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Abstract

■ In this study, we investigated the information processing
stages underlying associative recognition. We recorded EEG
data while participants performed a task that involved deciding
whether a probe word triple matched any previously studied
triple. We varied the similarity between probes and studied
triples. According to a model of associative recognition devel-
oped in the Adaptive Control of Thought-Rational cognitive
architecture, probe similarity affects the duration of the re-
trieval stage: Retrieval is fastest when the probe is similar to a
studied triple. This effect may be obscured, however, by the
duration of the comparison stage, which is fastest when the

probe is not similar to the retrieved triple. Owing to the oppos-
ing effects of probe similarity on retrieval and comparison,
overall RTs provide little information about each stage’s dura-
tion. As such, we evaluated the model using a novel approach
that decomposes the EEG signal into a sequence of latent states
and provides information about the durations of the under-
lying information processing stages. The approach uses a hidden
semi-Markov model to identify brief sinusoidal peaks (called
bumps) that mark the onsets of distinct cognitive stages. The
analysis confirmed that probe type has opposite effects on re-
trieval and comparison stages. ■

INTRODUCTION

A longstanding interest in cognitive science is to identify
the number and durations of different information pro-
cessing stages involved in task performance (Donders,
1969). The challenge is to identify the number of stages,
measure their durations, and understand how different
experimental factors affect those durations. Sternberg
(1969) proposed the additive factor method to deal with
these challenges. The method entails the following
assumptions: (1) time between a stimulus and response
is occupied by a stream of successive processing stages,
(2) each stage begins after the preceding stage ends, (3)
different experimental factors affect the durations of
different stages, and (4) the effects of different values of
an experimental factor can be seen in overall RTs. A limi-
tation of the additive factor method is that if one experi-
mental factor affects the durations of multiple stages, its
impact on the duration of each stage cannot be easily iden-
tified. Worse yet, if a factor increases the duration of one
stage while decreasing the duration of another, different
levels of the factor may produce near-equivalent overall
RTs. The cumulative nature of RTs limits conclusions that
can be made about the effects of an experimental factor
on the durations of individual processing stages.

In this article, we examine a case where an experimental
factor is hypothesized to impact two processing stages in
an associative recognition task in opposing ways. The fac-

tor (i.e., probe similarity) is the degree of match between
the three words of a triple presented to participants (i.e.,
probe) and the words in a previously studied triple. Partic-
ipants were asked to decide if they had studied the triple
before. As described below, our theory of associative rec-
ognition predicts that similarity of the probe to a studied
triple will decrease the duration of a retrieval stage while
increasing the duration of a comparison stage. Conse-
quently, the theory predicts small effects of similarity on
overall RTs despite its larger effects on the durations of
individual processing stages.
To overcome limitations of overall RT, we apply a non–

RT-based method that uses neuroimaging data gathered
using EEG. The method involves applying hidden semi-
Markov models and multivariate pattern analysis (HSMM-
MVPA) to the EEG data to identify latent processing stages
(Anderson, Zhang, Borst, & Walsh, 2016; Anderson &
Fincham, 2014a, 2014b). Information about the number
and durations of processing stages based on the EEG
can be used to evaluate the predictions of an existing the-
ory or to guide the development of a new theory. We use
the HSMM-MVPA method to test our theory of how probe
similarity affects associative recognition. In doing so, we
advance understanding of associative recognition and
demonstrate the utility of using the HSMM-MVPA method.

Associative Recognition

Associative recognition involves judging whether two or
more items were previously encountered together. ForCarnegie Mellon University
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example, participants in our experiment decided whether
three words in a triple had been studied together. Accord-
ing to one class of recall-to-reject models, such judgments
would be made by retrieving a studied item from memory
and comparing it to the probe to determine whether they
match (Malmberg, 2008; Rotello & Heit, 2000; Rotello,
Macmillan, & Van Tassel, 2000; Anderson & Reder, 1999).
One example of a recall-to-reject model is the process level
account based on Adaptive Control of Thought-Rational
(ACT-R; Anderson, 2007). The ACT-R model consists of
four general processing stages (Anderson et al., 2016;
Borst, Schneider, Walsh, & Anderson; 2013; Schneider
& Anderson, 2012): encoding the word in the probe, re-
trieving a related memory, comparing the retrieved item
to the probe, and responding.
According to the ACT-R’s theory of declarative memory

(Anderson, 2007), the time to retrieve a memory is an
inverse function of its activation, Ai

Ti ¼ Fe−Ai (1)

where F is a latency scaling parameter. The activation of
an item is a sum of the item’s inherent strength and its
strength of associations with items present in the current
context:

Ai ¼ Bi þ
X

j2C
WjSj;i (2)

where Bi is its base level activation, C is the context de-
fined as the set of retrieval cues, Wj is the attentional
weight assigned to each cue j, and Sj,i is the strength of
the association between each cue j and item i. During
associative recognition, words in the probe act as cues
for retrieving a studied associate. The strength of asso-
ciation Si,j can be understood as the probability that
cue j predicts item i. Si,j is expressed in ACT-R’s associa-
tive strength equation:

Sj;i ¼ S − ln fanj
� �

(3)

where S is a cue’s maximum associative strength, and fanj

is the number of associates of cue j. In our experiment, we
manipulated fan by varying the number of triples in which
certain words appeared; the more triples a word appeared
in, the less effective the word was as a retrieval cue. Many
behavioral experiments have confirmed that RTs become
longer as the number of associates or fan of a probe
increases (e.g., Pirolli & Anderson, 1985; Anderson, 1974;
for reviews, see Anderson, 2007; Anderson & Reder, 1999).
During associative recognition, ACT-R rejects foils (i.e.,

nonstudied associates) by retrieving the closest match-
ing studied associate and determining that it does not
perfectly match the probe. The retrieved associates in
our experiment share one or more words with the probe.
The time to retrieve the closest nonmatching associate to
a foil will be longer than the time to retrieve the matching
associate to a target (i.e., a studied associate). This is
because activation from the words in the foil spreads to

different memories, whereas activation from the words
in a target converges on a single memory. In other words,
the number of sources spreading activation to the re-
trieved associate is greater for targets than for foils. This
prediction, though straightforward, is difficult to test. The
durations of other, nonretrieval-related processes may
also vary, obscuring the effects of number of sources of
spreading activation. In particular, the duration of the sub-
sequent comparison stage in the retrieve-to-reject model
may be longer when the retrieved item is similar to the
probe.

