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• We provide a tutorial on using the cognitive architecture ACT-R with fMRI data.
• Region-of-interest analysis and model-based fMRI analysis are discussed.
• ROI analysis is used to constrain and evaluate ACT-R models.
• Model-based fMRI analysis is used to find the neural correlates of model processes.
• Data and code to perform the analyses and recreate the figures are provided.
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a b s t r a c t

The cognitive architecture ACT-R is at the same time a psychological theory and a modeling framework
for constructing cognitive models that adhere to the principles of the theory. ACT-R can be used in
combination with fMRI data in two different ways: (1) fMRI data can be used to evaluate and constrain
models in ACT-R bymeans of predefined Region-of-Interest (ROI) analysis, and (2) predictions fromACT-R
models can be used to locate neural correlates ofmodel processes and representations bymeans ofmodel-
based fMRI analysis. In this paper we provide a step-by-step tutorial on both approaches. Note that this
tutorial neither teaches the ACT-R theory in any detail, nor fMRI analysis, but explains how ACT-R can be
used in combination with fMRI data. To this end, we provide all data and computer code necessary to run
the ACT-R model, carry out the analyses, and recreate the figures in the paper. As an example dataset we
use a relatively simple algebra task. In the first section, we develop an ACT-R model of this task and fit it
to behavioral data. In the second section, we apply a predefined ROI-analysis to evaluate the model using
fMRI data. In the third section, we use model-based fMRI analysis to locate the following processes in
the brain: retrieval of mathematical facts frommemory, working memory updates, motor responses, and
visually encoding the problems. After working through this tutorial, the reader will have learned what
can be achieved with the two different analysis methods and how they are conducted; the example code
can then be adapted to a new dataset.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Many psychological theories, and consequently, many compu-
tational cognitive models focus on a single task or even on part
of a task. For example, decision-making models often only simu-
late the decision-making aspect of a task, and include ‘non-decision
time’ to represent all non-decision processes (e.g., Forstmann et al.,
2008; Turner, van Maanen, & Forstmann, 2015). Although this
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approach tomodeling has certainly yielded significant insights, the
danger is that the mechanisms that are modeled might be task-
specific, instead of representing concepts that are more generally
valid. If the goal is to understand the functioning of the human
mind – in contrast to understanding what is happening in a sin-
gle task – this approach might be counter-productive, as famously
noted by Newell in his 20-questions paper (1973).

In contrast to single-task models, cognitive architectures try to
capture general cognitive mechanisms and are aimed at modeling
complete tasks from perception to response execution (Anderson,
2007; Newell, 1990). A cognitive architecture is a psychological
theory, for instance explaining how our declarative memory
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Fig. 1. Setup of the experiment. Each trial started with 4 s of fixation, followed by the pyramid problem for a maximum of 30 s or until the ‘Submit’ button was clicked.
Between trials a repetition-detection task was displayed for 12 s to return the brain to a common baseline.
Source: Reprinted with permission from Anderson et al. (2011).
system functions (ACT-R; Anderson, Bothell, Lebiere, & Matessa,
1998), how executive processes determine dual-task performance
(EPIC; Meyer & Kieras, 1997), or how new tasks are learned by
information transfer (PRIMs; Taatgen, 2013). In addition, cognitive
architectures are implemented as computer simulations, in which
cognitive models of particular tasks can be instantiated (e.g.,
recovering from interruptions, Borst, Taatgen, & Van Rijn, 2015;
driving a car, Salvucci, 2006; associative recognition, Schneider &
Anderson, 2012). Thus, the cognitive architecture itself provides
the general psychological theory – the architecture of the mind
– while models run on this architecture to simulate behavior in
particular tasks.

This approach has a number of advantages. Most importantly,
it ensures that the cognitive mechanisms used to account for
different tasks are the same, and therefore have to be task-
general. Second, because models cover complete tasks and are
implemented as computer simulations, it is possible to directly
compare their response times and accuracy to human participants.
Third, because action and perception mechanisms are included
in the models, the predictions of these models, such as response
times, are constrained to correspond to what is physically possible
for humans (e.g., Borst, Buwalda, Van Rijn, & Taatgen, 2013; Meyer
& Kieras, 1997).

Although it is possible to evaluate cognitive architecture mod-
els by comparing their response times and error rates to human
data, these data are often insufficient to test all the detailed as-
sumptions of these models (problems of this sort have been noted
with most kinds of modeling; e.g., Pitt & Myung, 2002; Roberts &
Pashler, 2000; Shiffrin, Lee, Kim, & Wagenmakers, 2008). To in-
crease the constraints on models in the ACT-R architecture, re-
searchers have turned to fMRI data. There are two ways in which
ACT-R can be used in combination with fMRI data (Borst & An-
derson, 2015). First, each ACT-R model predicts fMRI activity in
several predefined regions-of-interest (ROIs) in the brain (Ander-
son, 2007; Anderson, Fincham, Qin, & Stocco, 2008). Because these
regions are predefined and independent of new datasets – they
have remained essentially unchanged since 2003 – such predic-
tions can be compared to human data to judge the quality of the
model and guide further model development. Second, predictions
from ACT-R models can be used to locate the neural correlates of
model processes and representations through model-based fMRI
analysis (Borst, Taatgen, & Van Rijn, 2011).

