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Figure 8. Predictions for task completion time with BL with
24-hour decay periods between each trial and an initial 24
decay on the declarative knowledge, adjusted
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Project Objectives

Improve learning and retention in training by
understanding learning better:
Develop a cognitive architecture-based theory
to optimize training and retention
Explore and design better training schedules
Create deeper understanding of maintenance
skill learning and retention
Implement tutoring approach to apply results

KRK Theory

D2P2 System

LRI — EchcatorMens - My Account Logout

ions and Awards

0 |- ]

.) EEI NI . 4
L Sl B EEa |
I T TR A

(T T TR ] T80 ]

L 2 1L | < NN &

a1 Wl ewminnn e

Task Completion Time

Accomplishments/Impact/Transitions

1. Microgenetic analysis of learning & retention
2. Work on training schedules study finished
3. D2P tutoring architecture
* Web deployed w/ simulations
* Supports mobile devices
* Adaptive instruction with page annotations
* Usable by undergraduates
* Provided to NSMRL for feedback

4. Built tutors (Revised: CLS, MTT),
(New: Maintenance+Mends simulation, Medals,
Rate&Ratings, Tutor?, Chess pieces)

(Other: AF Trauma Nursing, DHA AAJT)
5. D2P approach used in Canadian DRDC study

Technical Approach
A learning and retention theory

Learn more about how learning
schedules interact with tasks

System to build adaptive tutors quickly
(D2P2) using learning theory, HCI
methods, software engineering,

+ example tutors

Refine D2P2 tutoring system iteratively
through use




Technical Approach 1: KRK theory

Catastrophic memory failure
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TA 2: Piloting study with ACT-R model

Dismal spreadsheet task
(14 subtasks, 4 repetitions,
1 delayed test)
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(EQ Dismal, a spreadsheet in Emacs
Ritter & Wood, 2005)

(£ RUI, a keystroke logger,
Kukreja et al. 2006;
Morgan et al. 2013)
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(EQ Keystroke vs. GUI,
Kim & Ritter, 2015)
(£ Herbal model test,

Paik, Kim, Ritter, & Reitter, 2015)



TAZ2: Piloting study with ACT-R
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TAZ: Piloting study eyes and hands

e Revision of SegMan from C to Java, using Robot and
Sikuli libraries

e Model does the task with full, uninstrumented
Interaction

e Does the Dismal task, like, it actually does it
e Found mistakes in model b/c we could see

o Closer fit:
Human Original JSegMan

Model Hands+Eyes

1366 (60.8) 1326 (12.1) 1339 (11.7)
894 (26.6) 891 (6.1) 894 (6.5)

1
2
3 727 (25.5) 693 (4.5) 704 (5.0)
4 659 (22.7) 594 (5.8) 614 (4.4)
R2 997 9984

(&d Tehranchi & Ritter, 2018a, b) MSE 1745

Day




TAZ2: Study proposed

Catastrophic memory failure
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b) KLM constants tasks (4 min. at start), vertical mouse

c) At test Knowledge types tasks (3x4min.)
I Tasks related to the complex task, procedural troubleshooting
ii. P/M (mouse/keystroke speed)
iii. Recognition (10 stimuli, 10 foils, have you seen this before?)

d) Record task actions and mouse & keystrokes

Design:

3 training amounts (1, 2, 4) before retention measure

3 retention amounts (3, 5, 7 days), without feedback
X 15 Ss =135 Ss, 450 sessions

Data will provide trial#s and times for entry into each stage for a task
or several tasks based on decay rates



Device Schematic

MENDS v.3.6 (7/3/2018)
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TAZ2: Study proposed

Subjects, N=135 PSU students
balanced by major

Tasks:

a) Complex troubleshooting task (45 min.)
(BenFranklinRadar = Diag++++), in D2P tutor
5x bigger than DiagTask 35v.7
45 faults, single, multiple

b) KLM constants tasks (4 min. at start), vertical mouse

c) At test Knowledge types tasks (3x4min.)

Task Completion Time
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i Tasks related to the complex task, procedural troubleshooting

ii. P/M (mouse/keystroke speed)

iii. Recognition (10 stimuli, 10 foils, have you seen this before?)

d) Record task actions and mouse & keystrokes
Design:

3 training amounts (1, 2, 4) before retention measure
3 retention amounts (3, 5, 7 days), without feedback

X 15 Ss =135 Ss, 450 sessions

Data will provide trial#s and times for entry into each stage for a task or

several tasks based on decay rates



Summary/Questions

eModel used to design a study
e Model can interact via OS

o Will generate single set of 4 learning
and retention curves for a complex task

e Corrections, citations, comments,
requested
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