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Abstract

& A functional magnetic resonance imaging (fMRI) study was
performed in which participants performed a complex series
of mental calculations that spanned about 2 min. An Adaptive
Control of Thought—Rational (ACT-R) model [Anderson, J. R.
How can the human mind occur in the physical universe? New
York: Oxford University Press, 2007] was developed that suc-
cessfully fit the distribution of latencies. This model generated
predictions for the fMRI signal in six brain regions that have
been associated with modules in the ACT-R theory. The model’s
predictions were confirmed for a fusiform region that reflects

the visual module, for a prefrontal region that reflects the re-
trieval module, and for an anterior cingulate region that reflects
the goal module. In addition, the only significant deviations to
the motor region that reflects the manual module were an-
ticipatory hand movements. In contrast, the predictions were
relatively poor for a parietal region that reflects an imaginal
module and for a caudate region that reflects the procedural
module. Possible explanations of these poor fits are discussed.
In addition, exploratory analyses were performed to find regions
that might correspond to the predictions of the modules. &

INTRODUCTION

Newell (1990), in his classic book on unified theories of
cognition, noted that human action could be analyzed
at different time scales. He identified the biological band
as spanning actions that went from approximately 0.1 to
10 msec, the cognitive band as spanning periods from
roughly 100 msec to 10 sec, and the rational band as
spanning periods from minutes to hours. Cognitive psy-
chology and neuroimaging have both been principally
concerned with events happening at the cognitive band.
It was at this level that Newell thought the cognitive
architecture was most likely to show through. He pointed
to studies of things, such as automatic versus controlled
behavior (Shiffrin & Schneider, 1977), as fitting com-
fortably in this range. Neuroimaging techniques also fit
within this range not only because they are concerned
with typical cognitive psychology tasks but also because
their temporal resolution is best suited for this range.
They have difficulty discriminating below 10 msec and
temporal variability tends to wipe out any pattern much
above 10 sec (event-related potential [ERP] tends to fit
more the lower range of the cognitive band and functional
magnetic resonance imaging [fMRI] the higher end). The
question to be pursued in this article is whether analyses
of imaging results can be extended to the rational band
and whether they will give any insight into processes at
this higher level. Newell thought that evidence of the

architecture tended to disappear at the larger time scale
but, perhaps, that was because of the methodology avail-
able at that time.

Much of the recent research in our laboratory (Qin,
Anderson, Silk, Stenger, & Carter, 2004; Sohn et al.,
2004; Anderson, Qin, Sohn, Stenger, & Carter, 2003) has
been directed to extending fMRI techniques to the up-
per bounds of the Cognitive band, looking at tasks such
as algebra equation solving or geometric inference that
can take periods of time on the order of about 10 sec.
This is a period of time well suited to the relatively crude
temporal resolution of fMRI, which is best at identifying
events that are a number of seconds apart. We have
developed a methodology that involves constructing
cognitive models for the tasks in the Adaptive Control
of Thought—Rational (ACT-R) cognitive architecture
(Anderson et al., 2004) and then mapping the mental
steps in the models onto predictions for brain regions. A
task that involves visual stimuli and manual responses,
like the one studied here, engages six modules in the
ACT-R architecture and these have been mapped onto
six brain regions:

1. Visual module. We have found that a region of the
fusiform gyrus reflects the task-directed visual processing
performed by the ACT-R visual module. This region has
been shown to be involved in perceptual recognition
(e.g., Grill-Spector, Knouf, & Kanwisher, 2004; McCandliss,
Cohen, & Dehaene, 2003).

2. Manual module. This is reflected in the activity of
the region along the central sulcus that is devoted to
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representation of the hand. This includes parts of both
the motor and the sensory cortex.

3. Imaginal module. The imaginal module in ACT-R
is responsible for performing transformations of prob-
lem representations. We have associated it with a pos-
terior region of the parietal cortex. This is consistent
with other research that has found this region engaged
in verbal encoding (Clark & Wagner, 2003; Davachi,
Maril, & Wagner, 2001), mental rotation (Heil, 2002;
Zacks, Ollinger, Sheridan, & Tversky, 2002; Carpenter,
Just, Keller, Eddy, & Thulborn, 1999; Alivisatos &
Petrides, 1997; Richter, Ugurbil, Georgopoulos, & Kim,
1997), and visual–spatial strategies in a variety of con-
texts (Sohn et al., 2004; Reichle, Carpenter, & Just, 2000;
Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999).