In this tutorial, we will guide the reader through both analysis
methods and provide the data and computer code necessary to
replicate the analyses and recreate the figures in this paper (see
http://www.jelmerborst.nl/tutorial).1 To perform the analyses we
used the ACT-R 7.0 Standalone Version (http://act-r.psy.cmu.edu),

1 Note that this is neither a tutorial on ACT-R, nor on fMRI analysis. For more
information about ACT-R we refer to act-r.psy.cmu.edu, for more information
on fMRI analyses one can visit for example http://www.fil.ion.ucl.ac.uk/spm/,
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/, or http://www.freesurfer.net.
Matlab (The MathWorks, Inc.), and the fMRI analysis software
SPM8 (Wellcome Trust Centre for Neuroimaging). We included
all software and toolboxes, except Matlab itself. In Section 2
we will introduce the task and the ACT-R cognitive architecture,
and develop the cognitive model. In Section 3 we will apply the
predefined ROI analysis.2 Finally, in Section 4 we will use model-
based analysis to locate the neural correlates of visually encoding
the task, retrieving mathematical facts from memory, updating
working memory, and issuing motor responses. Note that we also
provide all intermediate results, in order to allow for starting
the analysis at any point, and skipping parts of the analysis. We
indicated in the text when analysis steps take longer than a few
minutes.

2. Developing the ACT-R model

2.1. The task

The dataset thatwe use as an example in this tutorial concerns a
relatively simple algebra task,whichwas part of a larger study used
to investigate metacognitive activity in mathematical problem
solving (Anderson, Betts, Ferris, & Fincham, 2011). In addition, it
has been used to validate new regions-of-interest for ACT-R (Borst,
Nijboer et al., 2015). We will follow the analysis stream and trial
selection from this latter paper.

In the experiment, participants solved so-called pyramid
problems, which take the form base $ height = value, for instance
5 $ 3 = 12 (see Anderson et al., 2011, for details on the study and
the rationale for using pyramid problems). A pyramid problem is
solved by a process of repeated addition, where the base indicates
the starting value and the height the number of additions, where
each addend is one less than the previous: 5 $ 3 = 5+4+3 = 12.
Participants were asked to solve three types of problems:

• solve-for-value: 6 $ 3 = x
• solve-for-height: 6 $ x = 15
• solve-for-base: x $3 = 15.

The base ranged from 4 to 9 and the height from 2 to 5, resulting in
values between 4 $ 2 = 4+3 = 7 and 9 $ 5 = 9+8+7+6+5 = 35.
For analysis purposes, we divided the problems into four groups
based on whether they had a small (4–6) or a large (7–9) base, and
whether they had a small (2–3) or a large (4–5) height.

Twenty subjects participated in the experiment. They each
solved 72 problems in the fMRI scanner, equally divided over
conditions. Responses were entered by clicking on an on-screen
numeric keypad with the mouse, followed by clicking the
‘submit’ button. After submitting a response, subjects immediately
progressed to a feedback screen, followed by a repetition detection
task (Fig. 1; detailedmethods are reported inAnderson et al., 2011).

2 The results of this analysis have been previously reported in Borst, Nijboer,
Taatgen, Van Rijn, and Anderson (2015).
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Fig. 2. Response times. Data on the left, model on the right. The lower, darker parts
of the bars indicate the time until the first click, the top, lighter parts of the bars the
time between the first click and the submit button. Error bars indicate the average
standard deviation.
Source: Reprinted with permission from Borst, Nijboer et al. (2015).

2.2. Behavior

For this tutorial we use correct trials only. Two subjects were
excluded for solving only 49% and 76% of the problems correctly,
where all others scored >85% (Borst, Nijboer et al., 2015). The
remaining 18 subjects solved on average 93.4% (SE = 0.9%) of
the problems correctly. Of these problems, we removed outliers
with response times (RT) exceeding 2 standard deviations from the
mean per subject and condition (4.2%). This leaves 1160 problems
for analysis in total, on average 64.4 problems per subject.

The left panel of Fig. 2 shows the response times. Height had
a clear effect on RTs, with large heights (orange bars) resulting in
longer RTs than small heights (blue bars). As height determines the
number of terms in the repeated addition, this is not surprising.
Base also had a positive effect on RT: a large base resulted in longer
RTs than a small base. Fig. 2 shows that most of the variability in
RTs is located in the ‘cognitive phase’ (dark), before the first mouse
click, and not in the ‘response phase’ (light), between the first click
and clicking the submit button. These effects were confirmed by a
repeated-measure ANOVA (Borst, Nijboer et al., 2015).