Neuroimaging studies provide additional evidence for
ACT-R’s activation and associative strength equations. In
two such studies (Danker, Gunn, & Anderson, 2008; Sohn
et al., 2005), participants memorized word triples. They
were then shown a set of probes and asked to decide
whether they had studied the probes. The associative fans
of words that made up the triples varied (Fans 1, 2, and 3).
Consistent with behavioral studies, RTs increased with
associative fan. Additionally, the fMRI BOLD response
in the left pFC, which is postulated to reflect ACT-R’s re-
trieval module, increased with associative fan. This sup-
ports the idea that the most demanding retrievals engaged
the left pFC for the longest, producing the greatest BOLD
response. Although these results are consistent with the
ACT-R theory of associative recognition, they cannot be
strongly tied to a retrieval stage because of fMRI’s low
temporal resolution.

EEG, unlike fMRI, has millisecond resolution, making it
an attractive alternative for studying brief cognitive pro-
cesses like those involved in associate recognition. EEG
experiments of recognition memory have mainly focused
on two ERP components: an early frontocentral negativity
called the FN400 (Walsh, Paynter, Zhang, & Reder, 2016;
Curran, 2000) and a later posterior positivity called the
parietal old/new effect (Curran, 2000; Düzel, Yonelinas,
Mangun, Heinze, & Tulving, 1997). These components
have typically been interpreted in the context of dual-
process theories of recollection memory (Rugg & Curran,
2007; Diana, Reder, Arndt, & Park, 2006; Yonelinas,
2002). The FN400 is thought to reflect a familiarity pro-
cess that provides information about whether an item has
been seen before but does not involve retrieval of con-
textual information (Curran, 2000). The parietal old/new
effect corresponds to a recollection process and does
involve retrieval of contextual information.

Given their role in recognition memory, one would
think that these components would be informative with
respect to models of associative recognition. This is espe-
cially true of the parietal old/new effect, which involves
the retrieval of associative information. However, the
conventional approach to isolating ERP components re-
quires aligning the EEG signal to experiment events like
stimulus onset or response commission and averaging
the signal across trials to create ERPs. However, differences
in the onset latencies of components between trials and
conditions can obscure or create the illusion of differences
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in ERP component amplitudes (Luck, 2005). This is espe-
cially problematic of components that are only weakly
locked to overt experiment events.

HSMM-MVPA Applied to an EEG Data of
Associative Recognition Task

To cope with the trial-by-trial variability in the onset
latencies of ERP components, we developed a novel
method that involves combining hidden semi-Markov
models with multivariate pattern analysis (HSMM-MVPA)
to EEG data (Anderson et al., 2016). Transitions from one
cognitive stage to the next are signified by the onsets of
bumps that summate with ongoing sinusoidal noise in
the EEG signal. The bumps have finite durations, ampli-
tudes, and topographical distributions. The postulation
that processing stages are signaled by such bumps is
consistent with theories of ERP generation in EEG data
(Yeung, Bogacz, Holroyd, & Cohen, 2004; Makeig et al.,
2002). Using HSMM-MVPA, it is possible to recover the
number, timing, and topographical distributions of bumps
that maximize the likelihood of the EEG data.

We previously applied HSMM-MVPA to an EEG study of
associative recognition that manipulated fan and probe
type (Anderson et al., 2016). Participants saw targets
made up of two words previously studied together and
foils made up of two words previously studied in separate
pairs. Figure 1 shows the swimlane representation of the
ACT-R retrieve-to-reject model for targets and foils in that
experiment, with module activities initiated by produc-
tion rules. To elaborate how the EEG signal is mapped
to different processing stages within the framework of
the ACT-R theory, a production evokes a change in neu-
ral processing, which produces a phasic response charac-
terized by a bump in the EEG signal. The HSMM-MVPA
method identifies both the distinctive scalp profiles and
the variable latencies of such bumps in the single-trial
EEG. Two early bumps marked the encoding of the word
pair, and a third bump marked the retrieval onset. Fol-
lowing a variable period, a fourth bump marked the com-
pletion of retrieval and the start of comparison. A final,
fifth bump marked completion of comparing the re-
trieved and target word pairs with a behavioral response.
Several of these bumps related to ERP components
evoked in standard recognition memory paradigms. In
particular, during the time surrounding the fifth bump,
voltages were more positive over the posterior scalp for

targets than foils, corresponding to the parietal old/new
effect.

Motivation and Overview of Current Experiment

Our model of associative recognition places the effect of
probe type in the retrieval stage. However, the results
from other studies suggest that the effects of probe type
may extend to the comparison stage in a different and
conflicting way. The more similar the retrieved item is
to the probe, the longer the comparison process will
be. Studies of perceptual decision-making consistently
show strong effects of foil similarity in response latency
(for a review, see Farell, 1985). Foils that share more fea-
tures with targets are rejected more slowly. Likewise,
King and Anderson (1976) found an effect of foil similar-
ity on response latencies in associative recognition.
According to ACT-R’s activation equations, overlapping

foils will result in greater activation for the retrieved
memory and, consequently, shorter retrieval times. The
finding that responses were slower for overlapping foils
indicates that the effect of probe similarity extends beyond
the retrieval stage. We suspect that similarity also influ-
ences the comparison stage. Interestingly, and problemat-
ically for measures of overall RT, the similarity of the probe
to a studied item in memory may reduce the duration of
the retrieval stage and increase the duration of the com-
parison stage. If we can isolate these stages’ durations
using the HSMM-MVPA method, we can test two strong
predictions about the effects of probe similarity:

1. Reflecting the effect of activation of the retrieved
memory, the duration of the retrieval stage should
decrease with the degree of match (i.e., probe simi-
larity) between the probe and the studied pairs.

2. Reflecting the number of comparisons needed to
detect a mismatch between the retrieved memory
and the probe, the duration of the comparison stage
should increase with the degree of match between
the probe and the studied pairs.

To test these predictions, we conducted an experi-
ment with a study phase and a test phase. In the study
phase, participants learned 24 word triples. In half of
the triples, both the person and location had one associ-
ate (Fan 1), and in half of the triples, both the person and
location had two associates (Fan 2). All verbs had three
associates. In the test phase, during which EEG was

Figure 1. Swimlane
representation of the ACT-R
retrieve-to-reject model for
targets and foils, with the
scalp profiles identified from
the HSMM-MVPA method.
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recorded, participants completed an associative recog-
nition task where they distinguished between word tri-
ples they had studied (targets) and those they had not
(dissimilar foils, similar 1 foils, and similar 2 foils). By
using word triples instead of word pairs, we could
examine the effects of multiple levels of probe similarity
on the durations of the retrieval and comparison stages
with the use of the HSMM-MVPA (Anderson et al., 2016).

METHODS

Participants

Twenty individuals from the Carnegie Mellon University
community participated in a single 3-hr session for mon-
etary compensation (14 men and 6 women, ages range
from 19 to 35 years). All but one were right-handed.
None reported a history of neurological impairment.
One participant with less than 30% artifact-free EEG
recording was excluded, leaving a total of 19 participants.

