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THAT MODELERS MIGHT ADDRESS WITH BIG DATA

SOME BIG QUESTIONS

• How does cognition give rise to language learning and language 
processing? 

• What are general, and which are language-specific operations 
and representations necessary for human language processing? 

• Can we learn, through language, about memory? 

• Can language datasets inform our model of (declarative) memory? 

• Decay, spreading activation, and language change 

• Patterns of similarity through distributed representations 
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DETECTING MEMORY EFFECTS IN LANGUAGE

• Sentence structure is influenced by recent context:  
Structural priming causes syntactic choices to be repeated.  
(Bock 1986, Pickering&Branigan 1998, etc.) 

• Syntactic repetition is associated with increased task success 
(where the task relies on mutual understanding).   
(Reitter&Moore 2014) 

• This can be seen in small corpora (few MB)
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STRUCTURAL PRIMING (SHORT-TERM)
 
 
 
 
 
 

Control for lexical repetition,  
disfluencies, frequency effects.  
By-turn analysis.
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Figure 2: Priming effect sizes ( ln(DIST)) under different
ROLE and SOURCE situations. Prime-target distance by num-

ber of utterances (Exp. 3) and seconds (Exp. 5). 95% CI. Ef-

fects estimated from separately fitted nested regression mod-

els on separately sampled datasets.

Again, a GLMM was built to correlate priming condition
with the set of factors and predictors.

Results

Once again we find that repetition is more likely the shorter
the distance between prime and target utterances is. Unlike in
Switchboard, interlocutors repeat each other’s syntactic struc-
tures more readily and more similarly to the way they repeat
their own structures.
The model showed a reliable effect of ln(DIST)

(t = � 71.2, p < 0.005) .
ROLE had a reliable constant effect on repetition rates

(t = � 11.0, p < 0.0001), but there was no interaction
between ROLE and DIST (p = 0.92).
This finding confirms experimental results by Bock and

Griffin (2000) and Branigan et al. (1999), who find syntac-
tic priming over longer distances, even though the effect de-
cays. (The effect of ROLE on bias may be related to speaker
idiosyncracies, i.e. more chance repetition within speakers.)
To determine whether there is a significant influence of di-

alogue type on priming, comparing the effects we have seen
in experiments 1 and 2, we built a further model, described in
the next section.

Exp. 3: Comparing corpora

With their Interactive Alignment Model, (Pickering and Gar-
rod, 2004) argue that the situation-model alignment of speak-
ers is due to lower-level priming effects. In task-oriented dia-
logue, and in the task carried out by participants in Map Task,
speakers need to align in order to successfully complete their
tasks. Thus, the theory would predict that syntactic priming
between speakers (CP) is greater in task-oriented dialogue.
We test this hypothesis by fitting a model of the joint data

set with SOURCE as a binary factor, indicating whether a rep-
etition stems from Map Task (task-oriented) or Switchboard
(not task-oriented). From Map Task, only dialogues in which
interlocutors could not see one another where included.
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Figure 3: Decaying repetition probability estimates depend-

ing on the increasing distance between prime and target, con-

trasting different ROLE and SOURCE situations. (Exp. 5)

Results

As seen in the previous experiments, it can make a difference
whether a speaker primes themself or is primed by their in-
terlocutor. Interestingly, the gap between CP and PP priming
is substantially affected by the choice of corpus (last two in-
teractions in Table 1). In both corpora, we find a positive PP
priming effect. However, in Map Task, CP and PP priming
cannot be distinguished (cf. Experiment 2), while in Switch-
board, there is little CP priming (cf. Experiment 1). Fig-
ure 2 (first four bars) provides the resulting priming strength
estimates for the four factorial combinations of ROLE and
SOURCE at increasing distance. Also, priming is stronger for
less frequent rules.

For Switchboard, the model estimates a higher coeffi-
cient for ln(DIST), suggesting that there was faster de-
cay in Map Task (Baseline effect of LN(DIST): �lnDist =
�0.092, p < 0.0001;�lnDist:CP = 0.083, p < 0.0001;
�lnDist:MapTask = �0.044, p = 0.05;
�lnDist:CP :MapTask = �0.140, p < 0.0001).
Frequency is negatively correlated with decay
(�lnDist:lnFreq = 0.049, p < 0.0001).
Finding the marked difference between CP and PP prim-

ing, and also a clear PP priming effect in spontaneous con-
versation, extends Dubey et al. (2005), who do not find reli-
able evidence of adaptation within speakers in Switchboard
for selected syntactic rules in coordinate structures.

