Supplementary Material
MCCA Analysis (for extended discussion see Zhang et al., 2017)
The MEG sensor data as processed had two properties that made them inappropriate for a bump analysis and motivated the MCCA step.  To demonstrate these problems and prepare the data for this final step, we calculated average trial patterns for subjects by warping all trials between 600 to 2400 ms. to a common length of 1200 ms., by stretching or shrinking the trial by no more than a factor of 2.  We averaged these warped trials to get average patterns for each sensor for each subject.   Examining the resulting 120 samples-by-360 sensor arrays, two features are quite striking: 
1. Sensors are poorly correlated across subjects.   The average between-subject correlation for corresponding sensors over the 120 samples was .095 for the Pair Recognition study and .192 for the Arithmetic Retrieval experiment.   These correlations are much worse than for EEG data. This is not due to noisy data.   Splitting each subject’s data into odd and even trials, the average odd-even correlation for the same sensor within a subject is .765 for the Pair Recognition study and .591 for the Arithmetic Retrieval experiment.  This lack of between-subject sensor correspondence reflects the better spatial sensitivity of MEG, individual differences in both structural and functional anatomy of the brain, and differences in the location of the sensors relative to the brain. 
2. Individual sensors are quite correlated within subjects.   A principal component analysis on each subject’s data reveals that just 10 dimensions cover 97.7% of the variance for the Pair Recognition data and 97.3% of the variance for the Arithmetic Retrieval data.  Thus, we cannot treat the dimensions independently as is assumed by the bump analysis. 
[image: ]We used the multi-set canonical correlation analysis (MCCA) as described in Zhang et al (2017) to deal with both issues.   Figure S1 illustrates how the method was applied to the set of 306 sensors by 120 sample matrices.  Each subject’s matrix was reduced by a PCA to a smaller number (20 in this application) of dimensions.   These 20 dimensions captured of 99% of the variance in the average subject’s data[footnoteRef:1]. The MCCA finds for each subject a mapping of these 20 PCA dimensions (and hence of the original 306 sensors) onto a set of orthogonal canonical components. The components are ordered such that the first component has the highest correlation among subjects, the second component the second highest, etc.  The bump modeling used the first 10 components. [image: ] [1:  The resulting PCAs are not much better correlated across subjects than the sensors: r =.219 for pair recognition and .199 for arithmetic retrieval.   ] 

Figure S2 displays various measures of correspondence of the 10 components.  The line “Within Experiments” reflects the average correlations between subjects within an experiment.   These correlations are much higher than the original sensor correlations. As a test of the reliability of the MCCA components we broke the data from each experiment into odd and even trials and independently performed separate MCCAs on the two halves.  The line labeled “Within Halves” reflects the average correlation between subjects within either half of the data.  It is slightly lower that the within-experiment correlation because of the halving of the data to compute the MCCA.  The line labeled “Between Halves” shows the average between-subjects correlation of the odd and even halves and is a test of the reliability of the result.  Except for the 10th component, these correlations are close to the within-halves correlation. As a final measure, the line “Between Experiments” gives the mutual correlations between the corresponding components of the 18 Pair Recognition subjects and the 28 Arithmetic Retrieval subjects.  The average between-experiment correlation between corresponding components is .656.  For comparison, the average correlation between non-corresponding components is close to zero (.004).   These results indicate that MCCA is capturing reliable temporal trends in the data and temporal trends that appear to generalize across experiments. [image: ]
Figure S3 displays the temporal pattern of the 2nd, 4th, 6th, and 8th MCCA components over the 120 samples for the two experiments.  The correspondence between the two experiments is striking.  All ten of the components display a pattern that can be observed in these four:  There is a wavy fluctuation (but not simply sinusoidal) with more fluctuations for the later components.  While the average patterns in Figure S3 are quite regular, individual trials can be quite complex as Figure S4 illustrates. These MCCA components have complex power spectra just as the sensors they are derived from. Patterns like those in Figure S3 only emerge in average data.
[image: ]The average 10 MCCA components for the experiment do a good job of capturing the variance in the average pattern of one of the subjects’ 306 sensors -- average variance accounted for is .911 for the Pair Recognition experiment and .848 in the Arithmetic Retrieval experiment.  Given that these factors are uncorrelated they provide simultaneously a reliable organization of the variance in the experiment and a compression of the dimensionality of the data.  The fact that similar MCCA components appear for the two experiments is one piece of evidence that the two tasks involve the same processes. Given the similarity, one combined MCCA is applied to both datasets before further analysis. We took the subject weightings from the MCCA performed on their average data and applied it to the trial-by-trial data to represent each trial in 10 dimensions.   
Table S1
Intercorrelations of Bump Magnitudes in Various Fits (Red highlights correlations greater than .8)



