, and data were recorded with a 0.1–250Hz bandpass filter. In-
dividual channels were adjusted until impedances were below 50 kΩ.
EEG signals were filtered with a bandpass of 0.1–70.0 Hz, and then
decomposed into independent components using the EEGLAB FastICA
algorithm (Delorme and Makeig, 2004). Components associated with eye
blinks were automatically identified and projected out of the EEG
recording. Epochs (from probe presentation to motor response in each
trial) were then extracted from the continuous recording. Epochs con-
taining voltages above þ100 μV or below �100 μV were excluded. Data
were down-sampled to 100Hz before further analysis. More details of the
experiment can be found in the original report of the EEG data (Van Vugt
et al., 2013).

ECoG and depth electrode recordings in experiment 2

The local field potential was amplified and digitally recorded at
sampling rates between 250 and 1024 Hz,2 and bandpass-filtered be-
tween 0.1 and 100 Hz. Data were subsequently notch-filtered with a
Butterworth filter with zero phase distortion to eliminate line noise. For
all participants, the locations of implanted electrodes were determined
by means of co-registered postoperative computed tomographies and
preoperative magnetic resonance imaging (MRI) or from postoperative
MRIs by an indirect stereotactic technique and converted into MNI
(Montreal Neurological Institute) coordinates. Localization of depth
electrode contacts in the medial temporal lobe (MTL) was done manually
through clinician's inspection of the postoperative MRIs, which includes
areas in hippocampus and parahippocampal gyrus. Analysis was done in
five pre-defined regions of interest (ROIs; see Table 1), and data were
down-sampled to 100Hz. More details of the experiment can be found in
the original reports of the ECoG data (Van Vugt et al., 2013; Van Vugt
et al., 2010).

Multi-set canonical correlation analysis (M-CCA)

While it is common practice to assume that the sensors for different
subjects in EEG recordings correspond, recording sites in ECoG data vary
from subject to subject in both number and locations since localization is
driven solely by clinical considerations. Therefore, in Experiment 2, a
method of subject alignment is required before pooling data from all
subjects together. Previously, we have found success in aligning subjects
with multi-set canonical correlations analysis (M-CCA) using only func-
tional information of the neural data in MEG datasets (Zhang et al.,
2017a). This method is used to find the optimal transformation for each
subject from electrode activity to a common neural representational
space, where the inter-subject correlations of the transformed data are



Fig. 2. An illustration to demonstrate an application of the M-CCA procedure to EEG data in Experiment 1 (K¼ 29) or ECoG data in Experiment 2 (K¼ 12). Sk is the
averaged data (across all trials for each condition) from all electrodes in subject K with 120 time samples; XK has 10 PCA components for subject K, each with 120 time
samples; YK has 5 CCA components, each with 120 time samples; W1, W2, …, W12 are PCA weights obtained for each subject independently; and H1, H2, …, H12 are
CCA weights obtained jointly from all subjects by maximizing all of the inter-subject correlations.

Q. Zhang et al. NeuroImage 174 (2018) 472–484
maximized across subjects.
Fig. 2 illustrates the steps to apply M-CCA. The procedure starts by

averaging multiple trials to obtain a highly reliable representation of the
change in sensor activity for each ECoG subject (indicated in the figure as
SK). This is similar to obtaining event-related potential waveforms in the
EEG literature (Picton et al., 2000). However, trials are quite variable in
their duration, and temporal alignment is lost when a time sample is
further away from stimulus presentation or response emission. Samples
locked to response emission in Experiment 2 also have poor temporal
alignment, as there is potential delay in response timing given the con-
dition of neurosurgical patients. Therefore, we only use samples from the
first 600 ms (60 samples given the sampling rate of 100Hz) of a trial
when applying M-CCA in Experiment 2. This averaging process is
repeated for the target and foil conditions separately, as we potentially
have different latent components for different conditions after averaging.
This gives rise to 120 samples (60 samples x 2 conditions) per subject as
the input S of M-CCA shown in Fig. 2. To reduce dimensionality and
remove subject-specific noise, we perform a spatial PCA to obtain the top
10 components on these matrices for each subject first ,3 instead of
applying M-CCA directly to the sensor data S. This results in 12 matrices
X of dimension 120� 10. The procedure also yields PCA weights, Ws,
3 10 PCA retained for each subject explained 85% of the variance for EEG
subjects, and 64% for ECoG subjects.

475
obtained independently for each subject. Next, the M-CCA estimates a set
of weights, Hs, that will map each subject's PCAs onto a common set of
dimensions. Once Ws and Hs are obtained, we can go back to full--
time-course data of individual trials and transform them from represen-
tation in electrodes to representation in CCA dimensions. The top 5 CCA
dimensions are retained for each subject .4 M-CCAwas also applied to the
EEG dataset in Experiment 1 using the exact same procedure, allowing us
to better compare the two experiments.