2.3. ACT-R

Before we develop the model to explain these data, we will
first briefly introduce ACT-R. For more detail, see Anderson (2007,
book); or Anderson (2005, article); and/or follow the tutorial units
included with the ACT-R distribution.3

ACT-R simulates the human cognitive system as a set of
independentmodules that are coordinated by a central production
system (the procedural module; Fig. 3). Two modules process
input from the external world (visual, aural) and two modules
send output to the external world (manual, vocal). The other
modules process information internally: the control state keeps
track of the current goal, the problem state holds intermediate
representations (also referred to as the imaginal module), and
declarative memory stores facts (called chunks). Information is
processed by production rules in proceduralmemory,which are IF-
THEN rules. For example, a production rule might say ‘IF there is a
pyramid problem in the visual modulewith a base of 6 and a height

3 The latest version of ACT-R can be downloaded from http://act-r.psy.cmu.edu/;
the version that we used is included in the material on http://www.jelmerborst.nl/
tutorial.
of 3, THEN represent in the control state that a pyramid problem is
being solved, and retrieve an addition fact from declarativememory
with 6 as the first addend and 5 as the second addend’.

Each module adheres to a set of precisely described properties
(Anderson, 2007), which are instantiated in the computational
simulation. For instance, it takes 85 ms to visually process an
object on the screen, and it takes 200 ms to store a chunk in the
problem state. Each fact in declarative memory has an activation
level, which represents the likelihood that it is currently needed
(Anderson & Schooler, 1991). This activation value is dependent
on the recency and frequency of usage of the chunk, as well as
on the current information in the other modules. The activation
value determines how easy it is to retrieve a chunk frommemory:
the higher the activation value, the more likely it is that it can be
retrieved, and the faster it will be retrieved. For instance, ‘2 + 2 =

4’ has a higher activation value and can be retrieved faster than
‘14 × 19 = 266’, if the latter is even represented in memory.

All modules of ACT-R have been mapped onto small regions in
the brain (Fig. 3(b)). The original mapping was based on a reading
of the literature on regional functions, and adapted slightly based
on experience with early experiments. Since 2003 the mapping
has essentially remained unchanged (Anderson, 2007; Anderson
et al., 2008). As the most straightforward example, ACT-R’s motor
module was mapped onto the region of the precentral gyrus that
represents the hand (Anderson, 2005). The ROIs are assumed to be
active when the corresponding module is active; thus, the motor
region should be activewhen anACT-Rmodelmoves its hand. Note
that it is not claimed that these regions are the only parts of the
brain that are activewhen amodule is active, nor that these regions
are only active when a module is active.

Because these regions are predefined, and because it is assumed
that these regions are necessarily active when a module is active,
they can be used to constrain models by comparing the predicted
activity of the ACT-R modules to the data in these regions (Borst &
Anderson, 2015; Borst, Nijboer et al., 2015). For example, if ACT-R’s
motor module is active but no activity is found in the motor ROI,
this implies that themodel is incorrect. In the next sectionswewill
demonstrate such an analysis not only for the motor module, but
also for the visual module, declarative memory, and the problem
state. Especially comparing different condition levels of the more
central cognitive models often provides important information
about the quality of a model.

2.4. Model

The model that we present here is the result of a series of
consecutive efforts (Anderson, 2007; Wintermute, Betts, Ferris,
Fincham, & Anderson, 2012; the current model was reported
before in Borst, Nijboer et al., 2015, and updated to ACT-R 7.0
for the current paper). Developing a model in ACT-R involves
specifying the contents of procedural and declarative memory—
the IF-THEN production rules and the information those rules can
use. To solve pyramid problems, the model requires declarative
knowledge about addition problems, for example ‘6 + 5 = 11’.
It then applies production rules that use this knowledge to solve
pyramid problems. The model is included in the material on
http://www.jelmerborst.nl/tutorial, in the next section we will
explain how to run the model and generate predictions.

Themodel starts by reading the pyramid problem on the screen
using the visual module. It encodes the base, height, and value in
turn, and follows its own gaze with the mouse pointer (cf. Chen,
Anderson, & Sohn, 2001). Based on which of the terms read x, it
goes down one of three solution paths. If the value is unknown, it
follows a process of iterative addition. It starts by adding the base
to the ‘base− 1’. To solve such an addition, the model retrieves the
solution fromdeclarativememory,which takes a certain amount of