Materials

Participants memorized word triples composed of a per-
son, a verb, and a location, shortened as “P-V-L” (e.g.,
Musician-Walk-Factory). The triples were created from
lists of 18 people, 8 verbs, and 18 locations (Appendix I).
Word length was four to eight letters for people, four to
five letters for verbs, and four to seven letters for loca-
tions. Each participant memorized a list of 24 randomly
generated word triples during the study phase of the
experiment.
Foils were created by combining a person, verb, and

location that had been studied in different triples from
one another. Words were only swapped with other words
that had the same number of associates to preserve the
fan manipulation (e.g., Fan 2 foils were created using
people and locations from other studied Fan 2 triples).
There were three types of foils (Table 1): (1) dissimilar
foils—none of the words in the triple had been studied
together; (2) similar 1 foils—P-L had been studied
together, but P-V and P-L had not; and (3) similar 2
foils—P-V and V-L had been studied together, but P-L
had not. In total, participants were tested on 72 word
triples (24 targets, 24 dissimilar foils, 12 similar 1 foils,

and 12 similar 2 foils). Half were Fan 1, and half were
Fan 2 (Table 1). Foils were constructed such that every
Fan 1 Person and Location appeared equally often,
every Fan 2 Person and Location appeared equally often,
and every Verb appeared equally often. Appendix II con-
tains an example of 24 studies triples (targets) and a set
of foils.

In addition to manipulating probe type and associative
fan, we varied the vertical ordering of the words on the
screen during the test phase. Half of the triples appeared
in the studied order (P-V-L), and half appeared in a shuf-
fled order (i.e., P-L-V, L-P-V, L-V-P, V-P-L, or V-L-P). Partic-
ipants were instructed to decide whether the words had
been studied together regardless of the ordering.

Procedure

The experiment began with a study phase where partici-
pants learned a list of 24 word triples. When a triple was
presented for the first time, it appeared at the center of
the screen for 8000 msec. Participants were instructed to
read and memorize the triple. After all triples appeared
once, participants advanced into the dropout portion of
the study phase. In each trial, two of the three words in a
triple appeared, and participants were required to re-
call and type the omitted word. There was no time limit
to respond. If the response was incorrect, the correct
answer was displayed for 4000 msec, and if the answer
was correct, the word CORRECT appeared for 4000 msec.
If a triple elicited an error, it was repeated again after all
other triples had appeared. A block of trials ended when
all triples had elicited a correct response. The dropout
portion consisted of three blocks of trials. A different
word from each triple was omitted during each block.

In the subsequent test phase, participants completed
an associative recognition task where they distinguished
between word triples they had studied and those they
had not. Each trial began with a centrally presented fixa-
tion cross for a variable duration (sampled uniformly
from 400 to 600 msec). Next, a probe word triple appeared
vertically on the screen. Participants responded with a key
press to indicate whether or not the triple had been stud-
ied. To respond “yes,” they pressed the J key with the right
index finger, and to respond “no,” they pressed the K key
with the right middle finger.

Table 1. Probe Types, Item Matches, and Probe Counts for Fan 1 and Fan 2 Triples

Probe Type Person-Verb Match? Person-Location Match? Verb-Location Match? Fan 1 Fan 2

Target Yes Yes Yes 12 12

Dissimilar No No No 12 12

Similar 1 No Yes No 6 6

Similar 2 Yes No Yes 6 6
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Participants were instructed to respond as quickly and
accurately as possible. This was reinforced with a bonus
point system. One hundred points were deducted for
every incorrect response, and 100–50*Time points were
awarded for every correct response (if negative, the par-
ticipant was given 0). Time was in seconds. After the
participant responded, feedback appeared on the screen
for 1000 msec. If the answer was incorrect, the word
INCORRECT appeared along with the correct answer
and the amount of points deducted. If the answer was
correct, the word CORRECT appeared along with the
amount of points awarded. Participants completed a
total of 12 blocks of 72 trials. Each of the 72 word triples
appeared once per test block.

EEG Recording and Analysis

Stimuli appeared on a 60-Hz LCD monitor set 60 cm from
participants. The EEG was recorded from 128 Ag-AgCl
sintered electrodes (10–20 system) using a Biosemi
Active II System (BioSemi, Amsterdam, Netherlands).
The EEG was re-referenced online to the combined com-
mon mode sense and driven right leg circuit. Electrodes
were also placed on the right and left mastoids. Scalp
recordings were algebraically re-referenced offline to the
average of the right and left mastoids. The EEG and EOG
signals were filtered with a bandpass of 0.1 to 70.0 Hz
and were digitized at 512 Hz. The EEG recording was
decomposed into independent components using the
EEGLAB FastICA algorithm (Delorme & Makeig, 2004).
Components associated with eye blinks were automati-
cally identified and projected out of the EEG recording.
Epochs of 1100 msec (including a 100-msec baseline) were
then extracted from the continuous recording and cor-
rected over the prestimulus interval. Epochs containing
voltages above +100 μV or below −100 μV were excluded
(<4% epochs).

EEG data were analyzed from trials with correct re-
sponses. Data were averaged across contiguous elec-
trodes to create four regions: a left anterior/superior (LAS)
region (FFC3h, F3, F1, FFC5h, FFC1h, FC3, and FC1), a right
anterior/superior (RAS) region (FFC2h, F2, F4, FFC4h,
FFC6h, FC2, and FC4), a left posterior/superior (LPS) region
(CP3, CP1, CPP5h, CPP3h, CPP1h, P3, and P1), and a right
posterior/superior (RPS) region (CP2, CP4, CPP2h, CPP4h,
CPP6h, P2, and P4). We analyzed data from these regions
during an early time window (300–500 msec) correspond-
ing to the FN400 and a later time window (600–1000 msec)
corresponding to the parietal old/new effect. Data from
each time window were entered into a 4 (Probe type) ×
2 (Fan) × 2 (Laterality) × 2 (Anterior/superior) repeated-
measures ANOVAs. For all analyses involving probe type
(the only factor with more than two levels), we adjusted
the p values using the Greenhouse–Geisser correction.
We also analyzed response-locked waveforms, which were
baseline-corrected using the 100-msec prestimulus interval
before the triple appeared.

