Learning Political Bias with Exposure to Fake News: An example of long-term learning in ACT-R

Bill Kennedy, Stephanie Tulk, and Niloofar Bagheri Jebelli George Mason University ACT-R Workshop 2017

Project

Politicians' long history of trying to influence opinions

New: a coordinated effort to pass off "news" items as peer-disseminated information

Common social influence

Most of my peers think ... Maybe they're right

Common social influence via social media

100 likes

1,000,000 likes

More people believe ... Maybe they're right

Fraudulent social influence via social media

100 likes

1,000,000 likes

More "people" believe ... Maybe they're right

Research Questions

- How might repeated exposure of fake news from peers affect political opinion (social influence)?
- Can cognitive biases explain how radical ideas become "believable" with repeated exposure?
- Can ACT-R be used with these concepts to explain real polling data?

ENGAGEMENT REFERS TO THE TOTAL NUMBER OF SHARES, REACTIONS, AND COMMENTS FOR A PIECE OF CONTENT ON FACEBOOK SOURCE: FACEBOOK DATA VIA BUZZSUMO

Data

Fake news:

100 anti-Clinton | 9 anti-Trump (Stanford)

Real news:

115 Trump | 100 Clinton articles

Clinton favorability ratio: 64 negative | 36 positive articles

Trump favorability ratio:
77 negative | 23 positive articles
 (Politico)

Poll Averages

Model increased belief in fake news over time

But...

ACT-R operates in Newell's band of ...

t (sec)	Time Terms	Band	System	
10 ¹¹⁻¹³	10 ⁴ -10 ⁶ years	Evolutionary	Archeology	
10 ¹⁰	Millennia	Historical	Written History	
10 ⁹	~50 years	Historical	Personal history	
10 ⁸	Years	Historical	(Expertise)	
10 ⁷	Months	Social	(Expertise)	
10 ⁶	Weeks	Social	Culture	
10 ⁵	Days	Social	Culture	
104	Hours	Rational	Task	
10 ³	10 min	Rational	Task	
10 ²	Minutes	Rational	Task	
10 ¹	10 sec	Cognitive	Unit task	
10 ⁰	1 sec	Cognitive	Operations	7 [AU I - R
10 ⁻¹	100 ms	Cognitive	Deliberate act	↓
10-2	10 ms	Biological	Neural circuit	
10 ⁻³	1 ms	Biological	Neuron	
10-4	100 μs	Biological	Organelle	40

Levels of "Cognition"

*Combining of Figures 3-3, 3-14, (& my additions) form Newell's UTC

13

Declarative Memory's Subsymbolic Representation: Base-level Activation

Declarative Memory's Subsymbolic Representation: Base-level Activation

15

Seconds? Check the Reference Manual:

run-full-time

Syntax:

==

run-full-time run-time {:real-time real-time?} -> [nil | time-passed event-count break?]

Arguments and Values:

run-time ::= a number greater than 0 indicating the number of seconds to run

real-time? ::= a generalized boolean to indicate whether to run in real time and possibly the scale for the real time clock (default is nil)

time-passed ::= a number indicating the number of seconds in model time which passed during the run

event-count ::= a number indicating how many events were executed during this run

break? ::= [t | nil] indicating whether the run terminated due to a break event

In Tutorial, Unit 7, learning past tense "U" curve, tens of thousands of samples... Lisp environment includes: (run-full-time 200)

Seconds? Tutorial 7:

Learning past tense "U" curve, tens of thousands of samples...

Lisp environment includes: (run-full-time 200)

200 x 30,000 = 6,000,000 seconds = 69.44 DAYS

Architectural issues?

1. Is it reasonable to just skip cognition ahead between events...

What about intervening activities, i.e., events that might affect these chunks via spreading activation?

2. Does spreading activation and similarity effects work over months?

(Seems contrary to compartmentalizing experiences. Return from different "life" and remember events prior to absence "like it was yesterday"...)

Thank You.