Thus, the data is consistent with the hypothesis that seman-
tic alignment in dialogue is based on lower-level (syntactic)
priming. However, when comparing data across corpora, we
need to be careful to ensure that differences in genre and an-
notation are not the primary cause of the effect at hand. The
coefficient for pre-activation decay is sensitive to utterance
length, which becomes an issue for instance when utterances
are not consistently marked or if decay occurs over time and
not with utterances. Indeed, most utterances in Switchboard
are actually dialogue turns, and given the genre, they are usu-
ally longer than those in Map Task. Therefore, it makes sense

Effect of Prime-Target Distance

Stronger decay = more priming  
in task-oriented dialogue 
compared to spontaneous conversation 
Compatible with Interactive Alignment Theory

Reitter & Moore, Journal of Memory and Language, 2014
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SYNTACTIC COMPLEXITY CONVERGES
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Figure 2: Sentence length (SL), tree depth (TD) and branching factor (BF) against within-topic sentence
position (the relative position of a sentence from the beginning of the topic episode), grouped by speaker
role, leader vs. follower. Shaded areas: bootstrapped 95% confidence intervals.

while the other participant follows along. Here,
we are not talking about the turn-taking mech-
anism in dialogue, which describes the shift at
the utterance level. Rather, we are describing the
shift at a higher level in conversation, the topic

level, which is formally referred to as topic shift

in Conversation Analysis (Ng and Bradac, 1993;
Linell, 1998). According to these related theories,
a complete conversation consists of several topic

episodes. Some speakers play a more active role
in leading the unfolding of new topic episodes,
while others play a more passive role by follow-

ing the topic shift. Beginning a new topic means
bringing in new information, thus it is reasonable
to infer that the interlocutor’s syntactic complex-
ity would partially depend on whether he is play-
ing the leader or the follower. Considering the
fact that the leader vs. follower roles are not fixed
among interlocutors (a previous leader could be a
follower later and vise versa), we should not exam-
ine the convergence of syntactic complexity within
the whole conversation. Rather, we want to zoom
in to the finer scale of topic episodes, in which the
interlocutors’ roles are relatively stable.

Based on these considerations, we use the Text-
Tiling algorithm (Hearst, 1997) to segment the
conversation into several topic episodes. This is
a sufficient topic segmentation method for our re-
search questions, though it is less sophisticated
compared to Bayesian models (Eisenstein and
Barzilay, 2008) or Hidden Markov Models (Blei
and Moreno, 2001).

Within each topic episode that resulted from the

segmentation operation, we assign roles to the two
speakers. This is based on which of the interlocu-
tors is leading this topic episode, as previously ex-
plained. We use two rules to determine this leader

and follower differentiation:

Rule I: If the topic episode starts in the middle
of the speaking turn of speaker A, then let A be the
leader of this topic.

Rule II: If the topic episode starts with a com-
plete speaking turn, then let the first speaker who
contributes a sentence greater than N words in
length in this episode be the leader.

Note that the purpose of Rule II is to select the
most probable topic leader, based on the intuition
that longer sentences are more likely to initiate a
new topic. Thus the determination of the N words
threshold here is totally empirical. We use N =
5 as the final threshold, because for N � 5 our
experiments draw similar results.

3 Results

For each sentence in conversation, we compute
the five earlier-discussed metrics of syntactic com-
plexity: SL, TD, BF, NTD, and NBF.

For the first three metrics, SL, TD and BF,
we observe convergence between topic leaders
and followers, for both corpora (Fig. 2). Basi-
cally, topic leaders have higher syntactic complex-
ity measures at the early stage of a topic episode,
which drops gradually as the topic develops. The
converse holds for topic followers. We fit 12 linear

• Adaptation or accommodation appears to be strategic, at certain 
levels: syntactic complexity converges towards that of one’s 
conversation partner (X&R 2016) 

• Seen in large corpora of written dialogue (100s MB)



GENERAL COGNITION AND PSYCHOLINGUISTICS

CHALLENGE: HOW DOES LANGUAGE EXISTS IN THE MIND?