HSMM-MVPA Applied to EEG

In our HSMM, we explicitly model the variability of
endogenous ERP components that would otherwise be
distorted or lost in the average waveforms. The HSMM-
MVPA method identifies brief, distinctive profiles of scalp
activity (i.e., bumps) with variable latencies in the single-
trial EEG (Anderson et al., 2016). A bump is modeled as a
half-sine multidimensional peak across the scalp that
signifies a significant change in the information pro-
cessing, followed by a flat period where the mean of the
ongoing sinusoidal noise is 0. Our HSMM models the
durations of the flats as gamma distributions.
Two steps of dimensionality reduction were carried

out to simplify the analysis and make the computations
more efficient and tractable. First, the data were down-
sampled to 100 Hz (i.e., 10-msec samples). Second, to
deal with the highly intercorrelated nature of the EEG
sensors and to reduce the dimensionality of the signal,
spatial PCA (i.e., across electrodes) was performed to
generate orthogonal PCA dimensions. The first 10 PCA
components were retained. These accounted for 69.2%
of the variance in the signal. The PCA components were
z-scored for each trial. As a result, the data for the
analysis consisted of 10 orthogonal PCA components
sampled every 10 msec and with constant mean and
variability across trials. Five samples (50 msec) beyond
the response were also included in the analysis to ensure
that the bump signifying the motor response was fully
modeled, in the case that it occurred at the moment of
trial completion. We only considered data from correct
trials.1

As described in more detail in our previous applica-
tion of the HSMM-MVPA method (Anderson et al., 2016),
several assumptions about the temporal structure of the
signal are made to facilitate the analysis. First, the bumps
were given a 50-msec width (i.e., five samples) with a
half-sine shape. Such narrow bumps promote precision
in the identification of stage boundaries, even if the
bumps may actually be somewhat wider than 50 msec.
Second, the analysis assumes that bumps do not overlap.
Third, the flat durations are modeled as a gamma dis-
tribution with a fixed shape parameter 2 and a free scale
parameter estimated to fit the data. See Anderson et al.
(2016) for a detailed discussion of these assumptions,
and tests of the robustness of the method against vio-
lations of each. Bumps in the HSMM are intended to
account for the portion of the EEG signal corresponding
to task-related processing; that is, variability arising from
stimulus processing, memory retrieval and decision-
making, and response commission. Other sources of
variability in the EEG signal that are not accounted for
by bumps in the HSMM include noise from muscle
movement, ambient electrical activity in the recording
environment, stochasticity in neural responses to the
same or related events, and additional neural processes
unrelated to the task that take place in a nonstimulus
locked fashion.
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An n bump HSMM requires estimating n + 1 stage
distributions to describe the durations of the flats plus
the n five-sample bumps for each PCA component. A dif-
ferent magnitude is estimated for each of the n bumps
along each PCA dimension. A bump extends temporally
across five samples (50 msec) and is multiplied by
weights of 0.309, 0.809, 1.000, 0.809, and 0.309 (i.e., a
10-Hz half sin wave). The best model fit of such HSMMs
is given by maximizing the summed log likelihood of
the bumps and flats across all trials. For each trial, this
log likelihood can be decomposed into two parts: the
likelihood of the EEG data given that the bumps are
centered at each time point, and the likelihoods that
the bumps are centered at those time points given the
gamma distributions that constrain their locations. In
other words, the HSMM must select bump locations
within a trial to maximize the correspondence between
the observed and the estimated EEG signal, while select-
ing relatively consistent flat durations across trials to
maximize their fit to the gamma distributions. The esti-
mation process has to consider all possible combinations
of bump locations, and this is what is efficiently calcu-
lated by the dynamic programming associated with HSMMs
(Yu, 2010).
The HSMM methods also return the probabilities of

each bump occurring at each time point on a trial-by-trial
basis. These probabilities can be used to calculate the
most likely location of each bump in a trial, which is
the sum of the time points in the trial multiplied by the
corresponding probability that the bump occurred at that
time. Mean stage durations for a particular individual can
then be calculated as the average time between bumps
across all trials within that individual.

RESULTS

Behavioral Results

During the study phase, the number of times a triple was
presented during each block before being correctly com-
pleted can be used to assess rate of learning (Table 2).2

With a repeated-measures ANOVA with Fan and Block as
factors, mean frequency decreased across blocks, F(2,
36) = 30.382, p < .001. The frequency was higher for
Fan 2 triples versus Fan 1 triples, F(1, 18) = 13.500, p <
.001. The overall effect of Fan decreased slightly across
block, with an interaction between Block and Fan, F(2,
36) = 3.322, p < .05. By the third block, participants
tended to respond correctly on their first attempt.

During the test phase, data were trimmed by excluding
trials with RTs shorter than 40 msec or longer than 3 sec
(4% of all trials). The mean correct RTs and error rates
appear in Table 3. RT and error rate were submitted to
a repeated-measures ANOVA with Fan and Probe type
as factors. RT was longer and error rate was higher for
Fan 2 triples versus Fan 1 triples, reflecting a main effect
of Fan on RT, F(1, 18) = 7.066, p < .001, and error rate,
F(1, 18) = 29.561, p < .001. RT and error rate both
varied with Probe type (F(3, 54) = 18.571, p < .001 and
F(3, 54) = 11.965, p < .001, respectively). Responses to
dissimilar foils were fastest and most accurate. The effect
of Fan on performance was greatest for targets, reflecting
an interaction between fan and probe type on RT, F(3,
54) = 5.683, p < .01, and error rate, F(3, 54) = 28.654,
p < .01.

ERP Results

Stimulus Locked: 300–500 msec

Figure 2 shows ERPs from the four regions based on
probe type and fan. We first analyzed the data from all
four regions during 300–500 msec, the typical time win-
dow of the FN400 (Stróżak, Abedzadeh, & Curran, 2016;
Mollison & Curran, 2012; Speer & Curran, 2007). Consis-
tent with the impression conveyed by the figures, there
were no significant main effects or interactions involving
the experimental factors during this window (Table 4).

Stimulus Locked: 600–1000 msec

We then analyzed the data from all four regions during
600 to 1000 msec, the typical time window of the parietal
old/new effect. Waveforms appeared more positive for
targets, reflecting a main effect of Probe (Table 4). The
main effect of Fan was not significant nor was the inter-
action between Probe type and Fan. The topographical
distribution of the Probe type effect is shown in Figure 3.

Response Locked: −50 to 50 msec

Effects not otherwise observable in stimulus-locked
waveforms can sometimes be seen in response-locked

Table 2. Mean Frequency of Triples with SEMs in Parenthesis

Block 1 Block 2 Block 3

Fan 1 2.34 (0.23) 1.58 (0.11) 1.25 (0.07)

Fan 2 2.66 (0.25) 1.62 (0.09) 1.39 (0.09)

Table 3. Mean RT (in sec) and Error Rates (as a %) with SEMs
in Parenthesis

Probe Type

RT Error Rate

Fan 1 Fan 2 Fan 1 Fan 2

Target 1.26 (0.05) 1.42 (0.07) 13.3 (2.0) 27.9 (3.2)

Dissimilar 1.24 (0.06) 1.36 (0.07) 2.7 (0.1) 6.4 (1.2)

Similar 1 1.30 (0.06) 1.38 (0.08) 13.1 (2.7) 8.8 (1.4)

Similar 2 1.34 (0.06) 1.42 (0.07) 14.4 (2.2) 15.9 (1.8)
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waveforms (Figure 4). A clear effect of Probe type along
with an effect of Fan emerged surrounding the response
from −50 to 50 msec. This was reflected in main effects
of Fan and Probe (Table 4). The effect of Fan was
smallest for targets, reflecting an interaction between
Fan and Probe. Waveforms were most positive for fan
1 triples and for targets. Figure 5 shows the topograph-
ical distribution.