HSMM-MVPA

The HSMM-MVPA method explicitly models the variability of
endogenous ERP components that would otherwise be distorted or lost in
the average waveforms. Previous applications of the HSMM-MVPA
method to EEG data were effective in recovering the durations of the
underlying processing stages (e.g., recollection, decision) and showed
predictable changes with experimental factors in an associative recog-
nition task for word pairs and a Sternberg task (Anderson et al., 2016;
Zhang et al., 2017b). The HSMM-MVPAmodel identifies brief, distinctive
profiles of scalp activity (i.e., bumps) with variable latencies in the single
4 Averaged inter-subject correlations over the left-out half of the data for the
first five CCA components is 0.55 for EEG subjects and 0.48 for ECoG subjects.
Starting from the sixth CCA component for both EEG and ECoG subjects, inter-
subject correlations do not generalize well on the testing data (<0.3).
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trial EEG data. A bump is modeled as a half-sine multidimensional peak
across the scalp that signifies a significant change in the information
processing, followed by a flat period where the signal appears as ongoing
sinusoidal noise around a mean of 0. HSMM-MVPA models the durations
of the flats as gamma distributions. The HSMM-MVPA method was
applied to the first 5 CCA components, separately over two experiments.
The CCA components were z-scored for each trial. As a result, the data for
the analysis consisted of 5 orthogonal CCA components in each experi-
ment, sampled every 10 ms and with constant mean and variability
across trials. Only correct trials are considered in the analyses presented
below.

As described in more detail in our previous application of the HSMM-
MVPA method (Anderson et al., 2016), a n-bump HSMM requires esti-
mating nþ 1 stage distributions to describe the durations of the flats plus
the n 5-sample bumps for each CCA component. A different magnitude is
estimated for each of the n bumps along each CCA dimension. A bump
extends temporally across 5 samples (50 ms) and is multiplied by weights
of 0.309, 0.809, 1.000, 0.809, and 0.309 (i.e., a 10-Hz half sine wave).
The best model fit of such HSMMs is given by maximizing the summed
log likelihood of the bumps and flats across all trials. For each trial, this
log likelihood reflects the combination of two factors: the likelihood of
the EEG data given that the bumps are centered at each time point, and
the likelihoods that the bumps are centered at those time points given the
gamma distributions that constrain their locations. In other words, the
HSMM must select bump locations within a trial to maximize the cor-
respondence between the observed and the estimated EEG/ECoG signal,
while selecting relatively consistent flat durations across trials to maxi-
mize their fit to the gamma distributions.

Brain synchrony analysis

Quantification of phase synchrony between two neural signals was
done by means of a phase locking value (PLV). PLV measures the con-
sistency in the phase difference at a frequency of interest between two
recording sites across multiple trials at the corresponding time points
(Lachaux et al., 1999). Phases for single-trial neural signal at different
brain regions were measured using Hilbert transform (Tass et al., 1998;
Lachaux et al., 1999). It is equivalent to an alternative method by using
convolution with a complex wavelet, as demonstrated in a direct com-
parison study (Le Van Quyen et al., 2001). If the phase difference be-
tween signals from two recording sites is very similar from trial to trial at
the corresponding time point, then it is considered that at that particular
time point, the two brain sites are well synchronized in phase with PLV
close to 1; if the phase difference is very variable across trials, PLV is close
to 0.

Calculation of phase locking values requires establishing corre-
sponding time points across multiple trials. Typically one assumes that
samples correspond when they are at the same delay from the stimulus.
This assumption is only approximately correct given the trial-to-trial
variability of where the same cognitive event occurs. Alternatively, one
can assume that samples correspond when they at the same offset from
the same bump in the HSMM-MVPA analysis (Portoles et al., 2018). In
this way, phase locking value calculates how synchronized two brain
sites are around the cognitive event signified by a particular bump. In this
experiment, we are interested in the synchronization between the MTL
and cortical regions around when retrieval completes. Following the
procedure outlined by Lachaux et al. (1999), we bandpass-filtered ECoG
signal with finite impulse response (i.e., theta: 4–9 Hz, alpha: 9–15Hz,
and beta: 15–30 Hz) and extracted instantaneous phases using Hilbert
transform. Then we focused on the 100-ms time period right before and
the 100-ms time period right after the bump that signifies completion of
retrieval, and compared the phase locking values averaged within each
period to examine changes upon transitioning of cognitive processing
stages. This procedure was done for each subject separately, and repeated
for every combination of electrode pairs, with one electrode from the
MTL and one from the cortical region.
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Results

Behavioral analyses (Fig. 3)

Probe type. Participants are faster and more accurate when the pre-
sented probe is a target than a foil. The effect is significant in Experiment
1, as revealed by a repeated measures ANOVA (accuracy: F(1,28)¼ 17.5,
p< .001; RT: F(1,28)¼ 28.6, p< .001) but not in Experiment 2 (accu-
racy: F(1,11)¼ 0.04, p¼ .84; RT: F(1,11)¼ .08, p¼ .78.

