The Common Time Course of Memory Processes Revealed[footnoteRef:1] [1:  This work was supported by the National Science Foundation grant DRL-1420008, a James S. McDonnell Scholar Award to JRA. We thank Lynne Reder for her comments on the paper.  The analyses and models in this paper can be obtained at http://act-r.psy.cmu.edu/?post_type=publications&p=21105.] 



John R. Anderson
Carnegie Mellon University

Jelmer P. Borst 
University of Groningen

Jon M Fincham
Carnegie Mellon University

Avniel Ghuman
University of Pittsburgh

Caitlin Tenison
Carnegie Mellon University

Qiong Zhang
Carnegie Mellon University

Abstract
Magnetoencephalography (MEG) was used to compare memory processes in two experiments, one involving recognition of word pairs and the other involving recall of newly learned arithmetic facts.  A combination of hidden semi-Markov models and multivariate pattern analysis (HSMM-MVPA) was used to locate brief “bumps” in the sensor data that marked the onset of different stages of cognitive processing. These bumps identified a separation between a retrieval stage that identified relevant information in memory and a decision stage that determined what response was implied by that information.  The encoding, retrieval, decision, and response stages that were identified displayed striking similarities across the two experiments in their duration and brain activation patterns.  Retrieval and decision processes involve distinct brain activation patterns.  We conclude that memory processes for two different tasks, associative recognition vs. arithmetic retrieval, follow a common spatiotemporal neural pattern and that both tasks have distinct retrieval and decision stages.