In summary, we did not observe an FN400 in the
stimulus-locked data. The time course, direction, and
topographical distribution of the Probe effect in the
stimulus-locked data are consistent with the parietal
old/new effect. The Probe effect was also evident in the
response-locked data, which is not surprising given that
responses occurred shortly after the time window used
to measure the parietal old/new effect. Finally, an effect
of Fan only appeared in the response-locked data. These
results are consistent with our earlier study of paired
associate recognition (Anderson et al., 2016). Now we

turn from the traditional analysis of averaging over trials
to an HSMM-MVPA analysis that parses each trial into its
stages.

Identifying the Stage Durations and the
Bump Profiles in HSMM-MVPA

HSMM-MVPA identifies bumps in the ongoing EEG signal
related to significant changes in information processing.
In this study, the number of stages in HSMM was decided
jointly based on the EEG data and our theoretical under-
standing of the task model developed in ACT-R. Using
a procedure of leave-one-out cross-validation (LOOCV;
details in Anderson et al., 2006), we confirmed that an
HSMM with four bumps outperformed any model with
fewer bumps. When we included more than four bumps,
the HSMM placed the additional bumps adjacent to one
another to capture a sustained positivity in the EEG pre-
ceding the response, as also observed by Anderson et al.

Figure 2. Stimulus locked waveforms from the four regions. Line colors correspond to target probes (black), dissimilar foils (red), similar 1 foils
(blue), and similar 2 foils (red).

Table 4. 4 (Probe) by 2 (Fan) Repeated Measures ANOVAs for Mean Voltages during Stimulus and Response Locked Intervals

Stimulus Locked
300 to 500 msec

Stimulus Locked
600 to 1000 msec

Response Locked
−50 to 50 msec

Probe: F(3, 54) 0.715, ns 8.626, p < .001 5.826, p < .01

Fan: F(1, 18) 0.375, ns 2.348, ns 7.531, p < .05

Probe × Fan: F(3, 54) 0.947, ns 0.757, ns 4.678, p < .01

Probe × Anterior/Posterior: F(3, 54) 0.456, ns 0.159, ns 4.430, p < .05

Probe × Laterality: F(3, 54) 1.361, ns 2.117, ns 3.862, p < .05

Fan × Anterior/Posterior: F(1, 18) 1.452, ns 0.757, ns 1.554, ns

Fan × Laterality: F(1, 18) 0.001, ns 0.179, ns 0.735, ns
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(2016). Given the absence of a theoretical motivation for
including more stages in the computational model, we
continued with the four-bumpmodel. Furthermore, given
that the current task involved associative recognition,
as did the task reported in Anderson et al. (2016), their
identification of stages motivated us to adopt a similar
model here.
On the basis of the ACT-R model of the task, we ob-

tained a total of four bumps and five stages in processing:
(1) Preattention stage: The time from stimulus onset to
the first bump reflecting the time for the visual signal to
reach the brain and be attended to; (2) Encoding stage:
The time from the first to the second bump reflecting
the time to encode the stimulus; (3) Retrieval stage: The
time from the second to the third bump reflecting the
time to retrieve a memory for comparison; (4) Comparison
stage: The time from the third to the fourth bump re-
flecting the comparison of the memory with the probe;
(5) Response stage: The time from the fourth bump to
the response reflecting response execution.

Figure 6 illustrates the durations of the five processing
stages and the scalp topologies of the four bumps iden-
tified using the HSMM-MVPA method. Each of the bumps
is modeled as a 50-msec half-sine multidimensional peak
that can be projected back to the scalp given the known
PCA projection weights. The Preattention, Encoding, and
Response stages were relatively brief compared with the
Retrieval and Comparison stages. The bump profiles and
durations are similar to those in Anderson et al. (2016),
with the exception of the comparison stage, which is
considerably longer here. The longer comparison stage
reflects the greater number of words that participants
needed to compare and the demanding similarity manip-
ulation used in this experiment.

RTs varied by condition (Table 3). These differences in
response latency must show up in the durations of some
of the stages. To determine which stages were affected
by the experiment manipulations, we fit HSMMs with
different stage durations to each condition. That is, we
estimated scale parameters for the gamma-2 distributions

Figure 3. Mean voltage over
scalp from 600 to 1000 msec
after stimulus onset.

Figure 4. Response locked waveforms from the four regions. Line colors correspond to target probes (black), dissimilar foils (red), similar 1
foils (blue), and similar 2 foils (red).
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of each stage separately for the different conditions while
constraining the bump magnitudes to be the same. To
focus on the effects of probe type, we restricted the
effect of Fan to the Retrieval stage (Stage 3) and inves-
tigated which stages were impacted by probe type. To
do so, we created an HSMM where the durations of all
stages were allowed to vary with probe, but only the
duration of the third stage was allowed to vary with fan.
Figure 7 shows the resulting estimated stage durations.
We computed the mean stage durations for each subject
as a function of Probe type and submitted them to a
4 (Probe) repeated-measures ANOVA separately for
each stage. Consistent with the impression conveyed by
Figure 7, the effect of Probe type was significant during
the third stage, F(3, 54) = 13.070, p < .0001, and the
fourth stage, F(3, 54) = 21.720, p < .0001. We sub-
sequently performed a 4 (Probe) × 2 (Stages 3 or 4)
repeated-measures ANOVA. The main effect of Probe
was significant, F(3, 54) = 7.489, p < .001, but the effect
of Stage was not, F(1, 18) = 3.949, p < .1. Most impor-
tantly, these two factors interacted, F(3, 54) = 48.417,
p < .0001, owing to the opposing effects of probe on
the durations of Stages 3 and 4.