Set similarity. There is an effect of set similarity on both RT and
accuracy in Experiment 1, as revealed by a repeated measures ANOVA
(accuracy: F(1,28)¼ 34.8, p< .001; RT: F(1,28)¼ 4.83, p< .05). In
Experiment 2, set size has an significant effect on accuracy but not on RT
(accuracy: F(1,11)¼ 43.7, p< .001; RT: F(1,11)¼ .078, p¼ .77).

Set size. There is a significant effect of set size on both RT and ac-
curacy in Experiment 1, as revealed by a repeated measures ANOVA
(accuracy: F(2,56)¼ 28.0, p< .001; RT: F(2,56)¼ 27.8, p< .001). In
Experiment 2, set size had a significant effect on accuracy but not on RT
(accuracy: F(2,22)¼ 25.4, p< .001; RT: F(2,22)¼ .08, p¼ .92.

Consistency in CCA dimensions across two experiments

Before pooling data across different ECoG subjects, we first identified
dimensions that correspond across subjects by applying the M-CCA
method. M-CCA serves to transform the data for each subject from the
number of recording sites into a reduced number (5 in our case) of
common dimensions (i.e., CCA components) shared across subjects. Two
M-CCAs were applied to the two experiments independently. We then
compare the temporal dynamics of the top 5 CCAs from the two exper-
iments. Being recorded from the same task, the two experiments are
expected to share similar CCAs.

Although the recording sites from individual subjects in ECoG data
were quite varied, the M-CCA obtained common dimensions of vari-
ation. Moreover, Fig. 4 shows that the top 5 CCA components are
comparable to the top 5 CCAs obtained from the EEG dataset – only
the order is different. We matched each CCA component in ECoG with
the one in EEG that had the highest absolute correlation (value noted
in the legend; matching indicated with colors). There appears to be a
one-to-one mapping from the 5 CCAs in ECoG to the 5 CCAs in EEG,
with their corresponding correlations of time courses ranging from 0.4
to 0.87.

Identification of the stage durations and the bump profiles in HSMM-MVPA

First, the number of stages in the HSMM-MVPA was determined. Two
HSMM-MVPAs were applied to the top 5 CCAs of the two experiments
independently. HSMM-MVPA identifies bumps in the ongoing EEG signal
related to significant changes in information processing. In this study, the
number of stages in HSMM was decided on the basis of between-exper-
iment predictions. Model parameters of the stage distributions were
obtained from the 29 subjects in Experiment 1, and used to calculate the
likelihood for each of the 12 subjects in Experiment 2 while re-estimating
the bump magnitudes; and vice versa. We prefer a more parsimonious
model with fewer bumps: we only select a model with mþ1 bumps over
that with m bumps if there is improvement in model likelihood over a
significant proportion of the total number of subjects. A 3-bump model is
significantly (p< .0001; two-tailed sign test) better than a 2-bumpmodel
in 34 out of 41 subjects (specifically, 24 of 29 in Exp 1 and 10 of 12 in Exp
2). A 4-bump model is significantly (p¼ .01; two-tailed sign test) better
than a 3-bump model in 29 out of 41 subjects (specifically, 19 of 29 in
Exp 1 and 10 of 12 in Exp 2), but a 5-bump model is only better (p¼ 1.0;
two-tailed sign test) than a 4-bumpmodel in 21 (17 in Exp 1 and 4 in Exp
2) out of 41 subjects. Therefore, the 4-bump model is the preferred
solution.

Second, we compared consistency in HSMM-MVPA results across two
experiments. Two 4-bump HSMMs were applied to the top 5 CCAs of the



Fig. 3. Accuracy (a–c) and RT (d–f) of EEG and ECoG data as a function of probe type, set similarity and set size. SEMs are shown in the error bars with between-
subjects variance removed (Loftus and Masson, 1994).

Fig. 4. First 5 CCA components obtained over EEG data in Experiment 1 (top row) and over ECoG data in Experiment 2 (bottom row). 60 samples correspond to 600
ms of stimulus-locked data in target condition. Corresponding CCAs are highlighted in the same color, with their absolute correlations noted in the legend. CCAs in
EEG with large negative correlations with CCAs in ECoG have been flipped, so that all signs are positive.
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two experiments independently. We then compared bump magnitudes
and stage durations of the resulting two models. Despite that two HSMMs
were applied to EEG and ECoG separately, there is considerable consis-
tency in bumpmagnitudes with the correlation of the 20 values (5 CCAs x
4 bumps/CCA) being 0.62. Fig. 5a further demonstrates this consistency
by comparing representations of the 4 bumps in the top two CCA di-
mensions across two experiments, which are highly similar.

