ACT-R Parameters from (Resting State) Neuroimaging Data

Andrea Stocco¹, Peiyun Zhou¹, Chantel S. Prat¹ Florian Sense², & Hedderik van Rijn² ¹University of Washington, Seattle ²University of Groningen, The Netherlands

Individual differences in modeling

- > Individual differences ~ different model parameters
- > Individual parameters stable across tasks
- > Parameters would predict future behavior
- > Many interesting efforts:
 - Christian Lebiere, Marsha Lovett, Glenn Gunzelmann, Niels Taatgen...

In-House Example

- Max likelihood to fit four
 parameters in a DM task
 PSS task
- > Plugged parameters in model of different task
 - Simon task
- > Parameters predicted response times in incongruent trials

Data vs. Models

Subject

Limits of Behavioral Inference of Params

- > Depends on behavioral testing
 - can be long and complicated
 - Many many trials to get reliable measures
- > Requires reasonable models of a task
 - Garbage in, garbage out
- > Parameters should be the same across tasks
 - "Cognitive supermodels", à la Salvucci

What if we Could Bypass Behavior?

- > Parameters should reflect basic neural activity
- > Individual differences in parameters could and should be measurable somehow.
- > Many task-free neural measures exist
 - Anatomical MRI, DTI, SPECT/PET...

Resting State fMRI

- > Most popular method
- > Participants rest or "mind-wander" for ~8 mins
- Slow (0.1 0.01 Hz) fluctuations in activity identify networks of stably connected regions
- Connectivity measures predict individual variables (Age, IQ).

Resting State EEG

- > Decades-long use in clinical practice
- > Very stable across age
- > Reliably associated to individual traits
 - E.g., intelligence (Klimesh, 2003)
 - Second language aptitude (Prat et al., 2016)

Predictive Utility of Low, Mid, and High beta Frequency Ranges for Language Learning Rate

Raw data

Decompose each epoch Into frequencies

Emotiv EPOC Headsets

- > Reasonable price (< 1K)</p>
- > Decent characteristics
 - 14 channels @ 128 Hz
 - Frequently used for BCIs
- > Easy:
 - Portable, wireless systems
 - Saline-based electrodes
 - ~15 mins for correct application
 - Minimal training required
 - Great for individual difference studies

Target: Long-Term Memory Decay

- > Perhaps the cornerstone of ACT-R
- > Likely reflects nature of temporal lobe processing
- > Activation is controlled by decay parameter *d*

> Used Pavlik & Anderson's equation $A = \sum_{j} t_{j}^{-d}$ $d = ce^{A} + \alpha$

- Consistent across very short and very long intervals
- Accounts for spacing effects
- Florian and Hedderik devised a method to estimate α

How is α Measured?

Predict when the chunk is forgotten

If the chunk is remembered, reduce α

If the chunk was forgotten, increase $\boldsymbol{\alpha}$

Reliability of estimates

- > Sense et al., 2016, *TopiCS*
- > Reliability between 0.5 and 0.8
- > In essence, α is psychological "trait".

Does QEEG Predict Forgetting Rate?

- > *N* = 50 UW undergraduates
- > All native English speakers
 - This is important!
- > Collected 5 minutes of resting state, eyes closed EEG
- > Learned 25 pairs of English-Swahili words
 - Same paradigm as Sense et al., 2016

What Should We Expect?

- > Correlation with power in beta band (13-30 Hz)
 - Changes in beta power linked to memory formation
- > Location: likely around temporal lobe
 - Previous studies show greater correlations in the right hemisphere (greater variability)
- > Precise source localization not possible
 - Signal not up to par for task
 - (I tried, results are awful)

Specific to Beta Band

What does it mean?

Low Beta (13-15 Hz)

> Power reflects synchronized neural activity

- H1: Greater power = less specialization = more expensive encoding of memories
- H2: Greater power = greater effort in retrieving

- > Forgetting rate is reflected in basic neural characteristics
- > Other ACT-R parameters might be measurable in a similar way
 - Procedural learning rate (also α!) might be reflected in frontal theta power