http://act-r.psy.cmu.edu/
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Fig. 3. The ACT-R cognitive architecture (a) and its mapping to brain regions (b). The colors of themodules correspond to the colored squares in the brain. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Reprinted with permission from Borst and Anderson (2015).
time (estimated from the behavioral data). It repeats this process
until it has added as many terms as the height indicated. It then
continues to the response phase. If the height is unknown, the
model follows the same process, but terminates when the total
sum is equal to the value, and continues to the response phase to
report the number of additions it had to perform. Themost difficult
case is when the base is unknown. Subjects reported using a guess-
and-check procedure in this case (Anderson et al., 2011), which is
simulated by the model. The model first guesses a base, and then
follows the unknown-value procedure described above to calculate
the corresponding value. If this is equal to the value on the screen it
reports the guessed base, if the calculated value is smaller it reports
the ‘guessed base+1’, if it is larger it reports the ‘guessed base−1’.
After the model determined a solution by following one of these
procedures, it looks at the button with the first digit of its answer,
moves the mouse cursor to this button, clicks it, and reads what it
entered. It then moves on to the next digit, and continues in this
manner until the full answer is entered. It finishes by clicking the
‘Submit’ button, and reading the feedback to determine whether it
was correct.

The right panel of Fig. 2 shows the response times of the
model. These times are a combination of all the processes the
model has to go through: visual perception, memory retrievals,
production rules, and manually moving the mouse and entering
the response. The duration of the perception and response
processes are relatively constant over the different trial types,
but the length of the addition process varies considerably with
the difficulty of the problems. First, larger heights result in more
addition steps, and thus in longer total RTs. Second, larger bases
result in harder additions that include more carries, which add
additional computation steps to the model (Borst, Nijboer et al.,
2015). Overall, the model reflected the data closely—the greatest
discrepancy was the underestimation of the variability of the
cognitive phase by the model (i.e., the standard deviation of the
model’s response times is smaller than of the human subjects).
In the next section we will investigate whether the model can
also account for the fMRI data that was collected during this task
(Anderson et al., 2011), which would provide additional evidence
that the model is a good simulation of the cognitive processes
underlying this task.

3. Predefined ROI analysis

As explained above, all modules of the ACT-R architecture have
been mapped onto small regions-of-interest of the brain, to pro-
vide additional constraints for models developed in the architec-
ture. Because these ROIs are predefined and remain unchanged
between studies, they can be used to evaluate newmodels by com-
paring model predictions to human data (Anderson et al., 2008;
Borst, Nijboer et al., 2015). In this sectionwewill provide a step-by-
step tutorial of this method. First, we will use the model to gener-
ate fMRI blood-oxygen-level dependent (BOLD) signal predictions
for four modules: visual, manual, declarative memory, and prob-
lem state. Second, we will select the corresponding fMRI data and
evaluate the model.

3.1. Generating model predictions

The fMRI BOLD signal – which we simulate with the model –
is a very slow signal, as fMRI scanners measure the oxygenation
level of the blood. It peaks around 4–6 s after neuronal activity, and
can be described by a so-called hemodynamic response function
(HRF; Fig. 4(a); e.g., Friston, Ashburner, Kiebel, Nichols, & Penny,
2007). In contrast, the model’s activity occurs immediately and
is therefore more comparable to neural activity. To simulate the
BOLD response, one can convolve themodel’s activity on amodule-
by-module basis with an HRF (Fig. 4(b); Anderson et al., 2008;
Borst & Anderson, 2015). In essence, this mathematical procedure
assumes a hemodynamic response for each activity of a module,
and these responses are summed to produce the final signal. The
process consists of two steps.

Step 1. Collecting module activity. First, we run the model on
the same pyramid problems that the subjects performed. The file
containing the model code, ‘pyramid-model_jmp.lisp’, is located
in the ‘model’ directory. This file contains Lisp code to run the
experiment4 and the ACT-R model code (starting at line 548). You
can open this file in a text editor to take a first look at the model.

To developmodels in ACT-R, it is generally recommended to use
a full-fledged Lisp environment that provides a GUI and debugging
tools.5 However, the ACT-R Standalone version includes a Lisp
distribution that can also be used to runmodels. This is the version
included with this tutorial. To start ACT-R, navigate to the ‘ACT-
R Standalone Mac’ or ‘ACT-R Standalone Windows’ directory and
double click on the file ‘Run ACT-R.command’ on a Mac or on

4 ACT-R is written in Lisp, and for that reason experimental code that ACT-R
interfaces with is also typically written in Lisp. ACT-R contains a set of functions
that can be used to implement simple experiments.
5 For example Allegro Common Lisp (http://franz.com) or Lispworks (http://

www.lispworks.com) both have free versions available.
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Fig. 4. (a) Hemodynamic response function (HRF) as used by SPM. (b) Declarative memory (top) and manual module (bottom) demand functions and predicted BOLD
response for a single trial of the experiment. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
‘Start Environment.exe’ on Windows.6 Click on the ‘Load Model’
button in the environment, and select the model file (‘pyramid-
model_jmp.lisp’). This loads both the experimental code as well as
the ACT-R model itself into Lisp. To use the model in a full-fledged
Lisp environment, first load ACT-R, and then the model.7