The duration of Stage 3 was shortest for targets and
comparable for the three foil types. This is consistent
with the prediction of the ACT-R model that retrieval
time will be the shortest for targets, because the re-
trieved triple always receives two sources of spreading
activation (Equation 1 and Equation 2). However, the

ACT-R model also predicts the slowest retrieval time for
dissimilar foils (which receive one source of spreading
activation), followed by similar 1 foils and similar 2 foils.
Probe similarity also affected Stage 4. In contrast to
Stage 3, durations were longest for targets and similar 2
foils, followed by similar 1 foils, and finally by dissimilar
foils. This is consistent with a model in which comparison
terminates once a mismatch is detected.
Averaging across associative fan and probe type, RTs

decreases from the first to the second half of the exper-
iment (1374 vs. 1277 msec, t(18) = 3.19, p < .01). The
ACT-R model predicts that practice should not affect
the speed of encoding or motor planning, but rather
the time to retrieve items from memory. Specifically,
base level activation (Bi in Equation 2) increases with
the number of repetitions. We compared the inferred
stage durations from the first and second halves of the
experiment in the HSMM. The results were partially in
line with the model’s predictions: the duration of the
retrieval stage deceased from 527 to 498 msec, t(18) =
4.994, p < .05, but the duration of the comparison stage
also decreased from 588 to 529 msec, t(18) = 13.219,
p < .01.

Averaged Electrode Activity Anchored by Model Events

In standard ERP analyses, the EEG signal is anchored to
observable events such as the presentation of a stimu-
lus. The bumps obtained from the HSMM signal latent

Figure 5. Mean voltage over
scalp from −50 to 50 msec
with respect to response.

Figure 6. Mean electrode
activity reconstructed for the
four bumps by projecting the
bump magnitudes back to
the PCA weights (top). Mean
durations of five stages
interleaved by four 50-msec
bumps (bottom).
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points of change. These events can be used, along with
observable events, to align the EEG data. We anchored
the EEG data from each trial according to stimulus
onset, response, and the maximum likelihood locations
of each of the four bumps during that trial. We then
expanded or contracted the resulting five intervals in
every trial of a condition to have durations equal to those
specified by HSMM. In this way, the stimulus, the loca-
tions of the four bumps, and the response are aligned
across all trials in a condition. In the resulting displays
(Figures 8 and 9), conditions with longer RTs stretch
further forward in the stimulus-locked waveforms.
In Figures 8 and 9, substantial differences among

conditions are seen before and during the fourth bump

over the parietal region. We performed a 4 (Probe type) ×
2 (Fan) × 2 (Flat/bump) repeated-measures ANOVA
using mean amplitude over the flat preceding the fourth
bump and peak amplitude of the fourth bump. There is a
significant interaction of the three factors (F(3, 54) =
6.072, p= .002). Then we performed separately a 4 (Probe
type) × 2 (Fan) repeated-measures ANOVA using mean
amplitude over the flat or peak amplitude of the fourth
bump. The main effect of Probe was significant both
during the preceding flat (F(3, 54) = 12.568, p < .001)
and during the fourth bump (F(3, 54) = 6.593, p = .002),
reflecting the greater positivity for targets versus foils. The
main effect of Fan on the peak amplitude of the fourth
bump was also significant (F(1, 18) = 11.446, p = .003),

Figure 7. Condition-specific
stage durations when localizing
the effect of fan to Stage 3 and
allowing probe type to vary
across all stages.

Figure 8. Average EEG data after warping every trial so that the maximum likelihood locations of the bumps correspond to the average
locations for that condition. Data are shown in four regions (LAS, RPS, LPS, and RPS) for each fan condition.
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owing to the greater positivity for Fan 1 triples versus Fan 2
triples.

Using the Neuroimaging Analysis to
Inform the Task Model

Our model’s retrieve-to-reject strategy consists of four
stages: (1) Encoding—randomly select two of the words
to encode; (2) Retrieval—retrieve a triple from memory
that most closely matches the two encoded words; (3)
Comparison—compare the encoded and retrieved triples
to determine whether any word differs; (4) Response—
press K (“not studied”) if any word differs and press J
(“studied”) otherwise. RT of a trial with probe i equals
the cumulative duration of the four stages. This can be rep-
resented as

RTi ¼ Shared Timeþ Retrieval Timei
þ Comparison Timei (4)

Shared Time includes the durations of the encoding
and response stages. These encompass the time for the
signal to reach the brain, the time to encode the words,
and the time to program and perform a motor response.

Retrieval Time is computed from the set of equations
that make up ACT-R’s theory of declarative memory and
that are described in the Introduction.3 In this task,
retrieval time depends on the number of cues (i.e., en-
coded words) that spread activation to the retrieved
triple (Equation 1). The number of sources of activation
in targets always equaled two because all possible pairs
of encoded words (P-V, P-L, or V-L) occurred together

in a studied triple. The number of sources of activation
for the retrieved triple in dissimilar foils always equaled
one because no two of the words occurred together in a
studied triple. The number of sources for similar 1 foils
equaled 1 with 66% (P-V or V-L encoded) and 2 with
33% (P-L encoded). Lastly, the number of sources for
similar 2 foils equaled 1 with 33% (P-L encoded) and
2 with 66% (P-V or V-L encoded).
Retrieval Time also depended on the number of asso-

ciates or fan of the encoded words in the probe (Equa-
tion 3). Person and location always had the same fan as
one another (1 or 2), which varied by triple. Verb always
had a fan of 3. On the basis of the spread of activation
(Equation 2) and the degree of match (i.e., probe similar-
ity) between current context and the retrieved triple
(Equation 1), we computed activation for all combina-
tions of two encoded words for the four probe types
and the two fan conditions. Retrieval time for a condition
was calculated as the average expected retrieval duration
for all combinations of two encoded words (P-V, P-L, or
V-L encoded).
Comparison Time depended on the number of en-

coded words that matched words in the retrieved triple.
We modeled the comparison stage as a serial process in
which participant first compared the two encoded words
to the corresponding words in the retrieved triple. If
either word differed, the comparison process ended. If
neither word differed, the participant compared the
third word. The third word could conceivably be encoded
before or during the final comparison.
The probability of comparing the third word varied

by probe type. Targets always required comparing the

Figure 9. Average EEG data after warping every trial so that the maximum likelihood locations of the bumps correspond to the average locations
for that condition. Data are shown in four regions (LAS, RPS, LPS, and RPS) for each probe condition.

362 Journal of Cognitive Neuroscience Volume 29, Number 2



third word because the first two words always matched
the retrieved triple. Dissimilar foils never required the
final comparison because the first two words never both
matched the retrieved triple. Similar 1 foils required the
final comparison 33% of the time (P-L initially encoded).
Lastly, similar 2 foils required the final comparison 66% of
the time (P-V or V-L initially encoded). Time to com-
pare the third word (Final Comparison) was treated as
a free parameter. Overall comparison time for a condi-
tion was calculated as the sum of a Comparison Intercept
parameter, which was the same across conditions and
accounted for the duration of comparing the first two
words, and the Final Comparison weighted according
to the probability that the final word was compared in
each condition.

