ACT-R Workshop

9:00am Session: Learning and Transfer in Complex Environments

John Anderson - Transfer of Cognitive Skills

Frank Ritter – Predictions and Test of a Model of Learning and Retention

Christian Lebiere and Edward Cranford - Decision Making in the Presence of Deceptive Signals

10:20am Break

10:40am Session: Neural and Perceptual Embodiments

John Lindstedt and Michael Byrne – Simple Agglomerative Visual Grouping for ACT-R Patrick Rice and Andrea Stocco - Using TMS to Test the Associations between ACT-R Modules and Cortical Regions

Andrea Stocco - ACT-R as a Model for the Brain's Functional Connectivity: Insights from the Human Connectome Data

12:00pm Lunch

1:30pm Session: Human Machine Interaction

Greg Trafton - Two Models of Social Influence

Sterling Somers - CogXAI: Cognitively eXplainable Artificial Intelligence

Nele Russwinkel - Developing a Concept of an Active Self through Natural Interaction

2:50pm Break

3:10pm Session: Future of ACT-R

Dan Bothell – Updates Everyone – Open Discussion

4:30pm Adjourn

ACT-R is Not Monolithic

- 1. While ACT-R may be maintained from CMU it no longer resides at CMU. The community motto is "Let a thousand flowers grow".
- While ACT-R is originated as LISP software for purposes of simulation, it is no longer tied to LISP. There are many theoreticallymotivated extensions and alternative practicality-motivated alternative implementations. There are full-functioning Python and Java versions.
- The ACT-R community shares a commitment to the "No Magic" Principle" -- cognitive theory has to run and it has to predict data
- The theory includes assumptions that are more core, shared by most in the community, and others that are more peripheral and often the subject of active experimentation.

ACT-R: The Oldest Core Principles

- 1. The Procedural-Declarative Distinction
 - a. The declarative component originated in Anderson & Bower (1973) HAM network representation of memory.
 - b. The procedural component originated in Newell's (1973) production system theory of cognitive control.
 - c. Both the procedural and declarative components have evolved far from these origins.
- 2. The Symbolic-Subsymbolic Distinction
 - a. In addition to the symbolic level that represented knowledge there is a subsymbolic level that controls access to that knowledge.
 - b. The subsymbolic level was initially designed to reflect the 1970s & 1980s ideas about neural processing.
 - c. Guided by rational analysis the subsymbolic level was updated in 1993 to reflected the likelihood that the information was useful. This was the birth of ACT-R.

Evolution from ACT-R 2.0 (1993) to ACT-R 7.x (2018)

- 1. There have been three driving forces:
 - a. The emergence of a user community around the publicly available ACT-R 2.0 (this is when Christian Lebiere's influence began).
 - b. The realization that the "No Magic" principle required that we be able to model the processing all the way from input to output.
 - c. The insistence on not making assumptions that could not be cashed out into neurally plausible computations.
- 2. This converged in the modular architecture of ACT-R 6.0 (2005):
 - a. The allowed community members to try variations on existing ideas and extensions but keep what they wanted.
 - b. We borrowed the modular organization of EPIC for the perceptual-motor modules.
 - c. There was growing evidence that, while the brain was a complex parallel machine, different regions had their specializations.
- 3. The current ACT-R 7.x (2017) largely reflects software refinements, some of which are significant as Dan Bothell will describe.

Module Structure of Current ACT-R

Transfer of Cognitive Skills

John R. Anderson Shawn Betts Daniel Bothell

Space Fortress Game 1

- 1 minute of play at 2x real time
- Navigate a ship between two hexagons, shooting at fortress while avoiding be shot by it.
- One major challenge is flying in a frictionless space.

Space Fortress Game 40

- 1 minute of play at 2x real time
- Navigate a ship between two hexagons, shooting at fortress while avoiding be shot by it.
- The other challenge is timing shots to be be just above 250 ms.

Space Track Game 1

- 1 minute of play at 2x real time
- Fly down rectangles as fast has you can without hitting the sides.
- Again one major challenge is flying in a frictionless space.

Space Track Game 40

- 1 minute of play at 2x real time
- Fly down rectangles as fast has you can without hitting the sides.
- Most deaths occur on hard turn at end of the rectangle.

Can Navigation Skill Transfer between Games?

Hint: Race car drivers do not have better off-track records than normal drivers (Williams & O'Neill, 1974).

Four Key Features of How ACT-R Models Performance and Learning

- 1. The model needs to represent realistic performance limitations including perceptual-motor skills and not assume super human response times.
 - ACT-R architecture captures these human limitations.
- 2. The system needs to deploy task knowledge without this it would take many more trials to master what participants master in 20 games.
 - ACT-R instruction following can capture this.
- 3. Participants start out deploying that knowledge slowly but speed up.
 - ACT-R production compilation can capture this.
- 4. Successful performance requires learning the parameters that define successful actions (e.g. when to thrust, how to pace shots).
 - In such a fast-paced game, there is not enough time for ACT-R to perform the task and monitor these parameters within its cognitive cycle.
 - Therefore, we have developed a new Tracking Module that can be informed by the cognitive cycle but monitors performance off-cycle.

Fortress Instructions (Encoded Declaratively)

Production Rule Learning

- ➤ Initially the model performs the task by retrieving declarative representations of the instructions and using its instruction following production rules to make the tests specified and perform the actions.
- ➤ It takes about 500 ms. to retrieve and interpret the instructions leading to an action in the game (the action will add in its own motor time).
- ➤ Production compilation combines initial steps and eventually produces direct action rules that respond to game situations with motor requests in 50 ms.
- Since the two games share the same knowledge about navigation some of these learned rules can transfer between games.

The Tracker Module

- ➤ Learns values on continuous dimensions to control action such as what delay to place between shots or how fast to fly in Space Track.
- ➤ **Informed Learning:** starts with a plausible range for the control value e.g., it has a range of time ticks that it thinks might correspond to 250 ms.
- > Experiments with different settings for random intervals.
- ➤ **Informed Learning:** evaluate settings according to relevant dimensions not simply points earned e.g., increasing vs resetting vulnerability.
- > Estimates a quadratic function giving rate of return for control values
 - Function estimated after one 3-minute game.
 - Note: Points are weighted by the duration of the interval over which they were sampled.

Selecting a New Control Value

- Use a softmax on quadratic function V with a temperature T.
- T=A/(1+B*time) -- A defaults to 1, B defaults to 1/180 s.

Fortress: Choices Averaged over 96 Models

Track: Choices Averaged over 96 Models

Four Conditions

Space Fortress Details

Space Track Details

Contribution of Production Compilation and Control Tuning

- ➤ One of the reasons there is not transfer is that instructions give the common declarative knowledge. Results would have been different if subjects had to discover the principles of flight.
- > Subjects are learning how to convert that declarative knowledge into high performance:
 - The control knowledge is entirely unique.
 - The shared compiled rules are relatively few (20%).

Conclusion

- ➤ These results are not not unique to these two games or to video games.
- ➤ They should generalize to any task that requires taking rapid and highly tuned actions -- driving race cars or driving a car on a city street.
- ➤ High levels of performance depend on the acquisition of highly specific action rules and control parameters that are unlikely to transfer to other situations.