To display the experimental interface and have the model solve
four problems in real-time, in the Listenerwindow type

(run-4-trials)
and hit the ‘return/enter’ key. When the model has finished
running, at the bottom of the Listener window you will see ‘NIL’.
To have the model perform all trials of all subjects virtually (no
window is displayed and the simulation runs as fast as your
computer allows), and save the results to disk, navigate to the
Listenerwindow and type

(run-real-problems).
The model will now run through all subjects and trials. This
takes between 2 and 6 min, depending on the speed of your
computer. The resulting behavior is saved to ‘model_#.txt’ in
‘ACT-R Standalone/model_data/’, where ‘#’ indicates the subject
number. The corresponding module activity that we need for
generating fMRI predictions is saved to ‘model_act_#_#_#.txt’ in
‘ACT-R Standalone/model_data_mri/’, where the #-marks indicate
subject, block, and trial, respectively.

For more information on the ACT-R theory and running ACT-R
models, see the tutorial units includedwith the ACT-R distribution,
or visit the annual summer school at Carnegie Mellon University
(Pittsburgh, USA) or spring school at the University of Groningen
(Groningen, the Netherlands).

Step 2. Convolving module activity with the HRF. The files
that were generated in Step 1 contain the times in a trial that ACT-
R’s modules were active. Each line in a file lists the module name,
the start time, and the end time.8 To make these direct measures
of activity comparable to the slow BOLD response, we convolve
them with an HRF (Fig. 4). First, we represent module activity as
a 0–1 demand function (blue line, Fig. 4(b)). Next, we convolve

6 In case the ACT-R version included is not compatible with your machine, you
can download the latest version from http://act-r.psy.cmu.edu/.
7 When using a full-fledged Lisp environment, start the ACT-R interface by calling

(run-environment) before running the model. Without the ACT-R interface, the
model might not run because of issues with button placements in the graphical
windows.
8 Note that these times will be slightly different each time the model is run, as

declarative memory processes have an associated noise component.
these demand functions with the HRF commonly used in SPM
(Friston et al., 2007). The code to do this is included in the Matlab
script ‘ROIanalysis/convolution.m’. You can follow the instructions
in this file to recreate Fig. 4. Note that you have to change the
working directory to the location of the ‘ROIanalysis’ folder on your
computer at the beginning of the file. First, the HRF from SPM is
loaded and plotted (Fig. 4(a)). Next, themodule activity for one trial
is read in, represented as a 0–1 demand function, convolved with
the HRF, and displayed (Fig. 4(b)).

Fig. 4(b) shows the results of convolving a single trial of the large
base–large height condition. Several declarative memory retrievals
occur in quick succession and lead to one large bump in the
predicted BOLD profile. The manual module shows a different
pattern, with mouse movements at the start of the trial (while
reading the pyramid problem) and at the end of the trial to enter
the response. This results in a very different BOLD prediction
with two clearly distinguishable bumps. Generally speaking, the
convolution with the HRF combines and smooths out several short
module activities. This is a problem inherent to fMRI, and prevents
us fromgetting a directmeasurement ofmodule activity. However,
by using the right experimental designs, one can still make a
distinction between several possiblemodels. Next,wewill perform
the convolution for all different subjects, trials, and conditions, and
see how the BOLD response predictions react to the experimental
manipulations.

Fig. 5 shows the average of the predictions for four modules,
split out by experimental condition. This analysis is also part of
the Matlab ‘convolution.m’ script, starting at line 127. All of the
model activity (for all subjects and trials) is read in, convolved
with the HRF, and aggregated. This takes between 1 and 10 min,
depending on the speed of your computer. Fig. 5 shows the results.
Starting at the top left, the predictions for declarative memory
show a clear increase with condition, with the largest effect for
height. This effect mirrors the RT effect, and is explained similarly:
themore difficult pyramid problems require additional declarative
retrievals. ACT-R’s problem state module shows a similar pattern.
It is used to store intermediate solutions to the pyramid problems,
and has to be updated more often for more difficult problems.
Themanual and visual modules show opposite patterns: the easier
the problems, the higher and narrower the BOLD predictions.
The explanation is straightforward: according to the model, the
same number of mouse and eye movements has to be made
in the different conditions, but they are spaced further apart in
the more difficult conditions because the mathematical solving
phase is longer. As a result, the conditions with large heights

http://act-r.psy.cmu.edu/
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Table 1
ACT-R modules and associated brain regions.