The goal of this paper is to understand the cognitive processing that occurs during the brief period when someone retrieves a well-known fact.  To take a current example, most people would have no problem answering the question “Who won the 2016 US election?” They are unlikely to introspect on how they answer this question nor would they come up with much insight if they did (much more likely to report on how they felt about the answer they retrieved).  Answers to such questions seem to come effortlessly, but they do not come instantaneously.  The goal of this paper is to identify the stages in generating such answers, what brain regions they involve, how the stage durations vary on a trial-by-trial basis, and especially how these processes generalize across tasks.  The paper will show that tasks with rather different memory contents – word pairs vs. arithmetic facts – show surprisingly similar stage structures.
The first stage in answering such a question must involve encoding the terms in question and the last stage must involve programming and executing the answer.   While the identities of these two stages are fairly certain, there is still uncertainty as to their durations.   There is much greater uncertainty about what happens in between.  One class of models (e.g., Starns & Ratcliff, 2014; Wixted & Stretch, 2004; Shiffrin & Steyvers, 1997) implies a continuous growth of evidence for an answer.   When a threshold is met that answer is converted into a response.  A second class of models, often applied to neuroimaging data (e.g. Badre &Wagner, 2007; Thomson-Shill et al., 1999), proposes two stages: an initial access to some relevant knowledge in memory and then a post-retrieval process that determines an answer from what is retrieved.    An instance of such a two-stage model is the ACT-R model of recognition memory and recall (e.g., Schneider & Anderson, 2012; Sohn et al., 2005), which involves separate retrieval and decision stages.   This paper will provide neural imaging evidence that at least two distinct stages intervene between encoding and response in associative memory tasks. [image: ]
In recent work (Anderson et al., 2016; Zhang et al., 2017) we have used the temporal resolution of electroencephalography (EEG) to identify the stages and when they were occurring in single trials.  To cope with the trial-by-trial variability in the onset latencies of ERP (event-related potential) components, we developed a novel method that involves applying hidden semi-Markov models and multivariate pattern analysis (HSMM-MVPA) to EEG data.  Transitions from one cognitive stage to the next are signaled by bumps that sum with the task-irrelevant oscillatory activity in the EEG signal (see Figure 1). The bumps have finite durations, amplitudes, and topographical distributions. The bumps are separated by variable duration flats in which the signal is treated as sinusoidal noise around 0.  The postulation that processing stages are signaled by such bumps is consistent with theories of ERP generation in EEG data (Makeig et al., 2002; Yeung, Bogacz, Holroyd, & Cohen, 2004), which corresponds closely to ERF (event-related field) generation in MEG data. The HSMM-MVPA attempts to recover the number, timing, and topographical distributions of these bumps. 
Previous EEG experiments (Anderson et al., 2016; Zhang et al, 2017) applied these methods to associative memory tasks and found evidence for an encoding phase associated with a number of early bumps (Bumps 1-3 in Figure 1), a retrieval phase ending with another bump (Bump 4 in Figure 1), a decision phase ending with a final bump (Bump 5 in Figure 1) and then a response phase.  This paper will extend the HSMM-MVPA methodology to two MEG studies with two goals:  First, the greater precision in localization that can be obtained with MEG facilitates studying activity during these stages in different brain regions.  Second, to assess the generality of the memory processes, we compared two tasks that might seem rather different in the processes and memory content they engaged.  One experiment was a pair recognition task (Borst et al., 2016) in which subjects had to judge whether they had studied a pair of words together.  The other was a recall task in which subjects had to retrieve the value of a newly learned arithmetic relationship (Tenison, 2017).  Despite their differences, both tasks required retrieving associative information and acting on it.   Moreover, both had a similar input-output structure in that two terms were encoded and subjects had to hit a single key in response (see Figure 2).  
We expected to identify again encoding, retrieval, decision, and response stages. Finding a distinction between retrieval and decision in two different tasks with another imaging modality would add further support to the separation of retrieval and decision.   To test whether the retrieval and decision stages are focused on memory processing, we partitioned the trials from the two experiments according to factors known to affect memory:  a manipulation of associative interference in the recognition task and a manipulation of practice in the arithmetic recall task.  These should affect only the durations of the retrieval and decision stages.  Beyond these tests of stage structure, the use of MEG allows critical additional tests of our understanding of the memory access:  If there are a common set of stages in these two rather different tasks, then they should evoke a common profile of brain activity and there should be distinct activity patterns for the retrieval and decision stages.
Methods
Detailed information about the two experiments is available in Borst et al. (2016) and Tenison (2017).   Here we focus on providing the information necessary to understand the two experiments and the new methods, unique to this paper, for processing the imaging data and performing the HSMM-MVPA analyses.
Subjects. All subjects were right-handed.  There were 18 subjects in the pair recognition experiment (6 males and 12 females, ages ranging from 18 to 35 years with a mean age of 23.6 years) and 28 subjects in the arithmetic retrieval experiment (15 males and 13 females, ages ranging from 19 to 27 years with a mean age of 20.1 years).  We have found that approximately 20 subjects with over 100 trials per subject are required for a robust application of HSMM-MVPA.
Procedure.  The pair recognition experiment consisted of two phases: a training phase in which subjects learned word pairs and a test phase in which subjects were asked to recognize pairs. The test phase was scheduled the day after the training phase and took place in the MEG scanner. During the test phase subjects had to distinguish between targets (trained word pairs) and re-paired foils (re-arranged pairs).  A critical manipulation was whether the words in the probe appeared uniquely in one pair or appeared in two pairs.   This is referred to as a fan manipulation.  Each word used in the fan condition appeared in two study items (A-B, A-C, D-B, D-C, E-F, E-G, H-F, H-G) while each word in the no-fan condition uniquely appeared in a single study item (W-X, Y-Z).  Foils are created by repairing words from the fan condition (A-F, D-G) or from the no-fan condition (W-Z).  Subjects completed a total of 14 blocks (7 left-handed, 7 right-handed) with 64 trials per block. To correspond to the arithmetic retrieval experiment, we will only use the blocks with right hand responses.  Hand did not have a significant effect on response time but did have a major effect on activity patterns.   