Declarative Memory

Verbal WM

spreading act.
retrieval Lexico-Syntactic

Routines

Broca’s area?

Routinization

Implicit Processes in Language Production and Comprehension

Reitter, Keller & Moore 2011
(ACT-R)

Chang, Dell, Bock 2006
(Connectionist)

8
Kelly, Reitter, & West, ICCM 2017
Cole & Reitter, ICCM 2017



COLE&REITTER, ICCM 2017

ACT-R MODEL OF LANGUAGE PRODUCTION

9

Automatic generation of semantic representation from 
corpus sentences. 

Learning of syntactic rules (DM, productions) necessary 
to process these sentences. 

How well can a model recover the corpus sentences?



BIG-DATA ACT-R MODEL OF LANGUAGE PRODUCTION

10

Grammatical Encoding: words are combined into 
sentences. Lexical Retrieval: Words are retrieved (and 
thus, enter working memory). How do constraints on 
working memory affect this process?

incremental model:

Non-incremental model:

less effective than incremental ***

also: more WM <-> more effective ***



WHAT OUR ACT-R MODEL CAN DO (TODAY)

11

1000 sentences 

Contrast different model variants (high/low WM, decay, 
incrementality) 

language processing vs. general cognition 

large-scale routinization of syntactic/semantic 
knowledge possible (in the future) 



AN INFORMATION-THEORETIC  
ACCOUNT OF DIALOGUE
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Table 1: Basic statistics of corpora

Statistics Switchboard BNC

# of dialogues. 1126 1346
Avg # of turns in dialogue 109 52
Avg # of sentences in dialogue 141 70

tiatory contribution that introduce a “candidate”
topic, and the other speaker makes a response that
shares his perspective on that (Linell, 1998). From
the information theoretic point of view, the initia-
tor of a new topic plays a role of introducing nov-
elty or surprisal into the context, while the other
speaker, the responder, is more of a commenter or
evaluator of information, who does not contribute
as much in terms of novelty.

Since previous studies have shown that the de-
crease of sentence entropy is correlated with topic
shifts in written text (Genzel and Charniak, 2003;
Qian and Jaeger, 2011), it is reasonable to expect
the same effect to be present at the boundaries of
topic episodes in dialogue. Furthermore, consid-
ering the initiator vs. responder discrepancy in
speaker roles, we expect their entropy change pat-
terns also to be different.

3 Overall Trend of Entropy in Dialogue

In this section we examine whether the overall en-
tropy increase trend is present in dialogue text.

3.1 Corpus data
The Switchboard corpus (Godfrey et al., 1992) and
the British National Corpus (BNC) (BNC, 2007)
are used in this study. Switchboard contains 1126
dialogues by telephone between two native North-
American English speakers in each dialogue. We
use only a subset of BNC (spoken part) that con-
tain spoken conversations with exactly two partici-
pants, so that the dialogue structures are consistent
with Switchboard.

3.2 Computing Entropy of One Sentence
We use language model to estimate the sentence
entropy, which is similar to Genzel and Charniak
(2003)’s method. A sentence is considered as a
sequence of words, W = {w1, w2, . . . , wn}, and
its per-word entropy is estimated by:

H(w1 . . . wn) = � 1

n

X

wi2W
logP (wi|w1 . . . wi�1)

where P (wi|w1 . . . wi�1) is estimated using a
trigram language model. The model is trained
using Katz backoff (Katz, 1987) and Lidstone
smoothing (Chen and Goodman, 1996).

For the two corpora respectively, we extract the
first 100 sentences from each conversation, and
apply a 10-fold cross-validation, i.e., dividing all
the data into 10 folds. Then we choose each fold
as the testing set, and compute the entropy of each
sentence in it, using the language model trained
against the rest of the folds.

3.3 Eliminating sentence length effects

Intuitively, longer sentences tend to convey more
information than short ones. Thus, the per-word
entropy of a sentence should be correlated with the
sentence length, i.e., the number of words. This
correlation is confirmed in our data by calculat-
ing the Pearson correlation between the per-word
entropy and sentence length: For Switchboard,
r = 0.258, p < 0.001; for BNC, r = 0.088, p <
0.001.