ACT-R module Brain region (left hemisphere) Talairach–Tournoux coordinates MNI coordinates

Declarative memory Inferior frontal sulcus (BA 45/46) −42, 23, 24 −43, 24, 25
Problem state Intraparietal sulcus (BA 7/39/40) −24, −63, 40 −24, −67, 44
Manual Precentral gyrus (BA 3) −42, −20, 50 −42, −23, 54
Visual Fusiform gyrus (BA 37) −41, −61, −9 −43, −60, −16

MNI = Montreal Neurological Institute.
Fig. 5. Model predictions for four ACT-R modules.

show two bumps: one before the solving phase and one after (cf.
Fig. 4(b), bottom). However, the area under the curve is similar in
all conditions, reflecting total activity (it is a little larger in themore
difficult conditions, because the answers require more key presses
in these conditions). In the next section we will test if the data is
similar to the model’s predictions.

3.2. Selecting fMRI data

To select the data, we use preprocessed fMRI scans (realigned,
normalized, smoothed; Borst, Nijboer et al., 2015) and a defi-
nition of the ROIs. The selection is done using SPM8 in com-
bination with the MarsBaR toolbox (Brett, Anton, Valabregue,
& Poline, 2002). The preprocessed fMRI scans, the ROI defini-
tions, SPM8 and MarsBaR are all included in the material on
http://www.jelmerborst.nl/tutorial. The properties of the ROIs are
listed in Table 1, the ROIs are shown in Fig. 3(b), and MarsBaR
compatible ROI files are included in ‘ROIanalysis/rois/’. Each ROI
is 15 × 15 × 12 mm. The preprocessed scans are located in the
‘data’ directory, including a design file ‘pyramids.df’ that describes
which scans belong to which subject, trial, and condition. TheMat-
lab script ‘ROIanalysis/roi_data_selection.m’ contains the code and
instructions to select the data and recreate Fig. 6.

First, all scans of a subject are read in and scaled to an average
value of 100 over all scans and voxels, as is common in fMRI
analysis (e.g., Friston et al., 2007). Second, the data in each ROI
is collected, and a mean value per ROI is calculated. These two
steps take between 5 and 36 min. Third, the percent BOLD change
with respect to the average of the first two scans in a trial
(during the fixation screen, Fig. 1) is calculated. Depending on your
Fig. 6. Data in four ROIs, corresponding to the model predictions in Fig. 5.

experimental design, one can also calculate %-change compared
to only the first scan or to longer fixation periods at the start of
a block. Calculating %-change on a trial-by-trial basis ensures that
slow signal changes are removed (in standard fMRI analysis a high-
pass filter is typically applied for this purpose). Finally, the data are
averaged within each ROI and condition. The results are shown in
Fig. 6.

3.3. Discussion

Comparing the data in Fig. 6 to the model predictions in Fig. 5
shows that the model gives a good qualitative account of the
data: the order of the conditions was correctly predicted for
all four modules. In the declarative memory module, however,
there is hardly a difference between small and large bases for the
large heights (orange lines) where the model predicted a sizeable
difference. The problem state module has a very good fit on first
sight, but it turns out that in the data the activity ismore prolonged
(i.e. the curves return to baseline only at 20 s, in the model
predictions at 15 s). This might indicate that working memory
also plays a role in processing the feedback – which the model
ignored –, not an unreasonable assumption. In addition, it could
reflect the greater variability of the RT’s in the data. Finally, the
manual and visual predictions are generally very good, except that
the difference between the small $ large and large $ large problems
is less clear in the data, whichmight be due to the smaller variation
in the model’s RTs (Fig. 3).

Quantitatively, large differences can be observed between the
model and data. The ACT-R model predictions do not take into
account differences in the HRF between regions, and are generally

http://www.jelmerborst.nl/tutorial
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bad predictors of amplitude. As a solution, one can fit a separate
scale parameter to each module. For instance, Anderson, Qin, Jung,
and Carter (2007) estimated a scale parameter of 2.38% for the
visualmodule, 3.16% for themanualmodule, 1.79% for the problem
state, and 1.15% for declarative memory. Although multiplying
the current predictions in Fig. 5 with these values would lead to
a better fit, it would by no means remove the whole difference
between Figs. 5 and 6. So far, we have not been able to find
stable scale parameters (see e.g., Stocco & Anderson, 2008, for
very different estimates), and have therefore concentrated on
qualitative predictions.

Based on the current fit, we argue that the model gives
a reasonable account of what is happening when participants
solve pyramid problems. Several things could be improved, as
indicated above, but the basic cognitive processing is accounted
for. However, in other cases we have had to abandon a first model,
and propose different processing streams to account for the data—
processing streams that were inspired by the neural data (Nijboer,
Borst, Van Rijn, & Taatgen, 2016).

In summary, the ROI analysis can be used to evaluate models
because we use predefined ROIs, and do not change these ROIs
on a study-by-study basis. Although the current ROIs are based on
the neuroscientific literature, we have recently performed a large
data-drivenmeta-analysis inwhichwehave shown that these ROIs
are also close to the best predictors of the ACT-R modules (Borst &
Anderson, 2013; Borst, Nijboer et al., 2015). In the next section we
discuss a second technique, model-based fMRI analysis, which can
be used to locate model constructs in the brain.