Model Fitting Procedure

The ACT-Rmodel contained a total of four free parameters:
Shared Time, F (latency scale for mapping activation onto
retrieval time), Final Comparison, and Comparison
Intercept. Maximum associative strength (S, Equation 3)
was set to a default value of 1.5,4 and attentional weight
(W, Equation 2) was set to 1/2 because context was de-
fined by the two encoded words.
We estimated the free model parameters to maximize

the correspondence between the durations of the model
stages (i.e., Retrieval and Comparison) and the stages
inferred from the HSMM using a simplex optimization
algorithm. This is in contrast to the standard approach
to parameter estimation, which involves finding param-
eter values that maximize the correspondence between
the model’s output and the observed overall RTs. By
isolating the durations of the retrieval and comparison
stages using the neuroimaging data, it is possible better
estimate F (which only affects the retrieval stage) and
Final Comparison (which only affects the comparison
stage).

Model Results

The latency scalar parameter (F) was estimated to maxi-
mize the correspondence between the duration of the
model’s retrieval stage and the duration of the third
stage in the HSMM-MVPA analysis. For the best fitting
value of F (Table 5), the model accounted for the differ-

ent durations of third stage across the eight conditions
formed by fan and probe, as shown in Figure 7 (r = .88,
MSE = .005).

The Final Comparison and Comparison Intercept
parameters were estimated to maximize the correspon-
dence between the duration of the model’s comparison
stage and the fourth stage in the HSMM-MVPA analysis.
For the best fitting values (Table 5), the model accounted
for the different durations of the fourth stage across the
eight conditions formed by fan and probe, as shown in
Figure 7 (r = .94, MSE = .001).

Using the parameter estimates from the neuroimaging
data (Table 5), we calculated the three durations in Equa-
tion 4 (Shared Time, Retrieval Time, and Comparison
Time) to generate model behavioral RTs. The correspon-
dence between the model’s overall RTs and the observed
RTs was fairly high (r= .81,MSE= .001). As illustrated in
Figure 10, fan only affected the duration of the model’s
retrieval stage. Alternatively, probe type affected the
duration of the model’s retrieval and comparison stages
in opposite ways (Retrieval Stage: Target = 382 msec,
Similar 2 = 453 msec, Similar 1 = 445 msec, Dissimilar =
515msec; Comparison Stage: Target= 550msec, Similar 2=
522 msec, Similar 1 = 494 msec, Dissimilar = 465 msec).
Owing to the strong negative correlation between the
durations of the retrieval and comparison stages (r2 =
−.86), the net effect of probe type on overall RT was small
(Figure 10).

DISCUSSION

We conducted a study of associative recognition in which
participants decided whether a probe made up of three
words matched any previously studied triple. We varied
the associative fan of words in the probes, as well as
the degree of similarity between probes and studied
triples. Our HSMM-MVPA method revealed that probe

Figure 10. Observed RTs (bars) and cumulative duration of model’s
shared time (red squares), retrieval time (blue squares), and comparison
time (black squares).

Table 5. Model Parameter Estimates

Parameter Name Estimate

Shared Time 430 msec

F 905 msec

Final Comparison 85 msec

Comparison Intercept 465 msec
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similarity substantially affected the durations of both the
retrieval stage and the comparison stage. The retrieval
stage was shortest when probes were more similar to a
studied triple, whereas the comparison stage was longest
when probes were more similar to a studied triple. The
opposing ways in which probe similarity impacted re-
trieval and comparison stages explained why this factor
had only a modest effect on overall RT; for instance,
RTs were nearly identical for similar 1 foils and targets,
yet the durations of the retrieval and comparison stages
clearly differed.

A Model of Associative Recognition

The results from the HSMM-MVPA analysis were largely
consistent with the ACT-R model of associative recog-
nition. The model predicts that when a studied triple
shares more words with a probe, the triple will be re-
trieved more quickly because of the greater number of
sources spreading activation to it (Equation 2). Alter-
natively, the model predicts that when a probe has more
words in common with a studied triple, serial comparison
of the words in the probe and in the retrieved triple will
take longer. This is because more words on average must
be compared before detecting a difference. By isolating
the durations of the retrieval and comparison stages
using HSMM-MVPA, we were able to measure the effect
of probe similarity on retrieval latency. Targets were
retrieved more quickly than foils as predicted from the
ACT-R model.

The results from the retrieval stage were not perfectly
consistent with the model, however. The model predicts
that dissimilar foils, which share only one word with any
studied triple, will lead to slower retrievals than similar 1
or similar 2 foils, which share two words with some
studied triple. In contrast, the HSMM-MVPA indicated
that the duration of the retrieval stage was the same for
all foils. This could reflect a simplifying assumption in
our instantiation of the ACT-R model. Predictions based
on Equation 2 correspond to the case of noiseless activa-
tion during retrieval. In its complete instantiation, the
ACT-R cognitive architecture adds continuously varying,
logistically distributed noise to activation values. Because
many studied triples overlap with a dissimilar foil (six
triples averaged over fan for dissimilar foils vs. one or
two triples for the other foil types), the retrieved asso-
ciate will be the most active of a larger set of candidates.
As a consequence, the retrieved triple in the case of dis-
similar foils will on average have a larger, positive noise
term added to its activation value.

The HSMM-MVPA showed that the comparison stage
was shortest for dissimilar foils and was longest for
similar 2 foils and targets. This result relates to a classic
finding from the “same”–“different” perceptual judgment
task (Sternberg, 1969). The more attributes two visual
stimuli share, the longer it takes for people to determine
that they differ (Farell, 1985). This is consistent with a

serial comparison process, as instantiated in our ACT-R
model of associative recognition. Interestingly, in the
“same”–“different” task, matching stimuli produce faster
responses than predicted by simple linear extrapolation of
the number of comparisons required (Nickerson, 1969).
As shown by the HSMM-MVPA, the duration of the com-
parison stage in our task increased with the number of
comparisons for foils but was equivalent for targets and
similar 2 foils even though targets required more com-
parisons. To account for the differential effects of number
of comparisons on “same” versus “different” judgments,
some models assume that “same” judgments are based
on a parallel holistic process rather than a serial analytical
process (Farell, 1985). The ACT-Rmodel does not currently
include a holistic comparison process and so predicts a
slightly longer comparison stage for targets.