[image: ]

5-Bump vs. 6-Bump Solutions
	[image: ]In the main text it was noted that the 6-bump solutions had greater predictive success than the 5-bump solutions, particularly when predicting the arithmetic-retrieval data from the pair-recognition parameter estimates.   However, it was also noted that the two 6-bump solutions did not correspond as closely as the 5-bump solutions. Table S1 gives the correlations among the MCCA magnitudes that define the various bumps.  The first three bumps and the last bump of the 6-bump solutions are similar to these bumps in the 5-bump solutions (average correlation .93 for Arithmetic Retrieval experiment and .98 for Pair Recognition experiment).   The fourth bump of the 5-bump Arithmetic Retrieval solution better corresponds to the fourth bump of the 6-bump arithmetic-retrieval solution than the fifth bump.   On the other hand, the fourth bump of the 5-bump Pair Recognition solution better corresponds to the fifth bump of the 6-bump arithmetic-retrieval solution than the fourth bump.   Thus, in going to the 6 bump solution for the Arithmetic Retrieval experiment a bump has been inserted between the fourth and fifth bump of the 5-bump solution.   In contrast, in going to the 6 bump solution for the Pair Recognition experiment a bump has been inserted between the third and fourth bump of the 5-bump solution.  Figure S5 shows the estimated 5 and 6 bump stage durations for the two experiments. The first three and last stage durations are quite consistent but the stages 4 through 6 are not reflecting the different placement of the extra bump.
	 We think the extra bumps in the two 6-bump solutions reflect subdividing different stages in the 5-bump solutions into substages.  In the case of arithmetic retrieval, the decision stage is being divided into identifying the answer and response mapping in anticipation of the upcoming keying of the answer after hitting the enter key.   In the case of pair recognition, the retrieval stage is being divided into a familiarity stage and a recollection stage (as suggested by Borst et al.’s 2016 original analysis of this experiment).
Calculation of Source Activity
Because the measured magnetic signal does not directly indicate the location and magnitude of cortical currents, we projected the sensor data onto the cortical surface using cortically constrained minimum norm estimates (MNE; Gramfort et al., 2014). The MNE method attempts to find the distribution of currents on the cortical surface with the minimum overall power that can explain the MEG sensor data. To this end we first constructed 3D cortical surface models from the subjects’ structural MRIs using FreeSurfer (Dale, Fischl, & Sereno, 1999; Fischl, 2012). These cortical surface models were manually co-registered with the MEG data on the basis of the recorded fiducials and scalp surface points. Then, 2,562 source dipoles were placed on the gray-white matter boundary of each hemisphere, approximately 6 mm apart, and a forward operator from these sources was calculated using a single compartment boundary-element model. A noise-covariance matrix was computed for each subject from -400 ms to -50 ms before stimulus presentation on each trial. The noise-covariance matrix and the forward operator were combined into an inverse operator (loose orientation constraint of 0.1, no depth weighting, default MNE SNR of 7), which can be used to project sensor data onto the source dipoles on the cortical surface. The inverse operator was used to project the raw stimulus-locked epochs of the arithmetic-retrieval sensor data and average stimulus- -locked epochs per subject and condition of the pair-recognition sensor data to the source space. These source estimates were then morphed onto the standard MNI brain using MNE’s surface-based normalization procedure (Gramfort et al., 2014).  [image: ]
We warped each trial of source data so that the locations of the bumps were at the average positions by stretching of compressing the observations between the bumps.  Figure S6 shows the average activity of all sources over the course of the trials.  There are significant variations in estimates of global source activity both within and between the two experiments.   Particularly noteworthy are the rises at the bump locations.  While such global effects may be of some interest, our interest is in the activity in specific regions. To remove global trends, we regressed each region of interest against the average activity (across all regions) on that trial and then averaged the residual activity across trials for each subject, condition and region. Figure 5 and 6 are based on the residual activity in a region not predicted by the global trends.
Simulation of Condition Effects [image: ]
	In the code associated with the paper is a script called synthetic.m that explores how effects in one condition will smear into nearby conditions.   It uses the methods described in Anderson et al. (2016) based on Yeung et al. (2007) to generate synthetic data where only the retrieval and decision times vary with conditions.   It generates two data sets, signalR and signalD.   In both the effects of condition are only in the retrieval  and decision stages and in both the relative ratio of the retrieval and decision durations for the conditions are the same.   However, in signalR the retrieval stage durations are twice the decision stage durations, while this is reversed in signalD.   Having generated synthetic data with these stage durations, the script estimates stage times as in Figure 4 and these are in the variables timesR and timesD.  The exact results with vary a little from one random generation of trials to another, but the results from one set of trial generations are displayed in Figure S7.  This figure illustrates two things.  First, the effects of stages that vary with condition bleed a little bit into stages that do not (the other 4 stages are just a little separated in the same order as the Retrieve and Decide stages).  Second, the effects of condition in the longer stage are not just larger in absolute terms (as they were in the generation process), they are also proportionately larger (which they where not in the generation process):  While the true ratio of condition effects in Figure S7a is 2-to-1 between Retrieve and decide, they are estimated as in the ratio 2.68-to-1. While the true ratio in Figure S7b is .5-to-1 they are estimated as in the ratio .35-to-1.’
The Effect of the Correlation Constraint
[bookmark: _GoBack]We examined what would happen to our estimation process if we removed the constraint that prevented highly correlated adjacent bumps. In the code associated with the paper is a function called hsmmNoBoundCorrs that that performs an unconstrained optimization.  In the file noBoundCorrs.mat is information comparable to that used for Figures 3 and 4 that has the results of estimation without the correlation constraint.  There is continued improvement up to 8 bumps in terms of using the data from one experiment to predict the other.  The 8-bump pair-recognition solution predicts better than any solution with fewer bumps for at least 25 of the 28 arithmetic retrieval participants and is not worse than any solution with more bumps for more than half the participants.  The 8-bump arithmetic-retrieval solution predicts better than any solution with fewer bumps for at least 17 of the 18 associative recognition participants. In this direction, prediction continues to improve up to 11 bumps.
Table S2
Intercorrelations of Bump Magnitudes between the 5-bump solutions with a correlation constraint and the 8-bump solutions without the constrain (Red highlights correlations greater than .7)