Tenison (2017) performed a MEG study of the learning of new arithmetic facts involving the pyramid relation.  Pyramid problems (presented with a dollar symbol as the operator, e.g., 8$4=X) involve a base (8) that is the first term in an additive sequence and a height (4) that determines the number of terms to add. Each term in the sequence is one less than the previous (e.g., 8$4 = 8+7+6+5 = 26). The bases varied from 4 to 11 and the heights from 3 to 5. Subjects solved a subset of these problems 54 times over the course of the experiment.   As shown in earlier fMRI studies (Tenison & Anderson, 2016, Tenison et al., 2016) subjects quickly transition to just retrieving these facts instead of calculating the answers.   We used a threshold of 2.4 seconds to identify retrieved facts and compared retrievals with relatively little practice (30 or fewer practice opportunities, an average of 21 prior trials of practice) with retrievals with more practice (greater than 30 practice opportunities, an average of 45 trials of prior practice). 
Although these are two rather different tasks, they were quite similar in terms of what the subject saw and the physical response. Figure 2 compares the sequence of events for the two experiments.  Each trial begins with a variable fixation period of 400 to 600 ms. While the probes are different (words versus numeric expression), in both cases two things need to be encoded (the two words or two numbers).   The data to be analyzed for each trial end with a key press.   The key press in the recognition task is a binary choice providing the answer (target or foil) while in the arithmetic retrieval task it is a signal indicating the subject is ready to enter the answer. The sequence of events diverges after this key press and is not analyzed:  The pair-recognition experiment ends with feedback as to correctness and an ITI (inter-trial interval). In the arithmetic retrieval task the subject must then enter the answer and is shown a more elaborate feedback explaining the answer, followed by an ITI. [image: ]
MEG Recording and Processing.  In both experiments MEG data were recorded with the same 306-channel Elekta Neuromag (Elekta Oy) whole-head scanner. The 306 channels are distributed into 102 sensor triplets, each containing one magnetometer and two orthogonal planar gradiometers. Data were digitized at 1 kHz. As part of standard MEG testing, four head position indicator (HPI) coils were attached to the subject’s scalp to track the position of the head in the MEG helmet.  In addition, we obtained anatomical MRIs for purposes of source localization. In the pair recognition experiment subjects responded with a response glove and in the arithmetic retrieval experiment they responded with a numerical keyboard. The stimuli were projected onto a screen about 1 meter in front of the subject. Stimulus onset was measured by a photodiode that was directly connected to the MEG recording system.
Only correct trials were used and only trials lasting between 600 and 2400 ms. (60 to 240 samples after down-sampling to 100 Hz). The two resulting normed data sets involved 6461 trials (781,900 10-ms. samples) for pair recognition and 3005 trials (332,889 samples) for arithmetic retrieval.  For each trial and each sensor the activity was baselined by subtracting the mean activity in the 200 msec. prior to trial onset. To normalize the variance among the three types of sensors (magnetometer, planar gradiometer, axial gradiometer), the activity of all sensors of a particular type were divided by the standard deviation for that type of sensors. 
As a step of dimensionality reduction and to deal with the fact that individual sensors do not necessarily correspond across subjects, we performed a multi-set canonical correlation analysis (MCCA) on the data (Zhang et al., 2017).    This serves to compress the data from the 306 sensors into a reduced number (10 in our case) of uncorrelated dimensions that are common across subjects.   The details of the MCCA analysis are explained in the Supplementary Material.  The output of the MCCA analyses applied to the data from the two experiments is a 1,114,789 x 10 matrix representing 9,466 trials and 46 subjects.   The HSMM-MVPA analyses will estimate parameters that maximize the probability of these data.
Bump Analysis of the MEG data.  The HSMM-MVPA analysis identified on a trial-by-trial basis the location of bumps that mark various stages of processing. This analysis assumes that stage boundaries are marked by 50-ms. half-sine bumps added to task-irrelevant oscillatory activity.   In between these 50 ms. periods are flats (see Figure 1) where the activity is modeled as sinusoidal noise with a mean of 0.   Bounded by trial onset and the finger press, the placement of N bumps results in N+1 intervening flats, and stage duration is the time between these bounds.
To summarize the assumptions, mathematics, and computations underlying the HSMM-MVPA analysis that estimates the bump parameters  (see Anderson et al, 2016, for detailed mathematical development):
1. The estimation process finds a set of parameters that will maximize the likelihood of the data from all the trials, given some description of the structure of those trials.
2. The description of a trial is anchored by the placement of N bumps during the trials.  The number of ways of placing N bumps in a trial of S samples is (S+N)!/(S! x  N!) (a very large number, given trials averaging more than 100 samples).  Every possible placement has a probability and the probability of the trial is the sum of all these probabilities.  The essential power of the HSMM algorithms is that they can efficiently compute these sums.
3. Any placement of the N bumps results in a partition of the trial into N bump regions and N+1 flat regions marked off by these bumps. The probability of such a partition is the product of the probabilities of the N bumps and the probabilities of the N+1 flats. 
4. The probability of a flat varies with its duration. This variation is modeled as a simple latency-like distribution for these flats – gamma distributions with shape 2 and scale parameters to be estimated.
5. The probability of a bump is determined by how well it matches the profile for that bump on each of the 10 MCCA dimensions. Because MCCA produces orthogonal dimensions the probability of a bump is the product of the probabilities on each dimension.  Thus, each bump can be characterized by a set of 10 magnitudes that represent the mean values on that dimension.
6. For any dimension the 50 ms. (5 samples) that constitute the bump define a half-sine pattern that starts at 0 at the onset of the bump, reaches a maximum at 25 ms. and comes back down to 0 at 50 ms. The probability of the bump of that dimension is determined by how much variability in the sample can be explained by the assumption of such a bump. 