Next, we interpreted the recovered stages and mapped them to cor-
responding cognitive processes. Fig. 5b shows the stage durations of the
two HSMMs. Consistent across the two experiments are three briefer
periods at the beginning of the trial followed by two longer periods to-
wards the end. ECoG subjects, who have overall longer RTs, are markedly
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slower in the last stage. Fig. 6a shows the reconstructed scalp profiles of
the four bumps in Experiment 1 (EEG), which were created by averaging
the observed voltages at the time of the maximum-likelihood samples for
each bump and during each trial. The scalp profiles are plotted against
the five stage durations.

Guided by the process model of Anderson et al. (2016), which
decomposed the recognition memory task into a encoding process, a
retrieval process, a decision process, and a motor response process, we
can interpret the HSMM-MVPA stages as follows: In both latency and
topographical distribution, the first bump resembles the N1, which is
typically interpreted as an index of visual attention (Luck et al., 2000).
Therefore, we interpret the first stage is a pre-attention stage before



Fig. 5. Representation of the 4 bumps in the top two CCA dimensions in the obtained HSMMs for both EEG and ECoG data (a). Durations of the five processing stages
identified using the HSMM-MVPA method for both EEG and ECoG data (b).

Fig. 6. (a). HSMM stages labeled with corresponding cognitive processes, interleaved by four reconstructed bumps for EEG data. Mean EEG electrode activity of the
reconstructed bumps were obtained by averaging the observed voltages at the time of the maximum-likelihood samples for each bump and during each trial. Electrode
voltages have been normalized for each trial. (b–d). Duration of Stage 4 (Retrieval stage) and Stage 5 (Decision stage) in EEG as a function of probe type, set similarity
and set size. SEMs are shown in the error bars with between-subjects variance removed (Loftus and Masson, 1994).

Q. Zhang et al. NeuroImage 174 (2018) 472–484
actual encoding takes place. It is then followed by two brief encoding
stages associated with the second and the third bumps that show a
posterior positivity. We believe these two bumps mark the encoding of
the probe face similar to a pair of encoding bumps identified in a word
recognition task (Anderson et al., 2016). Given its stage duration (i.e.
~200 ms) and the process model, Stage 4 is identified as the Retrieval
stage. This is consistent with the frontal-central distribution of the
fourth bump. Of the 5 stages, the last stage is not likely to be a motor
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response stage given its long duration of around 600 ms. It is more
likely that this stage represents the combination of the decision and
motor response stage and that we failed to detect a bump separating the
decision and motor stages. The interpretations of the five stages as
labeled in Fig. 6a will be further verified in the following sections by
examining the effect of different experimental factors (probe type/set
similarity/set size) on the durations and brain activity associated with
each stage.
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Stage durations by condition with EEG

RTs varied by condition for EEG subjects in Experiment 1. These
differences must show up in the durations of some of the stages. To
determine which stages were affected by the experimental manipulations
and examine if these effects are consistent with our interpretation of the
stages, we fit HSMMs with different stage durations to each condition.
That is, we estimated parameters for the gamma distributions of each
stage separately for the different conditions while constraining the bump
magnitudes to be the same. The HSMM methods return the probabilities
of each bump occurring at each time point on a trial-by-trial basis. These
probabilities can be used to calculate the most likely location of each
bump in a trial. Mean stage durations for a particular subject can then be
calculated as the average time between bumps across all trials within that
subject. Fig. 6b–d shows the resulting mean time durations across all EEG
subjects for Stage 4 and Stage 5. We submitted them to a repeated-
measures ANOVA for each condition (probe type/set similarity/set size)
and for each stage. The stage durations do not differ between conditions
for the first three stages. Consistent to the impression conveyed in the
figure, there is an effect of probe type in Stage 4 - the Retrieval stage
(F(1,28)¼ 29.210; p< .001) and in Stage 5 - the Decision stage
(F(1,28)¼ 14.013; p¼ 0.001). There is also effect of set similarity in the
Retrieval stage (F(1,28)¼ 6.227; p¼ .019) and the Decision stage
(F(1,28)¼ 14.943; p¼ 0.001). There is effect of set size in the Decision
stage (F(2,56)¼ 29.923; p< 0.001) but not in the Retrieval stage
(F(2,56)¼ 1.260; p¼ .29). To summarize, the Retrieval stage is shorter
for targets than for foils, consistent with the idea that it is easier to
retrieve the memory set given a member of that set. In addition, the
Retrieval stage is faster when the similarity between foil and memorized
items is high. The duration of the Decision stage is affected by all three
experimental factors: probe type, set similarity and set size.