Comparing ERP Components and HSMM-MVPA
Bumps of Associative Recognition

EEG studies of recognition memory reveal two ERP com-
ponents, the FN400 and the parietal old/new effect. In
many studies of recognition memory, participants view
probes and are asked to decide whether they previously
studied the probe. Some of the probes perfectly match
a studied item (“targets”), some are entirely novel (“dis-
similar lures”), and some merely resemble a studied item
(“similar lures”). The FN400 is typically more negative for
dissimilar lures than for targets or similar lures, suggest-
ing that it is sensitive to item familiarity. The parietal old/
new effect, on the other hand, is more positive for targets
than for dissimilar or similar lures, indicating that it is
sensitive to the retrieval of perfect matches (for a review,
see Rugg & Curran, 2007).
Given that associative recognition involves remember-

ing details about what an item appeared with, we ex-
pected that participants would display the standard
parietal old/new effect. Indeed, as in previous studies of
associative recognition (Diana, Van den Boom, Yonelinas,
& Ranganath, 2011; Donaldson & Rugg, 1998), targets
produced a late posterior positivity during the fourth flat
that extended to the last bump, whereas foils did not. In
the ACT-R model, the stage coinciding with the parietal
old–new effect involves processing of the memory trace
after its retrieval. We previously suggested that the am-
plitude of the sustained response reflected the different
activations of the retrieved memories in the various con-
ditions (Anderson et al., 2016). Activation is greater for
targets than foils and for Fan 1 triples than for Fan 2
triples. Consistent with this view, voltages over the pari-
etal scalp were greater for Fan 1 triples than for Fan 2
triples in the moments preceding a response.
All of the words in the test phase of our experiment

appeared earlier during the study phase. As such, it was
unclear whether participants would display an FN400 for
foils versus targets. Some studies of associative recog-
nition show that the novelty of the association between
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probe items can produce an FN400 (Bader, Mecklinger,
Hoppstädter,&Meyer,2010;Speer&Curran,2007),whereas
others do not (Anderson et al., 2016; Ecker, Zimmer,
Groh-Bordin, & Mecklinger, 2007). These discrepancies
may relate to whether the individual elements in an associ-
ate are represented as a single unit. Conditions that favor
unitization in paired associate learning may yield a distinct
FN400 for rearranged pairs relative to studied pairs (Ecker
et al., 2007). These conditions include repeated study
(Speer & Curran, 2007), semantically meaningful pairs
(e.g., traffic-jam; Rhodes & Donaldson, 2007), and elabora-
tive encoding (Rhodes & Donaldson, 2008). The condi-
tions in our experiment did not promote unitization:
Participants learned triples (rather than pairs), they studied
triples as few as four times, and the words in triples were
unrelated.
All regions show activity related to each of the four

bumps. The topographical distribution and time course
of the bumps are largely consistent with those described
in our previous application of the HSMM-MVPA method
to a paired associate recognition task (Anderson et al.,
2016). The first bump likely corresponds to the N1, given
its early time course, its anterior distribution, and its
insensitivity to the fan and probe type manipulations.
This component is typically interpreted as an index of
visual attention (Luck, Woodman, & Vogel, 2000). The
intermediate time course and anterior distribution of
the second bump are consistent with the P2 (Van Petten,
Kutas, Kluender, Mitchiner, & McIsaac, 1991).
The third bump may relate to the N2 (cf. Anderson

et al., 2016), a frontocentral negativity caused by re-
sponse conflict (Yeung, Botvinick, & Cohen, 2004). The
N2 typically appears somewhat earlier in ERP waveforms.
However, most studies of the N2 involve decisions far
simpler than associative recognition. As the third bump
in the ACT-R model initiates the comparison stage, it fol-
lows that this bump occurs at the moment of maximum
response conflict within the trial. The late and variable
latencies of the third bump may obscure the N2 in the
conventional ERP waveforms of our study and in other
studies of recognition memory. Finally, the time course,
direction, and topographical distribution of the fourth
bump are consistent with the parietal old/new effect. As
in our previous experiment (Anderson et al., 2016), this
bump was sensitive to perfect matches and had higher
amplitude for Fan 1 triples than for Fan 2 triples.

The Path Forward: HSMM-MVPA

HSMM-MVPA can be used to guide the development of
new theories by providing a direct measure of the dura-
tions of information processing stages to make infer-
ences about the effects of experimental factors. RT-based
methods have also been used. However, if an experi-
mental factor affects the durations of multiple stages, its
impact on each cannot be directly observed from overall
RTs. Rather, one must specify a model of how the factor(s)

affect each stage, calculate the expected durations of
all stages, and compare the summed stage durations to
overall RTs. A discrepancy between expected and ob-
served RTs does not indicate which stages and factors
were modeled incorrectly. More problematically, the ab-
sence of a discrepancy does not exclude the possibility
that the model overpredicted the duration of one stage
and underpredicted the duration of another. By isolating
each stage’s duration, the HSMM method overcomes
these limitations of RT-based methods.

HSMM-MVPA can be used for a second, related purpose:
to obtain more accurate parameter estimates for a pro-
cess model. An advantage of linking cognitive models to
neural data would be the sheer wealth of additional
information that neural data can provide in comparison
with behavioral data (see a review of different linking
approaches, de Hollander, Forstmann, & Brown, 2016).
The HSMM-MVPA method provides individual stage du-
rations instead of the sum of them (i.e., RT) to better
constrain model fitting. For example, the ACT-R retrieval
latency scalar (F ) only affects the duration of the retrieval
stage, whereas Final Comparison only affects the dura-
tion of the comparison stage. Because both parameters
modulate the effects of probe type, changes in F can be
partially offset by changes in Final Comparison time to
produce similar overall RTs. By estimating model param-
eters based on the stage durations in the HSMM-MVPA,
no such parameter compensation occurs. Another ex-
ample is the estimation of Comparison Intercept, which
is not affected by fan or probe type. Without information
about the duration of the comparison stage from the
HSMM-MVPA, it would not be possible to estimate the
Comparison Intercept separately from other processes
(e.g., encoding and responding) that are also not affected
by the experimental factors. Beyond just a common inter-
cept, Figure 7 illustrates that the method can break this
time out into periods of prestimulus attention (Stage 1),
encoding (Stage 2), and responding (Stage 5).

Table A1. People, Verbs, and Locations Used to Create Triples

Person (18) Verb (8) Location (18)

actor coach paint airport attic

cowboy dancer work bank barn

chef engineer walk factory garage

farmer musician talk hotel kitchen

maid judge sing castle library

pilot queen laugh museum office

lawyer sheriff sleep church prison

soldier teacher drink stadium studio

tourist doctor - temple theatre
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Notes

1. Though error trials are interesting in their own right, the
current data set yielded too few to adequately constrain an
HSMM-MVPA. Also, it is less clear what psychological events
precipitated mistakes (e.g., retrieval errors or guessing).
2. More precisely, a pair of words was presented in each study
trial, and participants retrieved the third word to complete the
triple.
3. If all items are experienced equally often, Bi in Equation 2
can be set to zero. Furthermore, if equal attentional weight is
assigned to each cue, Wj can be fixed to 1/n in Equation 2,
where n is the number of retrieval cues (i.e., two encoded
words in the probe).
4. The selection of S is not important, because any change
in S in Equation 3 will be offset during the estimation of F in
Equation 1.
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