Thus, an N-bump model requires estimating N+1 scale parameters to describe the durations of the flats and 10N magnitude parameters to describe the magnitudes of bumps.  The scale parameters reflect the temporal pattern of the bump locations and the magnitude parameters reflect the multivariate pattern of the bumps. These parameters are estimated iteratively using the expectation maximization algorithm associated with an HSMM (Yu, 2010).
      A single cognitive event can result in a train of bumps with highly correlated scalp profiles and little temporal separation. This can occur because of alpha ringing, where event-related potentials give lasting oscillations that are fit to more than one bump, or when the underlying width of the bump is much wider than the assumed 50 ms. To identify only bumps signaling distinct cognitive processes, we constrained how strongly correlated adjacent bumps could be according to how close they were:  If T msec. was the mean duration of the intervening flat, the maximum correlation between adjacent bumps was (T-50)/150.  This constrains nearby bumps to be uncorrelated and eliminates any constraints on the profiles of adjacent bumps more than 200 msec. apart.   The Supplementary Material compares this constrained solution with an unconstrained solution and shows that the only difference is elimination of highly correlated adjacent bumps.
Results
         64.1% of the arithmetic retrieval trials fell in the range of 600 to 2400 msec. (35.6% longer than 2400 and many reflecting calculation, .3% briefer) and 96.3% of these were correctly answered.  There were 1467 correct Early trials averaging 1.21 seconds and 1538 correct Late trials averaging 1.01 seconds.   In the pair recognitions experiment 2% of the no-fan trials were errors and 6% of the fan trials were errors.  96.0% of the correct trials fell in the interval between 600 to 2400 msec. with almost all remaining trials longer.  There were 3477 no-fan trials averaging 1.11 seconds and 2984 fan trials averaging 1.33 seconds.
Number of Cognitive Stages 
We estimated models of 1 to 8 bumps for the two experiments.  The estimation procedure for each experiment was entirely independent of the estimation for the other experiment. The estimation process produces parameters that describe the topographies of the bumps and the durations of the flats.  We then used these parameters estimated from one experiment to calculate the likelihood of the data from the other experiment.  In essence we are using one experiment to predict the other. Figure 3 shows how well the parameters from one experiment can predict the data from the other.   In both directions the likelihood of data increases up to 6 bumps.  The increase in log-likelihood up to 5 bumps is quite decisive: the 5-bump predictions for arithmetic retrieval experiment are better than any less for 25 of 28 subjects and better for the pair recognition experiment for all 18 subjects.   The improvement to 6 bumps continues to be quite clear for the arithmetic retrieval experiment (better than 5 bumps for 25 of 28 subjects).  The effect is less strong for the pair-recognition experiment but is still better for 14 of the 18 subjects (p < .05 by a sign test).  [image: ]
The corresponding bumps for the two fits of the 5-bump model are strongly correlated in terms of their magnitudes on the 10 MCCA dimensions (r = .939) but less so for the 6-bump model (r = .784)  -- see Supplementary Material for all individual correlations. The 6 flat durations estimated for the two experiments under the 5-bump model are very consistent (r = .995) while the 7 flat durations for the 6-bump model are less correlated (r = .926).  The high correlation for the 5-bump model is quite remarkable given that the two fits were entirely independent.    Because of this consistency and because it corresponds to the 5-bump results from our prior EEG study (Figure 1) we focus on this model in the paper.  The Supplementary Material describes the 6-bump solution and compares it with the 5-bump solution. [image: ]
The HSMM-MVPA estimation produces an estimate of how long each stage took on each trial.   Figure 4 shows the averages of these estimates for each condition from the separate models fit to the two experiments.  This displays the striking similarity in the stage durations for the two experiments. As in Anderson et al (2016), our interpretation is that the first stage reflects a pre-attentive period before the stimulus reaches the brain and is attended, the second and third stages reflect processing of the two terms, the fourth stage is retrieval, the fifth stage decision, and the last stage motor execution.   
The large effect of condition appears to be on duration of the decision stage but small differences appear in other stages.   One complication in interpreting any differences in stage duration is that the 5 bumps, while very similar, are not identical in the fits to the two experiments.  Thus, the stage durations measure slightly different things for the two experiments.   However, almost the same pattern of data appears when we fit one model with a common set of bumps to both experiments.
Another problem in interpreting stage durations is that, to the degree that the bumps in the data are not strong, the estimation of bump location is imprecise and biases can appear in the estimation of stage durations.  In particular, there is a tendency for the estimation process to distribute any effect of condition duration across all of the stages (see discussion in Supplementary Material). To determine which differences in stage durations are strongly supported, we allowed the HSMM to estimate different duration for a flat in different conditions[footnoteRef:2].   We fit 2^6=64 models which represented all possible ways of allowing a flat to vary with condition or not.  The goal was to identify the model that had the fewest flats varying which could characterize the data.   We both predicted the data of the odd subjects using flat durations estimated from the even subjects and vice versa, keeping constant the bump magnitudes of the overall 5-bump model.  Of the models that had just one flat varying, letting the fifth flat vary had the largest improvement over having no flats (improved 21 of 23 odd subjects, p<.001; mean gain in log-likelihood of 9.62 ; 18 of 23 even subjects, p < .01 with a mean gain of 6.65).   Allowing the fourth flat to vary had the second largest effect for the odd subjects (18 of 23 subjects, p< .01, mean gain of 6.13), but was not significant for the even subjects (12 of 23 subjects, mean gain of 1.78).   Varying any other flat duration did not lead to significant improvement for either odd or even subjects.   Allowing both the fourth and fifth flat to vary led to a significant improvement over just the fifth for the odd subjects (17 of 23 subjects, p< .05, mean gain of 5.02) but actually slightly decreased the mean fit for the even subjects (12 of 23, mean gain of -1.0).    None of the other models were significantly superior to the model with just flat 5 varying for either the odd or even subjects.   While we cannot reject the possibility of an effect on some other stage (particularly the retrieval stage given the significant effects for the odd subjects), the only strongly supported effect of condition is on the decision stage, as Figure 4 suggests. [2:  We used a constant set of bump magnitudes estimated from the simultaneous fit to both experiments.] 