Stage-locked brain activity by condition with ECoG

We exploit the spatial resolution of the ECoG data to examine where
the differences in brain activity across different conditions occur. In
event-related potential (ERP) analyses, the neural signal is anchored to
observable events such as the presentation of a stimulus. The bumps
obtained from the HSMM signal latent points of change in information
processing. These events can be used, along with observable events, to
align the neural data. We anchored ECoG data from each trial according
Fig. 7. Time periods (over sliding window of 100 ms) over stage-locked average activ
there are significant differences for different probe types, set similarity and set sizes i
dotted lines mark average positions of four bumps in the stage-locked activity (top row
(bottom row).
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to stimulus onset, response, and the maximum likelihood locations of
each of the four bumps during that trial. We then expanded or contracted
the resulting five intervals in every trial to have durations equal to mean
durations specified by HSMM-MVPA. In this way, the stimulus, the lo-
cations of the four bumps, and the response are aligned across all trials.
Over such stage-locked data, we can examine where and when different
conditions lead to different patterns of brain activity. Fig. 7 (top row)
highlights time periods and brain regions where there are significant
differences of stage-locked brain activity between any two conditions
using paired t-tests over a sliding window of 100 ms (dashed line rep-
resents average bump positions). Multiple comparisons across regions
and time windows were corrected with the Bonferroni correction. The
bottom row in Fig. 7 is a comparison using traditional ERP analysis with
600-ms stimulus-locked and 600-ms response-locked data (separated by
the dashed line).

In the stage-locked brain activity, we observe more positivity for
targets than foils in the temporal cortex before the Retrieval stage com-
pletes. The temporal cortex has previously been associated with face
familiarity (Gainotti, 2007) and is known to be instrumental in deter-
mining stimulus familiarity (e.g., Borst et al., 2016; Diana et al., 2007;
Henson et al., 1999; Gonsalves et al., 2005; Rugg and Yonelinas, 2003).
During the Decision stage, when the items are in active maintenance,
targets are associated with more positive deflections than foils in the
frontal cortex, which is known to be involved in post-retrieval monitoring
and maintenance (e.g., Achim and Lepage, 2005; Borst et al., 2016;
Mitchell et al., 2004; Rugg and Yonelinas, 2003). Similar patterns in the
frontal cortex also show up in different levels of set similarity among
foils, where a higher set similarity corresponds to more positive ECoG
amplitudes. During the same period in the Decision stage, there is an
ordered effect of set size in MTL, with set size 1 being the most positive.
This observation extends what we know about the MTL in maintaining
items in working memory. Increasing working memory load (set size)
was associated with elevated negativity of evoked response potentials of
hippocampus during the delay period (Axmacher et al., 2007). In our
study, this pattern also extends to the period after memory retrieval
(Bump 4), when the retrieved face(s) need to be actively maintained
during the Decision stage.

Comparison with the traditional ERP analysis demonstrates the
power of the HSMM-MVPA method in modeling cognitive events on a
trial-by-trial basis. In the ERP analysis, we observe more positivity for
targets than foils in the temporal cortex before the Retrieval stage
ity (top row) and stimulus/response-locked average activity (bottom row) where
n ECoG data, adjusted for multiple comparisons with Bonferroni correction. The
), and separation between stimulus-locked activity and response-locked activity
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completes, similar to the stage-locked activity with the HSMM-MVPA
method. Such consistency is attributed to low trial-to-trial variability
when data are closely time-locked to the stimulus. However, when
moving further away from the stimulus, in contrast to the stage-locked
brain activity, there are no significant effects across conditions in the
frontal cortex. There is a significant effect of set size across conditions in
the MTL in the Decision stage, but this difference is not ordered by the set
size.

Phase synchrony between medial temporal lobe and cortical areas

ECoG data provides the unique opportunity to study the properties of
oscillations in sub-cortical regions such as the MTL. In this section, we
examine the synchrony between MTL and different cortical regions
during the retrieval process.