Sentence length is found to vary with its rela-
tive position in text (Keller, 2004). Thus, in order
to truly examine the variation pattern of sentence
entropy within dialogue, we need to eliminate the
effect of sentence length from it. We calculate
a normalized entropy that is independent of sen-
tence length in the following way. (This method
is used by Genzel and Charniak (2003) to get the
length-independent tree depth and branching fac-
tor of sentence.) First, we compute ē(n), the av-
erage per-word entropy of sentences of the same
length n, for all lengths (n = 1, 2, . . . ) that have
occurred

ē(n) = 1/|L(n)|
X

s2L(n)
e(s)

where e : S ! R is the original per-word en-
tropy of a sentence s, and L(n) = s|l(s) = n is
the set of sentences of length n. Then we compute
the sentence-length adjusted entropy measure that
we want by

e0(s) =
e(s)

ē(n)

This normalized entropy measure sums up to 1,
and is not sensitive to sentence length. In later part
of this paper, we demonstrate our results in both
entropy and normalized entropy because the for-
mer is the direct measure of information content.

Yang Xu
ACL 2016

Xu&Reitter, Cognition (to appear)

• Entropy approximates information content: the 
more predictable language is, the more lower its 
entropy 

• Information increases within documents, 
paragraphs (Genzel&Charniak, 2002; Keller, 2004) 

• Speakers may strive to compensate for high-
information content in one part of a sentence (o 
turn) by reducing it elsewhere (“Uniform 
Information Density”, Levy&Jaeger, 2007): The 
average entropy (entropy rate) tends to be 
constant.



WHY AND HOW DO WE DISTRIBUTE INFORMATION?

CHALLENGE: INFORMATION DENSITY

• Entropy: indicates un-predictability of an unseen message  
(Prediction here does not use immediate preceding context) 

• Proxy for information density 

• Normally increases over time 

• But pattern is converging among  
speakers in dialogue 

• Language seems to be distributed  
to equalize information density  
(Uniform Information Density, Jaeger&Levy 2007) 

• Hypothesis: Behavior in general is also  
distributed to avoid spikes in information load 

• Why?
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Figure 4: Entropy (a) and normalized entropy (b) against within-episode position grouped by speaker
roles (topic initiator vs. topic responder)

Charniak, 2002, 2003), which will be discussed in
the next section.

5 Discussion

5.1 Summary

Our main contribution is that we find new en-
tropy change patterns in dialogues that are differ-
ent from those in written text. Specifically, when
distinguishing the speakers’ roles by topic initia-
tor vs. responder, we see that the initiator’s en-
tropy decreases (or remain steady) whilst the re-
sponder’s increases within a topic episode, and to-
gether they form a convergence pattern. The par-
tial trend of entropy decrease in topic initiators
seems to be contrary to the principle of entropy
rate constancy, but as we will discuss next, it is
actually an effect of the unique topic shift mech-
anism of dialogues that is different from written
text, which does not violate the principle.

From an information theoretic perspective, we
view dialogue as a process of information ex-
change, in which the interlocutors play the roles
of information provider and receiver, interactively
within each topic episode.

Beyond differences in speaker roles, we do
observe that sentence entropy increases with its
global position in the dialogue, which is consis-
tent with written text data (Genzel and Charniak,
2002, 2003; Qian and Jaeger, 2011; Keller, 2004).

Thus, overall speaking, spoken dialogue do follow
the general principle of entropy rate constancy.

5.2 Dialogue as a process of information
exchange

By combining topic segmentation techniques and
fine-grained discourse analysis, we provide a new
angle to view the big picture of human communi-
cation: the perspective of how information is dis-
tributed between different speakers.

One critical difference between written text and
spoken text in conversation is that there is only one
direct input source of information in the former,
i.e., the author of the text, but for the latter, there
are multiple direct input sources, i.e., the multiple
speakers. That means, when language production
is treated as a process of choosing proper words
(or other representations) within a context, the def-
inition of “context” is different between the two
categories of text. In written language (see Equa-
tion 1 in Section 2), Ci, the global context of a
word Xi, is assumed to be all the words in pre-
ceding sentences. This is a reasonable assump-
tion, because when one author is writing a com-
plete piece of text, he may organize information
smoothly to keep the entropy rate constant. Within
a dialogue, for any upcoming utterance, all pre-
ceding utterances together can be viewed as the
shared context for the two speakers. To help us un-
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