As described in the Supplementary Materials, we used sample-by-sample sensor activity to infer patterns of activity in 5124 sources placed on the cortical surface.   To see if the two experiments were showing similar patterns we warped the trial data to fit a common template for that experiment.   This involves identifying the maximum-likelihood bump locations for each trial and placing these bumps at the average bump locations for that experiment.  The flat data between the bumps on each trial are then stretched or shrunk to have the same duration as the average flat durations.   We calculated how much activity in a region was above or below the global activity at each of the warped time points. Since the average trial was 1.11 seconds in arithmetic retrieval and 1.21 seconds for pair recognition, this resulted in 111 and 121 10-ms. samples per trial, which we averaged for each subject. Figures 5a and 5b illustrate areas that are significant (p < .05, 2-tailed) at time points during encoding (120 msec.), retrieval (500 msec.), decision (720 msec. in arithmetic retrieval, 770 in pair recognition), and response (1050 msec. during arithmetic retrieval, 1150 during pair recognition) periods.   [image: ]There appears to be overlap between the two experiments at different stages: visual areas are active during encoding, prefrontal areas during retrieval and decision, and motor areas during response.   
Figures 5c and 5d examine whether the same sources tend to be significant for pairs of time samples, one sample from the arithmetic retrieval experiment and the other from the pair recognition experiment.  On average for any of 111x121 sample pairs, 10.4 source pairs share significantly positive ts (p < .01, 1-tailed) and 30.1 share significantly negative ts.  However, the number of jointly significant source pairs varies from 0 to many hundreds for different sample pairs.  In part, this variation reflects that different sample points in each experiment have different numbers of significant sources, but we were interested in whether some sample pairs shared more significant sources that would be expected because of these marginal frequencies.  [image: ] Figures 5c and 5d look at how significantly the number of significant sources at sample pair deviates from what would be predicted from the marginal counts for each experiment.  Table 1 summarizes Figures 5c and 5d with the average values of all the ts in pairs of periods, one from each experiment.  It shows evidence for common overlap between periods (positive main diagonal), but in some cases there is overlap in adjacent periods.  In particular, the Retrieve period for arithmetic retrieval overlaps in terms of shared activity with the Decide period for pair recognition.  Similarly, the Decide period for arithmetic retrieval overlaps with the Respond period for pair recognition.
While Figure 5 gives evidence for the common activity that produces the same stage structure for the two experiments, it does not provide evidence about the nature of the differences among the periods.  To test this we fit one model to the data from both experiments and looked for contrasts between periods.   Figure 6a-c show the results of t-tests comparing source activity in adjacent time periods.   The Encode-Minus-Retrieve contrast shows that the Encode period has greater activity in visual areas while Retrieve has greater activity in prefrontal regions.  The Retrieve-Minus-Decide contrast shows the Retrieve period has greater activity at the temporoparietal junction while Decide has greater activity in prefrontal regions.  The Decide-Minus-Respond has greater Decide period has greater activity at the right temporoparietal junction (not shown) while Respond has greater activity in left motor areas (shown).  [image: ]
These effects in Figures 6a-c are generally in the direction we would expect, given our understanding of the function of the stages.  However, we did not have a priori predictions about most of the sources in such a brain-wide analysis.  We examined three a priori regions that past fMRI research (e.g., Anderson et al, 2008, Borst & Anderson, 2013) has associated with relevant modules in ACT-R: the left fusiform as an index of encoding activity, the left motor region as an index of response activity, and the left lateral inferior prefrontal cortex (LIPFC) as an index of retrieval. Figure 6d displays the activity in these regions over the course of the two experiments.  It has been warped to overall average time of 1180 msec. and the figure plots the 118 resulting samples for each region.  
Table 2
Results of Pairwise t-tests 
	(a) Fusiform
	minus Period