[image: ]

Table S2 shows, separately for the two experiments, the correlations between the magnitudes of the 5-bump solution obtained with the correlation constraint and the magnitudes of the 8-bump solution without the constraint.  It can be seen that the bumps in the 8-bump solution correlate strongly with bumps in the 5-bumps solution.  Bumps 1 and 2 of the 8-bump solution correlate with the first bump of the 5-bump solution.  These two bumps occur with an average gap of 19 msec.  Bumps 3 and 4 of the 8-bump solution, which occur with an average gap of 6 msec., correlate with the second bump of the 5-bump solution. Bumps 6 and 7 of the 8-bump solution, which occur with an average gap of 1 msec., correlate with the fourth bump of the 5-bump solution.  Figure S8, comparable to Figure 4 in the main text, shows the durations for each of the 9 stages in the 8-bump solution (which, except for the first, include the 50 msec. width of a bump).  As with Figure 3, the two longest stages map to what we considered as retrieval and decision based on correlations, but there are now a good number of very brief intervals.  Again the largest effect of condition is on the duration of the Decision stage. 
Thus, the correlation constraint has not changed the basic results, but has just culled out a lot of unnecessary bumps and stages.  We think these close-by bumps reflect either alpha ringing, where event-related potentials give lasting oscillations that are fit to more than one bump, or when the underlying width of the bump is much wider than the assumed 50 msec. In both cases, only one bump should be placed to make sure they each initiate a different cognitive processing stage. The correlation constraint is employed to ensure that. [image: ]
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Figure	S4.	Bo om:		The	2nd,	4th,	6th	and	8th	M-CCA	component	on	a	trial	that	took	1	sec	(100	

samples).		The	values	have	been	normalized	as	described	in	the	text.			Above:	The	expected	

magnitudes	for	these	4	dimensions	at	the	maximum	likelihood	posions	for	the	5	bumps.	
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Figure	S6.		Average	overall	source	acvity	a er	warping	every	trial	so	that	the	maximum	
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Figure	S1.	An	illustraon	of	mul-set	canonical	correlaon	applied	to	the	MEG	data.	
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Figure	S2.	The	between-subject	correlaons	between	M-CCA	dimensions	independently	

obtained	for	the	two	experiments	and	for	the	odd	and	even	trials	within	an	experiment..	