Brain synchrony measures the relation between the temporal struc-
tures of the brain signals, and is considered as an important mechanism
for integrating activity from across distributed brain areas into coherent
perception and behavior (Varela et al., 2001; Fries, 2009; Fell and
Axmacher, 2011). Simultaneous recordings in the hippocampus and
prefrontal regions in animal studies have revealed synchronized theta
oscillations during working memory tasks (Siapas et al., 2005). To
examine whether those also occur in humans around the memory
retrieval stage, we focus on phase synchrony between MTL and different
cortical areas in the current experiment. Specifically, we examine if there
is any transient change in phase synchrony upon completion of memory
retrieval (i.e. when transitioning from the Retrieval stage to the Decision
stage; cf. Portoles et al., 2018).
Fig. 8. (a). Phase synchrony in theta, alpha and beta bands between MTL and cortica
particular cortical electrode is averaged across phase locking values calculated wit
subjects are then pooled together to obtain the standard error of the means. (b). Fron
theta band during the 100-ms after retrieval compared with before (red marker). Th
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We measured synchrony with phase locking values (Lachaux et al.,
1999). Fig. 8a plots the phase locking values between MTL and 4 cortical
regions in different frequency bands. We compared synchronization
during two distinct periods (each of a 100 ms duration) across all trials:
1) samples right before the completion of the Retrieval stage; 2) samples
right after completion of the Retrieval stage (i.e. the onset of the Decision
stage). Synchrony for a particular cortical electrode was averaged across
phase locking values calculated with each of the MTL electrodes of the
same subject. Electrodes in a cortical region from different subjects were
then pooled together to obtain the standard error of the means shown in
the figure. We were able to include 7 out of 12 subjects with more than 2
MTL electrodes in this analysis. Comparing the period right before and
right after when the retrieval completes, there is increased theta phase
synchrony between MTL and frontal recording sites (34 out of 47 elec-
trodes; p¼ .003, binomial test). This increase is specific to theta band,
and is not significant to alpha band (19 out of 47 electrodes; p¼ .24
¼> .05, binomial test) or beta band (22 out of 47 electrodes;
p¼ .77> .05, binomial test). We also observed increased phase syn-
chrony between MTL and recording sites in the temporal cortex in the
theta band (125 out of 190 electrodes; p< .0001, binomial test), but not
in alpha band (105 out of 190 electrodes; p¼ .17> .05, binomial test) or
beta band (101 out of 190 electrodes; p¼ .42> .05, binomial test). There
is no significant theta coupling between MTL with either the occipital
cortex (22 out of 55 electrodes; p¼ .18> .05, binomial test) or the pa-
rietal cortex (10 out of 18 electrodes; p¼ .81> .05, binomial test).

To further test if the theta coupling with MTL is significant on the
level of individual electrodes, we built surrogate data by randomly
shuffling the two time periods examined (i.e. before and after retrieval
l regions in 100-ms periods before and after retrieval completes. Synchrony for a
h each of the MTL electrodes of the same subject. Cortical electrodes across 7
tal electrodes with significant increase in phase-locking values with MLT in the
e remaining non-significant frontal electrodes are in blue.



Table 2
A summary of identified effects on the duration and the brain activity across
different processing stages.

Retrieval Stage Decision Stage

Duration i Probe type
ii Set similarity ↓

i Probe type
ii Set size ↑
iii Set similarity ↑

Temporal Cortex i Probe type i Synchrony with MTL
MTL i Set size ↓

ii Synchrony with frontal cortex
iii Synchrony with temporal cortex

Frontal Cortex i Probe type
ii Set similarity ↑
iii Synchrony with MTL

↑ indicates more positivity or longer duration; ↓ indicates the opposite.
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completes), and calculated the resulting phase locking values. This pro-
cedure is repeated 1000 iterations for between each pair of electrodes
examined, and its corresponding increase in theta coupling with MTL is
only considered significant if the amount of increase is larger than 95% of
the times in the surrogate data. In total, there are 40 out of 190 electrodes
in the temporal cortex that demonstrate significant increase in theta
coupling with MTL, and 16 out of 47 electrodes in the frontal cortex. Fig
8b shows that, despite that the 16 frontal electrodes are from 5 out of the
7 subjects examined, there is considerable across-subject consistency in
their locations (after being mapped to a common brain).

General discussion

In this study, we provided a detailed mapping of the time course and
neural correlates of the retrieval process underlying visual working
memory. Detailed mapping of the time course was achieved by capturing
the trial-to-trial variability of different cognitive processes using the
HSMM-MVPA method, instead of examining averaged neural activity
across trials locked to observable events in traditional ERP analysis.
HSMM-MVPA decomposed each trial into a sequence of latent stages. By
examining how the duration of the HSMM-MVPA stages differed between
task conditions, combined with our knowledge of a process model, we
found evidence for the existence of the following cognitive stages in the
visual working memory task: After a brief period for the visual signal to
reach the brain (i.e. pre-attention), participants first encode the probe
face (i.e. encoding), then retrieve faces from the memorized set (i.e.
retrieval), and lastly, compare the retrieved set of faces with the probe to
make a decision (i.e. decision). Once a detailed temporal mapping of the
task was achieved with HSMM-MVPA, fine spatial resolution in ECoG
was used to examine the neural correlates associated with each identified
cognitive stage. Main effects centered around the transition from the
Retrieval stage to the Decision stage (after completion of retrieval). These
effects are summarized in Table 2 and will be discussed in the following
sections.

Isolation of a retrieval process prior to the decision-making

It has been widely assumed that retention of information in the
working memory relies on maintenance of an active memory trace
(Fuster and Alexander, 1971). However, the maintained information can
be fragile if attention is temporally directed away or if the information is
not amenable to rehearsal (Jeneson and Squire, 2011). In that case,
memory can be preserved across a short delay without active mainte-
nance (Lewis-Peacock et al., 2012), and retrieved later.