	
	Retrieve
	Decide
	Respond

	
Period
	Encode
	4.66****
	5.90****
	5.16****

	
	Retrieve
	
	1.87
	1.37

	
	Decide
	
	
	0.49

	
	
	
	

	

	(b) LIPFC
	minus Period

	
	Retrieve
	Decide
	Respond

	
	Encode
	-7.34****
	-6.30****
	-3.70**

	Period
	Retrieve
	
	0.64
	0.77

	
	Decide
	
	
	0.48

	
	
	
	

	

	(c) Motor
	minus Period

	
	Retrieve
	Decide
	Respond

	
	Encode
	3.11**
	2.78*
	-2.16*

	Period
	Retrieve
	
	-0.24
	-4.03***

	
	Decide
	
	
	-4.31***


 
2-tailed Significance (45 degrees of freedom)
*p<.05 
**p<.005
***p<.0005
****p<.00005

Table 2 gives the results of pairwise t-tests for differences between different periods and the results are quite clear:  The fusiform is more active in the Encode period than any other periods while none of the other pair-wise contrasts of periods is significant. The LIPFC shows the opposite effect: all the later periods are significantly more active than the Encode period while there are no significant differences among these later periods.  The motor region is significantly more active in the Respond period than any other and is more active in the Encode period than either the Retrieve or Decide period.  With the exception that the motor region starts high in the Encode period (but not as high as in the Respond Period) these are the effects we would predict.  We should note that, while condition had a large effect on the duration of the decision stage (Figure 4), there were no significant differences between the conditions in either experiment for any stage for any of these three regions. 
Conclusions and Discussion

Even though the memory judgments in these experiments average only a little longer than a second, the HSMM-MVPA methodology was able to parse individual trials into periods associated with encoding, retrieval, decision, and response.   Sensibly, the Encoding and Response times were not affected by condition and the Decision time was.  We expected to see the Retrieval time also affected by condition and there was evidence for that but it was much weaker (only significant for odd subjects).   In past experiments, we have seen different-sized effects of variables intended to manipulate memory difficulty on the Retrieval and Decision stages with the effect of Retrieval being sometimes quite strong (Anderson et al., 2016; Zhang et al., 2017).   In the Supplementary Material we show that if there is an effect on the duration of two adjacent stages, HSMM-MVPA has a bias to over-estimate the effect on the longer stage and under-estimate the effect on the shorter stage.   This would be consistent with the pattern of results we have seen across experiments.
Over and above confirming the stage structure found in past EEG experiments, our use of MEG allowed us to identify the brain regions engaged during these stages.   The results provide striking evidence for similarity of the processing involved in a pair recognition task and a task that involved retrieval of newly learned arithmetic facts.   Independent HSMM-MVPA fits found similar bumps occurring in the two tasks at similar intervals (Figure 4).   As a consequence, a model fit to one task could successfully predict the data from the other task (Figure 3).   These models worked on the results of an MCCA analysis and there was no guarantee that the same brain regions were involved in the two tasks.   Nonetheless, when the bump analysis is used to temporally align the source data, the two tasks do show a common pattern of brain activity (Figures 5) during each period. Moreover, each period does show a pattern of activity distinct from the other periods (Figures 6a-c).
While these data provide strong evidence for at least two distinct stages intervening between encoding a probe and generating a response, their identities are less certain.  Our characterization of these as Retrieval and Decision follows from the ACT-R process model; other neuroimaging models (e.g. Badre &Wagner, 2007; Thomson-Shill et al., 1999) reference a similar distinction between retrieval and post-retrieval stages.   In study of a task very similar to the arithmetic retrieval task (Reder & Ritter, 1992; Paynter et al., 2009), it has been suggested that there is an initial familiarity stage followed by a recollection stage.   Similarly, in Cox & Shiffrin’s (2017) model of associative recognition item information becomes available before associative information.   Thus, one could view what we have called the Retrieval stage as a familiarity/item stage (consistent with Portoles et al., 2017) and what we have called the Decision stage as a recollection/associative stage.   It is noteworthy that we found a sustained increase in LIPFC activation throughout the two stages that we call Retrieval and Decision.   It has been argued (e.g., Barredo et al., 2015) there is a need to exert control on both the retrieval process to assure that task relevant information is obtained and the post-retrieval process to select the appropriate action on the basis of the retrieved information.  While it remains to be determined just what is happening between encoding and response, our research indicates that associative memory tasks involve more a single process accumulating evidence.
There are ways of reconciling the current evidence with single stage decision accumulation models.   One could argue that single-stage models are only appropriate to non-associative tasks like item recognition. Such tasks may be based on familiarity and do not have an associative retrieval stage.   While single-stage models have mainly been applied to non-associative tasks they have also been applied to associative memory tasks.   For instance, as Voskuilen & Ratcliff (2016) describe their model of associative memory:
“Reaction time distributions are obtained by combining the decision time (the time taken for one of the evidence accumulators to reach a decision boundary) with a uniformly distributed non-decision component. The non-decision component …. encompasses both encoding and response output processes.” (p. 64).
The experiments to which these models have been applied typically have much less well learned material than our two experiments (and so analysis of errors becomes critical).  One might argue that only experiments with high degrees of practice have a distinct retrieval stage.  However, a better tack might be to include the retrieval phase in the non-decision component, which is assumed to be constant across conditions.  The fact that there is not strong evidence for an effect of memory difficulty on the retrieval stage in these experiments would be consistent with that, although Anderson et al. (2016) and Zhang et al. (2017) have found clear effects on the retrieval stage.  
[bookmark: _GoBack]However one interprets and treats the retrieval stage, one can view the decision stage as an evidence accumulation process that could be modeled with a variety of models.   Some sort of evidence accumulation process seems natural for both of the memory tasks.   For instance, Zhang et al (2017) manipulated foil similarity and described a process by which the words in the probe are compared one by one with the words in the retrieved memory.  One could propose a similar comparison process for arithmetic memory task in which the elements of numbers in the probe are compared against the probe (as suggested by Sohn et al. 2005, for a different recall task).   Alternatively, one could characterize the decision phase as involving a continuous accumulation of evidence as in Voskuilen & Ratcliff (2016).
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Figure Captions
Figure 1.  An illustration of the bumps and distribution of flat durations from Anderson et al. (2016).
Figure 2. Comparison of the experimental procedures in the pair recognition task and the arithmetic retrieval task.
Figure 3.  The average likelihood of a trial from one experiment given a N-bump model estimated from the other experiment.
Figure 4.  Estimated duration of the 6 stages for the two conditions in each experiments.
Figure 5. (a) Illustration of significant regions in the arithmetic retrieval experiment; (b) Illustration of significant regions in the pair-recognition experiment; (c) Overlap of positive ts;  (d) Overlap of negative ts.  The lines mark the boundaries between Encoding, Retrieval, Decision, and Responding.
Figure 6.  (a)-(c) t-values for contrasts between mean activity in adjacent periods. (a) Encode-minus-Retrieve; (b) Retrieve-minus-Decide; (c) Decide-minus-Respond. (d) Average residual source activity for pair-recognition experiment and arithmetic retrieval experiment after warping every trial: fusiform (Talairach coordinates: -42, -60, -8); LIPFC (Talairach coordinates: -43, 23,24); motor (Talairach coordinates: -42, 19,50).