4. Model-based fMRI analysis

The ROI analysis requires an existing mapping between ACT-
R modules and brain regions, and has the goal to constrain
models. However, at other times we want to discover new
connections betweenmodel constructs and brain areas, or evaluate
existing mappings. To this end one can apply model-based fMRI
analysis (Borst et al., 2011; Gläscher & O’Doherty, 2010; O’Doherty,
Hampton, & Kim, 2007). In a standard fMRI analysis, one typically
uses the condition-structure of the experiment as the basis for
regressors in a General Linear Model (GLM; e.g., Friston et al.,
2007). For each voxel (a pixel in three-dimensional space), an
independent linear model is fit using these regressors (after
convolving the regressors with an HRF, cf. Fig. 4), and conditions
are compared to determine in which voxels the BOLD level differs
significantly between conditions. The drawback of this approach
is that a cognitive function is assumed to be ‘on’ or ‘off’ in each
condition. In addition, especially with tightly coupled processes
such as declarative memory retrievals and working memory
updating, it is very difficult to have one process without the other,
making it hard to isolate such functions.

Model-based fMRI analysis alleviates this problem by using
predictions of a computational model as regressors in the GLM.
These predictions can take the form of parameter values per trial
(e.g., Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Gläscher &
O’Doherty, 2010; O’Doherty et al., 2007; van Maanen et al., 2011)
or of activity of higher-level processes (i.e. module activity; Borst
& Anderson, 2013; Borst et al., 2011). As in standard fMRI analysis,
a linear model is fit for each voxel. Voxels in which the BOLD
activation correlates significantly with the model predictions are
then assumed to be involved in the simulated process. Using a
model has the advantage that a different predictor can be used for
each trial, and thatmultiple processes can be active simultaneously
and to different degrees within each trial, making model-based
fMRI analysis more powerful than standard fMRI analysis (Borst
et al., 2011).
In the remainder of this section we will demonstrate a model-
based analysis of the pyramid dataset. We will attempt to locate
declarative memory retrievals, updates to the problem state,
manual actions and, visual perception. As the first step we
generate module predictions and rescale them with respect to the
behavioral data. Next, we fit a GLM and discuss the results. Note
that we included the intermediate results of all analysis steps,
making it possible to skip steps or subjects in the analysis, as some
of the analyses below take a significant time.

4.1. Generating model predictions and rescaling

For a model-based fMRI analysis on the basis of an ACT-R
model, we use module activity patterns as regressors on a trial-
by-trial basis. Thus, themodel is run on the exact same trials as the
participants. Analogous to the ROI analysis, the resulting activity
patterns are first convolvedwith anHRF (Fig. 4), and then regressed
against the fMRI data. However, before the GLM can be fit, one
additional step has to be performed: the model predictions have
to bematched to the participants’ behavior on a trial-by-trial basis.
That is, if a participant took 6 s to give a response on a particular
trial while the model predicted 10 s, the model predictions have
to be scaled back to the 6-s duration. Otherwise, we might be
comparing predicted module activity to, for instance, a fixation
screen (Borst et al., 2011; Gläscher & O’Doherty, 2010). To avoid
such problems, all module activities are transformed linearly –
either increased or decreased in duration – to create a perfect
match to the behavioral data. This process is illustrated in Fig. 7.
The resulting activity is used to fit the GLM.

Note that such a rescaling process could also have been applied
in the ROI analysis in the previous section. This would have
provided a perfect RT fit,9 ensuring that behavioral differences
between the model and data did not cause the differences in
the fMRI fit (Figs. 5 and 6). However, this has not been done
traditionally, and could not be done in the case of testing true a
priorimodel predictions (Borst, Taatgen, Stocco, & Van Rijn, 2010).
We did not apply this rescaling process to the ROI analysis above,
as we wanted to illustrate the connection between RT predictions
and fMRI predictions.

Step 1. Collecting module activity. This step is identical to the
one for the ROI analysis in Section 3.1. However, while for the ROI
analysis a model is not necessarily run on the exact same trial
sequence as the participants received, this is required for a model-
based analysis, because matching predictions are needed for each
trial. As before, open ACT-R, load the model, and type

(run-real-problems)
to generate all model predictions. See Section 3.1 for detailed
instructions.

Step 2. Rescaling. To perform the linear transformation and
recreate Fig. 7, open ‘ModelBasedAnalysis/model_predictions.m’.
At the start of this file, Fig. 7 is recreated to illustrate the rescaling
process. First, the behavior of the model and the participant is
read in, as well as the module activity for this particular trial. The
module activities are then rescaled by increasing the durations
and changing the onsets, on the basis of the RT-difference. This
is done separately for the first key press and the time between
the first key press and pressing the submit button. Note that the
resulting model fits the RT data perfectly, as was the goal of this
procedure.

