ACT-R Workshop

9:00am Session: Learning and Transfer in Complex Environments

John Anderson — Transfer of Cognitive Skills

Frank Ritter — Predictions and Test of a Model of Learning and Retention

Christian Lebiere and Edward Cranford — Decision Making in the Presence of Deceptive Signals
10:20am Break

10:40am Session: Neural and Perceptual Embodiments

John Lindstedt and Michael Byrne — Simple Agglomerative Visual Grouping for ACT-R
Patrick Rice and Andrea Stocco - Using TMS to Test the Associations between ACT-R Modules
and Cortical Regions

Andrea Stocco - ACT-R as a Model for the Brain's Functional Connectivity: Insights from the
Human Connectome Data

12:00pm Lunch

1:30pm Session: Human Machine Interaction

Greg Trafton — Two Models of Social Influence

Sterling Somers — CogXAl: Cognitively eXplainable Artificial Intelligence

Nele Russwinkel - Developing a Concept of an Active Self through Natural Interaction
2:50pm Break

3:10pm Session: Future of ACT-R

Dan Bothell — Updates

Everyone — Open Discussion

4:30pm Adjourn

ACT-R is Not Monolithic

1. While ACT-R may be maintained from CMU it no longer resides at
CMU. The community motto is “Let a thousand flowers grow”.

2. While ACT-R is originated as LISP software for purposes of
simulation, it is no longer tied to LISP. There are many theoretically-
motivated extensions and alternative practicality-motivated
alternative implementations. There are full-functioning Python and
Java versions.

3. The ACT-R community shares a commitment to the “No Magic”
Principle” -- cognitive theory has to run and it has to predict data

4. The theory includes assumptions that are more core, shared by
most in the community, and others that are more peripheral and
often the subject of active experimentation.



ACT-R: The Oldest Core Principles

1. The Procedural-Declarative Distinction

a. The declarative component originated in Anderson & Bower (1973)
HAM network representation of memory.

b. The procedural component originated in Newell’ s (1973)
production system theory of cognitive control.

c. Both the procedural and declarative components have evolved far
from these origins.

2. The Symbolic-Subsymbolic Distinction

a. In addition to the symbolic level that represented knowledge there
is a subsymbolic level that controls access to that knowledge.

b. The subsymbolic level was initially designed to reflect the 1970s &
1980s ideas about neural processing.

c. Guided by rational analysis the subsymbolic level was updated in
1993 to reflected the likelihood that the information was useful.
This was the birth of ACT-R.

Evolution from ACT-R 2.0 (1993) to ACT-R 7.x (2018)

1. There have been three driving forces:

3.

a. The emergence of a user community around the publicly available
ACT-R 2.0 (this is when Christian Lebiere’s influence began).

b. The realization that the “No Magic” principle required that we be
able to model the processing all the way from input to output.

c. The insistence on not making assumptions that could not be
cashed out into neurally plausible computations.

This converged in the modular architecture of ACT-R 6.0 (2005):

a. The allowed community members to try variations on existing
ideas and extensions but keep what they wanted.

b. We borrowed the modular organization of EPIC for the
perceptual-motor modules.

c. There was growing evidence that, while the brain was a complex
parallel machine, different regions had their specializations.

The current ACT-R 7.x (2017) largely reflects software

refinements, some of which are significant as Dan Bothell will

describe.



Module Structure of Current ACT-R
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Space Fortress Game 1

Human or Model? Human or Model?

PNTS [VLNER

* 1 minute of play at 2x real time

* Navigate a ship between two hexagons, shooting at fortress
while avoiding be shot by it.

* One major challenge is flying in a frictionless space.

Space Fortress Game 40

Human or Model? Human or Model?

522 0 |

* 1 minute of play at 2x real time

* Navigate a ship between two hexagons, shooting at fortress
while avoiding be shot by it.

* The other challenge is timing shots to be be just above 250 ms.



Space Track Game 1

Human or Model? Human or Model?

[0 | [0 |

* 1 minute of play at 2x real time

* Fly down rectangles as fast has you can without hitting the
sides.

* Again one major challenge is flying in a frictionless space.

Space Track Game 40

Human or Model? Human or Model?

* 1 minute of play at 2x real time

* Fly down rectangles as fast has you can without hitting the
sides.

* Most deaths occur on hard turn at end of the rectangle.



Can Navigation Skill Transfer between Games?

Space Track

Space Fortress

Transfer Design
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Hint: Race car drivers do not have better off-track records than
normal drivers (Williams & O’Neill, 1974).
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Four Key Features of How ACT-R Models
Performance and Learning

1. The model needs to represent realistic performance limitations including
perceptual-motor skills and not assume super human response times.

* ACT-R architecture captures these human limitations.

2. The system needs to deploy task knowledge — without this it would take many
more trials to master what participants master in 20 games.

* ACT-Rinstruction following can capture this.
3. Participants start out deploying that knowledge slowly but speed up.
* ACT-R production compilation can capture this.

4. Successful performance requires learning the parameters that define
successful actions (e.g. when to thrust, how to pace shots).
* Insuch a fast-paced game, there is not enough time for ACT-R to perform
the task and monitor these parameters within its cognitive cycle.
* Therefore, we have developed a new Tracking Module that can be
informed by the cognitive cycle but monitors performance off-cycle.
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Track Instructions
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Production Rule Learning

> Initially the model performs the task by retrieving declarative representations
of the instructions and using its instruction following production rules to make
the tests specified and perform the actions.

> It takes about 500 ms. to retrieve and interpret the instructions leading to an
action in the game (the action will add in its own motor time).

» Production compilation combines initial steps and eventually produces direct
action rules that respond to game situations with motor requests in 50 ms.

> Since the two games share the same knowledge about navigation some of
these learned rules can transfer between games.
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The Tracker Module

» Learns values on continuous dimensions to control action such as what delay
to place between shots or how fast to fly in Space Track.

» Informed Learning: starts with a plausible range for the control value —e.g.,
it has a range of time ticks that it thinks might correspond to 250 ms.

Y

Experiments with different settings for random intervals.

» Informed Learning: evaluate settings according to relevant dimensions not
simply points earned — e.g., increasing vs resetting vulnerability.

» Estimates a quadratic function giving rate of return for control values
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Fortress: Choices Averaged over 96 Models
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Track: Choices Averaged over 96 Models
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» One of the reasons there is not transfer is that instructions give the common

declarative knowledge. Results would have been different if subjects had to

discover the principles of flight.
» Subjects are learning how to convert that declarative knowledge into high
performance:
The control knowledge is entirely unique.
The shared compiled rules are relatively few (20%).



Conclusion

» These results are not not unique to these two games
or to video games.

» They should generalize to any task that requires
taking rapid and highly tuned actions -- driving race
cars or driving a car on a city street.

» High levels of performance depend on the acquisition
of highly specific action rules and control parameters
that are unlikely to transfer to other situations.