1

image4.emf



Figure	
  4.	
  	
  Es,mated	
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Figure	4.		Esmated	duraon	of	the	6	stages	for	the	two	condions	in	each	experiments.	
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Figure	
  5.	
  (a)	
  Illustra1on	
  of	
  significant	
  regions	
  in	
  the	
  arithme1c	
  retrieval	
  experiment;	
  (b)	
  
Illustra1on	
  of	
  significant	
  regions	
  in	
  the	
  pair-­‐recogni1on	
  experiment;	
  (c)	
  Overlap	
  of	
  posi1ve	
  
ts;	
  	
  (d)	
  Overlap	
  of	
  nega1ve	
  ts.	
  	
  The	
  lines	
  mark	
  the	
  boundaries	
  between	
  Encoding,	
  Retrieval,	
  
Decision,	
  and	
  Responding.	
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(d) Common Negative ts (p < .01)
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Figure	5.	(a)	Illustraon	of	significant	regions	in	the	arithmec	retrieval	experiment;	(b)	

Illustra on	of	significant	regions	in	the	pair-recognion	experiment;	(c)	Overlap	of	posive	

ts;		(d)	Overlap	of	negave	ts.		The	lines	mark	the	boundaries	between	Encoding,	Retrieval,	

Decision,	and	Responding.	

!!!Encode!!!!!!!!!!!!!!!Retrieve!!!!!!!!!!!!!!!!!!!!Decide!!!!!!!!!!!!!!!!!Respond!

(a)!Math!Retrieval!

(b)!Pair!Recogni9on!

(c) Common Positive ts (p < .01)

Sample in Arithmetic Retrieval

20 40 60 80 100

S

a

m

p

l

e

 

i

n

 

P

a

i

r

 

R

e

c

o

g

n

i

t

i

o

n

20

40

60

80

100

120

-6

-4

-2

0

2

4

6

(d) Common Negative ts (p < .01)
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Encode Retrieve Decide Respond
Encode 4.93	
  +/-­‐	
  0.21 -­‐1.18	
  +/-­‐	
  0.08 -­‐3.30	
  +/-­‐	
  0.05 -­‐0.89	
  +/-­‐	
  0.07
Retrieve -­‐0.18	
  +/-­‐	
  0.09 1.59	
  +/-­‐	
  0.11 0.01	
  +/-­‐	
  0.04 0.89	
  +/-­‐	
  0.25
Decide -­‐3.50	
  +/-­‐	
  0.08 0.84	
  +/-­‐	
  0.06 2.50	
  +/-­‐	
  0.05 0.69	
  +/-­‐	
  0.10
Respond -­‐3.73	
  +/-­‐	
  0.20 0.54	
  +/-­‐	
  0.16 2.22	
  +/-­‐	
  0.11 0.73	
  +/-­‐	
  0.32