After recreating Fig. 7, the rescaling procedure is applied to
all trials of all participants, and the results are saved to SPM-
compatible ‘multiple condition’-files in the ‘ModelBasedAnaly-
sis/design_SPM’ directory. The code for this is also included in

9 Naturally, the resulting RTs could not be used to constrain the model.
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Fig. 7. Rescaling module activity for model-based fMRI analysis. In the first row, the a priori module predictions for the manual module (orange) and declarative memory
(blue) are shown (cf. Fig. 4(b)). The model’s key-presses are indicated by the dashed lines. In the second row, these module predictions have been linearly transformed to
match the actual behavior on this trial (indicated by the solid lines). Note that this changes both the onsets as well as the durations of the module’s activities. In this example
the module activities were increased in duration, but in cases where the model’s predictions were too slow, these activities were decreased in duration. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
‘model_predictions.m’, starting at line 187. The resulting files con-
tain four regressors that are used for the GLM: one for declara-
tive memory, one for the problem state, one for the manual mod-
ule, and one for the visual module. These regressors are described
in three variables: names, onsets, and durations. The convolution
with the HRF will be done automatically in SPM when the GLM is
fit.

4.2. Fitting the GLM

To fit the GLMwe used SPM8, which is a Matlab software pack-
age for analyzing fMRI data. The Matlab script ‘ModelBasedAnaly-
sis/model_based_analysis.m’ uses SPM’s batch system to fit a GLM
for each subject separately, using the rescaled model predictions
from the previous step, as well as movement regressors from re-
aligning the scans. This takes between 20 min and 3 h 40 min
(1–11 min per subject). For each subject, SPM will ask if you want
to overwrite the subject, because we included the results of the
analysis as well (we recommend choosing ‘continue’ for the first
subject to observe the process, afterwards you can choose ‘stop’ to
skip the rest of the subjects andmove on to the second-level analy-
sis). SPM then performs a second-level analysis (starting at line 104
of ‘/model_based_analysis.m’; this takes between 30 s and 6 min)
and displays the results of Fig. 8. Note that these analyses can be
performed with any fMRI analysis software and are not restricted
to SPM.

4.3. Discussion

Fig. 8 shows the results for all four modules. At the top
significant regions for declarative memory are shown. In essence,
the fronto-parietal network was found, which is a sensible
result as this network is known to be important for controlled
episodic memory retrievals (Borst & Anderson, 2013; Cabeza
et al., 2003; Cole & Schneider, 2007; Dosenbach et al., 2007;
Spreng, Stevens, Chamberlain, Gilmore, & Schacter, 2010). ACT-R’s
predefined region for declarative memory is part of this network
(around the inferior frontal sulcus, slice +28, see also Fig. 3(b)).
However, the parietal part of the network (slices +40 and +52)
is normally attributed to ACT-R’s problem state module. This was
not confirmed by the current model-based analysis: problem state
activity was limited to the supplementary motor area, left inferior
frontal gyrus, and left and right precuneus. As expected, the right-
handed mouse movements of the model were mapped onto the
left motor cortex, but also to themedial frontal gyrus and to a large
area in the occipital cortex. Finally, the visualmodulemappedmost
strongly onto extended activation in the occipital cortex.

Although these results are generally sensible, they are not
fully in line with ACT-R’s predefined mapping and with results
of a recent meta-analysis of five model-based analyses (Borst
& Anderson, 2013). Especially the results of the problem state
module and the manual module are different than expected (note
that the t-values were also much lower for those modules). This
emphasizes the importance of proper experimental design: The
current studywas not designed for amodel-based analysis, and the
predicted activity was therefore very highly correlated between
modules (Fig. 5), making it problematic to isolate a particular
module. If one wants to apply model-based analysis to locate a
certainmodel process, it is important to vary the use of this process
while keeping other processes constant. Another option is to use
a meta-analysis over different experiments, because it avoids the
high inter-module correlations that often occur in a particular
experiment.

5. Final remarks

In this paper we provided a tutorial of two different ways in
which ACT-R models can be used with fMRI data. The predefined
ROI analysis can be used to constrain ACT-R models and guide
model development, while model-based fMRI analysis can be used
to locate neural correlates of model processes. Note that in most
situations onewould not perform both analyses on a single dataset
(at least not for the samemodules): after adjusting amodule based
on an ROI analysis it would be obvious to find the ROI used for
the adjustments in a model-based analysis. Finally, these analyses
are not limited to ACT-R models. While model-based analysis was
originally used for other types of models (e.g., Daw et al., 2011;
O’Doherty et al., 2007; van Maanen et al., 2011), the ROI analysis
could also be applied to other modeling paradigms. In addition,
while we used Matlab and SPM as software in this paper, the same
analyses could be performed with different software.
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