
ACT-R 7 Updates

Dan Bothell

07/26/2017

Last year to now

• 2016 PGSS

 7.0.11-<2054:2016-07-15>

• Now

7.5-<2244:2017-07-11>

• 5 significant changes

– possible incompatibilities

• 1 new extra

7.1 & 7.3

• Both similar updates to production compilation
– Better handling of buffer contexts with respect to

strict harvesting

• 7.1
– Consistent results for original and composed

productions as to whether there is or isn’t a chunk
in the buffer between and after

• 7.3
– Pay more attention to the queries

7.1

• If ‘buffer’ is strict harvested and of the goal or
imaginal compilation type

• Can’t compose these
 (p p1 =buffer> ==>) (p p2 =buffer> ==>)

– The chunk was “stuffed” between them

• Can’t compose these

(p p1 =buffer> ==> =buffer> <slot> <value>)
(p p2 =buffer> ==>)

– Empty after p2, but p1&p2 would leave it with a
chunk

7.3

• If ‘buffer’ is strict harvested and of the goal or
imaginal compilation type
– Don’t include conditions for queries that are true

because of strict harvesting

 (p p1 =buffer> ==>)
 (p p2 ?buffer> buffer empty ==>)

• Result:
 (p p1&p2 =buffer> ==>)

7.2

• Mod-focus schedules it’s change to the chunk
instead of directly performing it

– Consistent with goal-focus

• Allows one to do this:

(goal-focus base-goal)

(mod-focus …)

…

7.4

• Fixed a bug with RHS !bind! and !mv-bind!

– Nil return results were being accepted

– Problem since variables can’t be bound to nil

• Can’t “unselect” the production

– Print a warning

– Set the variable’s binding to t

7.5

• Fixed inconsistency with aural-location buffer

• When a sound ends

– If the corresponding audio-event chunk is in the
aural-location buffer

– Offset and duration slots always updated

7.1.1

• New extra: adaptive-noise

– Proposed by Christian Lebiere

• Decrease the effect of noise on the activation of
chunks as their activation increases with practice

• To use it

– (require-extra “adaptive-noise”)

– (sgp :uan t)

Adaptive Noise Mechanism

• Instead of

• Where

perminst nnPSBA

permnPSBA '

 instd n
i etB ln'

Effect

• 2 competing chunks e.g. 3+4=7 and 3+5=8

– Equal histories

– Partial matching in request

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

2
8

9

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

A
ct

iv
at

io
n

 a
t

re
tr

ie
va

l

target

other
1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

1
5

4

1
7

1

1
8

8

2
0

5

2
2

2

2
3

9

2
5

6

2
7

3

2
9

0
 0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ro

p
o

rt
io

n
 t

ar
ge

t
re

tr
ie

ve
d

default

uan

ACT-R 7 Status

• Seems to be stabilizing

– No real mechanism changes

• Maybe it should move to ACT-R 8 soon

New ACT-R Software

Dan Bothell

7/26/2017

Lump of Coal

• ACT-R implemented in Lisp

• Is that really the issue for most?

• Interface for working with ACT-R is Lisp

What is the ACT-R interface

• Commands documented in the manuals

• Lisp REPL and code convenient way to access

• Provide an alternative means of access

Replacement features

• Work with existing ACT-R

• Support all existing documented functionality

• Available via any language

• Allow multiple ‘users’

• Easy to use

• Low overhead cost

• Provide for possible future migration

A New Interface

• I’m calling it the dispatcher

• Central server to which clients can connect

• It’s not the user interface

– System interface

– Users will interact through something connected
to it (clients)

Dispatcher

• A simple RPC server

• Client actions

– List/check available commands

– Add/remove a command

– Evaluate a command

– Monitor/stop monitoring a command

• Server actions

– Evaluate a command provided by the client

ACT-R

Environment

Overview

Dispatcher

ACT-R 7

Client(s)

client client

ACT-R Application

Task

User interaction through a client

• A REPL in a Lisp client

• Python prompt

• MATLAB

• R

• Eclipse

• …

Technical Details

• Connections are TCP/IP socket

– Dispatcher is listening for connections

• Message protocol is a subset of JSON-RPC 1.0

– http://json-rpc.org/wiki/specification

– Not using the class hinting

– Not using 2.0 since peer<->peer a better fit

Current Status

• Functional
– Far from complete ACT-R interface
– significantly underdocumented
– Environment still connected directly to ACT-R

• Only source code right now
– Requires Quicklisp

• Available from the ACT-R repository
 svn://act-r.psy.cmu.edu/actrDES

• Also includes a Python client and interface library

– All tutorial tasks have been reimplemented completely in Python

Tasks

• Models are separate from tasks
• One model file (.lisp)
• Separate .lisp and .py task files

• Uses the AGI not native GUI

• Unit 5 1-hit-blackjack
– Similarity hook in the task code

• Unit 6 BST
– Math still in the model’s Lisp
 !eval! (< =under (- =over 25)))

• Unit 5 grouped example
 !eval! ("grouped-response" =name)

Relative to the desired features

• Good
– Allow multiple ‘users’
– Available via any language
– Provide for possible future migration
– Easy to use

• Mixed

– Work with existing ACT-R
– Low overhead cost
– Support all existing documented functionality

Work with existing ACT-R

• Tutorial models almost completely unchanged

• Multiple clients requires better concurrency
safety than existing ACT-R has (i.e. none)

• More safety checks on parameters

• Lots more error protection

Low overhead cost

• Not horrible for tested tutorial tasks
– Compared ACT-R 7 to using Python client
– Range from ~1% faster to ~600% slower
– Amount of back and forth a factor
– Safety code has a noticeable cost

• Mostly focused on functionality at this point
– Added a switch for the similarity hook to cache values

instead of calling out each time
– Hope to get some reasonable gains by running

modules in parallel

Support all existing documented
functionality

• Keyword parameters and chosen RPC protocol not a good
fit
– Use optional params and/or simplified alternate functions

instead

• “Wrapper” macros like no-output not feasible
– Replace with separate off/on calls

• RPM device mechanism doesn’t really work
– Replaced it with individual module specific interfaces
– Use the dispatcher monitoring to respond to actions
– Embrace that chunk-types are unnecessary for visual features

Next Steps

• Additional safety code around currently
provided functionality

• Update tutorial documentation to include
information on both the Lisp and Python task
implementations

• Have the Environment work through the
dispatcher