Encode Retrieve Decide Respond
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  +/-­‐	
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  0.07 -­‐2.88	
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  0.03 -­‐0.70	
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  0.12
Retrieve -­‐0.30	
  +/-­‐	
  0.09 0.94	
  +/-­‐	
  0.07 -­‐0.04	
  +/-­‐	
  0.05 -­‐0.46	
  +/-­‐	
  0.11
Decide -­‐4.19	
  +/-­‐	
  0.03 2.05	
  +/-­‐	
  0.07 2.85	
  +/-­‐	
  0.04 0.03	
  +/-­‐	
  0.06
Respond -­‐3.81	
  +/-­‐	
  0.07 -­‐0.21	
  +/-­‐	
  0.06 3.95	
  +/-­‐	
  0.13 4.62	
  +/-­‐	
  0.51
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Encode Retrieve Decide Respond

Encode 4.93	+/-	0.21 -1.18	+/-	0.08 -3.30	+/-	0.05 -0.89	+/-	0.07

Retrieve -0.18	+/-	0.09 1.59	+/-	0.11 0.01	+/-	0.04 0.89	+/-	0.25

Decide -3.50	+/-	0.08 0.84	+/-	0.06 2.50	+/-	0.05 0.69	+/-	0.10

Respond -3.73	+/-	0.20 0.54	+/-	0.16 2.22	+/-	0.11 0.73	+/-	0.32

Encode Retrieve Decide Respond

Encode 4.05	+/-	0.07 -1.90	+/-	0.07 -2.88	+/-	0.03 -0.70	+/-	0.12

Retrieve -0.30	+/-	0.09 0.94	+/-	0.07 -0.04	+/-	0.05 -0.46	+/-	0.11

Decide -4.19	+/-	0.03 2.05	+/-	0.07 2.85	+/-	0.04 0.03	+/-	0.06

Respond -3.81	+/-	0.07 -0.21	+/-	0.06 3.95	+/-	0.13 4.62	+/-	0.51

(b)	Average	ts	in	Period	
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Figure	
  6.	
  	
  (a)-­‐(c)	
  t-­‐values	
  for	
  contrasts	
  between	
  mean	
  ac9vity	
  in	
  adjacent	
  periods.	
  (a)	
  Encode-­‐
minus-­‐Retrieve;	
  (b)	
  Retrieve-­‐minus-­‐Decide;	
  (c)	
  Decide-­‐minus-­‐Respond.	
  (d)	
  Average	
  residual	
  
source	
  ac9vity	
  for	
  pair-­‐recogni9on	
  experiment	
  and	
  arithme9c	
  retrieval	
  experiment	
  aEer	
  
warping	
  every	
  trial:	
  fusiform	
  (Talairach	
  coordinates:	
  -­‐42,	
  -­‐60,	
  -­‐8);	
  LIPFC	
  (Talairach	
  
coordinates:	
  -­‐43,	
  23,24);	
  motor	
  (Talairach	
  coordinates:	
  -­‐42,	
  19,50).	
  










Figure	6.		(a)-(c)	t-values	for	contrasts	between	mean	acvity	in	adjacent	periods.	(a)	Encode-

minus-Retrieve;	(b)	Retrieve-minus-Decide;	(c)	Decide-minus-Respond.	(d)	Average	residual	

source	acvity	for	pair-recogni on	experiment	and	arithmec	retrieval	experiment	a er	

warping	every	trial:	fusiform	(Talairach	coordinates:	-42,	-60,	-8);	LIPFC	(Talairach	

coordinates:	-43,	23,24);	motor	(Talairach	coordinates:	-42,	19,50).	
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Figure	
  1.	
  	
  An	
  illustra0on	
  of	
  the	
  bumps	
  and	
  distribu0on	
  of	
  flat	
  dura0ons	
  from	
  Anderson	
  et	
  al.	
  
(2016).	
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Figure	1.		An	illustra on	of	the	bumps	and	distribuon	of	flat	duraons	from	Anderson	et	al.	

(2016).		
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Figure	
  2.	
  Comparison	
  of	
  the	
  experimental	
  procedures	
  in	
  the	
  pair	
  recogni8on	
  task	
  and	
  the	
  
arithme8c	
  retrieval	
  task.	
  










Figure	2.	Comparison	of	the	experimental	procedures	in	the	pair	recogni on	task	and	the	

arithmec	retrieval	task.	
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Figure	
  3.	
  	
  The	
  average	
  likelihood	
  of	
  a	
  trial	
  from	
  one	
  experiment	
  given	
  a	
  N-­‐bump	
  model	
  
es<mated	
  from	
  the	
  other	
  experiment.	
  










Figure	3.		The	average	likelihood	of	a	trial	from	one	experiment	given	a	N-bump	model	

esmated	from	the	other	experiment.	