In this study, we were able to identify such a retrieval process, with
EEG and ECoG data yielding converging results on a Retrieval stage
isolated from the Decision stage. In the Retrieval stage, we observed
more positivity for targets than foils in the temporal cortex, reflecting a
fast and automatic process that does not require item details (Clark and
Gronlund, 1996; Raaijmakers and Shiffrin, 1992). Once retrieval is
complete, in the decision stage, we observed evidence of active main-
tenance of the just-retrieved items, with an effect of set size in MTL
similar to that in Axmacher et al. (2007), and an effect of probe type in
the frontal cortex in supporting post-retrieval monitoring (e.g., Achim
and Lepage, 2005; Borst et al., 2016; Mitchell et al., 2004; Rugg and
Yonelinas, 2003). This provides support for cue-based retrieval theories
of working memory.

Duration of the retrieval stage and the decision stage

How the duration of a particular cognitive stage changes across
different experimental conditions provides important information on the
nature of the underlying process. Typically, the effect of an experiment
factor on a particular stage is reflected in the overall reaction times (RTs).
However, given that RT only provides a cumulative measure of all the
cognitive stages involved in a particular trial, there is not enough
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information in RT alone to isolate the effect of a particular experimental
factor when there is more than one cognitive stage affected. In this study,
we applied the HSMM-MVPA method to obtain durations of individual
cognitive stages, and identified effects in stage durations when both the
Retrieval stage and the Decision stage vary across conditions.

In particular, we observed from the EEG data that the duration of the
Retrieval stage depends on both probe type and set similarity. When the
probe is one of the previously memorized faces (i.e., targets), retrieval is
faster than when the probe is a foil because it is easier to reactivate the
memory set given a member of that set. In addition, retrieval speed also
depends on the set similarity. According to the ACT-R theory, greater
similarity between foil and memorized item will result in greater acti-
vation for the retrieved item, and consequently shorter retrieval time
(Anderson et al., 1998). The Retrieval stage does not depend on set size,
which is comparable to the Sternberg task analyzed in Anderson et al.
(2016).

The duration of the Decision stage is affected by all three factors:
probe type, set similarity and set size. There are two possible mecha-
nisms underlying the Decision stage: One possibility is that there is a
serial comparison procedure where the probe is compared with each of
the items in the retrieved set to find a match. The other possibility is
that there is an evidence-accumulation procedure where a decision is
driven by the strength of the overall similarity between the probe and
the retrieved set of items—basically the summed similarity discussed in
Van Vugt et al. (2013), van Vugt et al. (2009), Kahana and Sekuler
(2002) and Examplar-Based Random Walk models in Nosofsky et al.
(2011).

A serial self-terminating decision process would be consistent with
the data: Targets will yield a faster Decision stage due to earlier termi-
nation once a match is found (Fig. 6b). In foils, higher set similarity slows
down each comparison thus giving rise to a longer total Decision time
(Fig. 6c). Larger set size corresponds to a larger number of comparisons,
and therefore a longer Decision stage (Fig. 6d). A 2 (probe type) x 3 (set
size) repeated-measures ANOVA shows significant effect of interaction
between probe type and set size (F(2,56)¼ 4.68, p¼ 0.01). This is also
consistent with the assumption that the serial comparison is self-termi-
nating because the difference between targets and foils increases with set
size.

If the Decision stage involves evidence accumulation, that would also
be consistent with the data: Low similarity will lead to faster responses in
correct foils (Nosofsky et al., 2011; Ratcliff, 1978; Bogacz et al., 2006).
The effect of set size on the duration of the Decision stage can also be
explained by set similarity, as a smaller set size corresponds to higher set
similarity which leads to faster response in correct targets. In addition,
smaller set size also increases average memory strength with briefer time
lags, which gives rise to faster decision time under the evidence accu-
mulation account (Nosofsky et al., 2011). Under either mechanism, the
observation that increased set similarity speeds up the Retrieval stage
while slowing down the Decision stage is consistent with an earlier study
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with an associative recognition task (Zhang et al., 2017b).

Role of frontal cortex and MTL during the decision stage

fMRI studies have identified that the MTL and prefrontal cortex
support the general retrieval process of working memory tasks (Ble-
dowski et al., 2006; €Oztekin et al., 2009). However, given the low tem-
poral resolution of fMRI, isolation of detailed processing stages such as
the retrieval stage and the decision stage is difficult (but see Borst and
Anderson, 2013, 2017, for an application of model-based fMRI analysis
that attempts to tease apart working memory updating and retrieval). In
contrast, the high temporal resolution of applying the HSMM-MVPA
method to EEG and ECoG data enables us to divide the working memory
task into a sequence of stages. In particular, retrieval of the studied face
set marks the transition to a period of active maintenance of items, where
information in the retrieved set is compared with the probe before a
decision is made (Fig. 6a). The active maintenance is supported by MTL,
where we observed more negativity when the set size is large. Negativity
in hippocampal activity has been associated with increasing workload
(i.e., set size) in visual working memory task during the delay period,
when there is active maintenance of items right after they are encoded
(Axmacher et al., 2007). With the finer temporal resolution of
HSMM-MVPA, the current experiment extended this result to the deci-
sion period of a working memory task after the items are just retrieved.

During the Decision stage, we also observed more positive activity in
frontal cortex for targets than foils (comparable to the process described
in Borst et al., 2016). In working memory tasks, there is debate con-
cerning whether the involvement of prefrontal cortex contributes to the
maintenance of items or the selection of an item from memory to guide a
response (Curtis & D'Esposito, 2003; Rowe, 2000). Our experiment
supports the latter, with an effect for target/foil but not for different set
sizes in frontal cortex. This interpretation is consistent with the process
during the Decision stage, where an item needs to be selected to match
with the probe. When there is a match (i.e., targets), a more positive
response is triggered in the frontal cortex compared with that of non--
matches or foils. An alternative mechanism for the Decision stage could
be that instead of selecting and comparing each item in the retrieved face
set against the probe, the frontal cortex guides the decision in an evi-
dence-accumulation procedure driven by the similarity between the
probe and the entire retrieved face set (i.e., set similarity; Nosofsky et al.,
2011). This latter account is supported by more positivity in frontal
cortex for high-similarity trials than for low-similarity trials, in addition
to more positivity for targets than for foils.

We also found evidence that the frontal cortex guides the decision by
means of theta coupling with the MTL once retrieval has been completed.
Previously, it has been suggested that 4–9Hz theta power in the hippo-
campus is associated with encoding and retrieval of episodic memories
(Lega et al., 2011). Functional coupling between prefrontal cortex and
medial temporal cortex is considered one of the key connections in the
neural circuitry underlying working memory tasks, with theta oscilla-
tions proposed to mediate this interaction (Mitchell et al., 2008; Ander-
son et al., 2009). This is supported by multiple animal studies that
demonstrate phase-locking in the theta band between prefrontal cortex
and hippocampus (Siapas et al., 2005; Hyman, 2010; for a review see
Colgin, 2011). In human studies, PFC-hippocampal coupling, both
structural (Colgin, 2011) and functional (Campo at al., 2011), has been
shown to correlate with individual differences in task performance.
However, PFC-hippocampal communication through theta oscillations in
human working memory tasks has not been directly observed, though it
is shown to be important in free recall and associative recognition
memory tasks (Anderson et al., 2009). The observation of frontal-MTL
theta coupling generalizes the role of MTL theta from retrieval in episodic
memory to retrieval of previous items in working memory. This is
consistent with recent studies that MTL is not uniquely involved in
long-termmemory, but also critical to short-term memory even when the
retention period is as short as 2–10s (Holdstock et al., 1995; Owen et al.,
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1995; Holdstock et al., 2000; Aggleton et al., 1992; Hannula et al., 2006,
Van Vugt et al., 2010).

There are several limitations to our research. First, the analysis of
cortical-subcortical interaction was limited by the number and locations
of recording sites in each ECoG subject. Therefore, only pairs of elec-
trodes were examined at one time and pooled across all subjects in the
end. Second, the HSMM-MVPA method successfully isolated different
cognitive processing stages, but it did not provide enough evidence to
distinguish whether the decision stage undergoes a serial comparison
process or an evidence accumulation process. It would take more
experimental studies with targeted manipulations to make this distinc-
tion in the future.

Conclusion

In this study, we extended a previous account of the visual working
memory task using a summed-similarity model (Van Vugt et al., 2013)
to one that comprises multiple sequential cognitive stages. Combining
the temporal resolution of the EEG data, the spatial resolution of the
ECoG data, and the application of the HSMM-MVPA method, we were
able to identify the time duration and brain activity associated with
these stages. In contrast to traditional ERP analyses which only models
the effects that are closely locked to the beginning and the end of a trial,
the HSMM-MVPA method applied to both experiments isolated a
Retrieval stage where memorized items were re-activated, followed by
a Decision stage. In contrast to examining only the overall RT, the
HSMM-MVPA method applied to EEG data revealed how durations of
the Retrieval stage and the Decision stage vary across different exper-
imental conditions. Combined with fine spatial resolution of ECoG data,
it was identified that frontal cortex and MTL play a key role in response
selection and item maintenance respectively. The effect of set size
observed in MTL generalizes its role in actively maintaining items from
the delay period in working memory tasks to the decision period once
items are re-activated. The theta coupling between frontal cortex and
the MTL generalizes previous findings that were considered unique to
long-term memory tasks to working memory tasks. In addition, they
provide support for a cue-based retrieval account of visual working
memory.
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