4. Retrieval module. We have found a region of the
prefrontal cortex around the inferior frontal sulcus to
be sensitive to both retrieval and storage operations. Fo-
cus on this area is again consistent with a great deal of
memory research (Cabeza, Dolcos, Graham, & Nyberg,
2002; Fletcher & Henson, 2001; Wagner, Maril, Bjork, &
Schacter, 2001; Buckner, Kelley, & Petersen, 1999).

5. Goal module. The goal module in ACT-R sets states
that control various stages of processing and prevents the
system from being distracted from the goal of a particular
stage. We have associated the goal module that directs
the internal course of cognition with a region of the an-
terior cingulate cortex (ACC). There is consensus that this
region plays a major role in control (Botvinick, Braver,
Carter, Barch, & Cohen, 2001; D’Esposito et al., 1995;
Posner & Dehaene, 1994), although there is hardly con-
sensus on how to characterize this role.

6. Procedural module. The procedural module is as-
sociated with action selection (where ‘‘action’’ extends to
cognitive as well as physical actions). There is evidence
(e.g., Frank, Loughry, & O’Reilly, 2001; Amos, 2000; Ashby
& Waldron, 2000; Poldrack, Prabakharan, Seger, & Gabrieli,
1999; Wise, Murray, & Gerfen, 1996) that the basal gan-
glia plays an action-selection role. The region of the basal
ganglia that we have selected is the head of the caudate.

This research will test whether these modules show
similar systematic involvement in a much more complex
and difficult intellectual task than those we have studied
so far.

The Task

The research reported here looks at the execution of a
rather complex hierarchy of arithmetic computations
taking about 2 min. Although many neuroimaging stud-
ies have looked at simple arithmetic computations (for
a review, see Dehaene, Moiko, Cohen, & Wilson, 2004),
only a few studies have been conducted of complex
mental calculations. The existing studies (Delazera et al.,
2003; Pesenti et al., 2001; Zago et al., 2001) have indi-
cated involvement of parietal and prefrontal regions in

organizing the complex computations, but have done lit-
tle to reveal the role of these regions in the time course
of problem solving. They also have not used tasks as
complex as the one in the current research.

We chose an artificial task, which required only
knowledge of the rules of arithmetic and which could
be specified in a way that all participants would decom-
pose it into the same subtasks. This task involved a pro-
cedure for recursively decomposing a two-digit number
into smaller pairs of numbers until the number can be
expressed as a sum of single-digit numbers. Figure 1 illus-
trates this procedure applied to the number 67. At each
level in the figure, the two-digit number n is decom-
posed into successively smaller pairs of numbers a + b
according to the following rules:

(1) Find a. This is calculated as half of the number n
(rounding down if necessary) plus the tens digit (e.g.,
in the case of 67 the number a is 33 + 6 = 39).

(2) Calculate b as n � a (in the example, 67 � 39 = 28).
(3) Decompose a first and then b (this means storing

b as a subgoal to be retrieved later).
(4) When the decomposition reaches a single-digit num-

ber, key it. All digits in the answer were from 5 to
9 and were associated the five fingers on the right
hand that were in a data glove.

This is a recursive procedure that decomposes the
digits a and b if they are not single-digit numbers. It is a
difficult task, as it requires storing and retrieving num-
bers and performing two-digit arithmetic without paper
and pencil. Nonetheless, CMU students could be trained
to perform the task with reasonable accuracy. Most of the
problems involved generating nine digits, as in this ex-
ample. Verbal protocols from pilot participants indicated
that they were spending much of their time calculating

Figure 1. Representation of the decomposition of a number in the

experiment. The leaves of the tree give the mean time (rounded

to nearest 1.5-sec scan) to generate each number on trials where
the participants were correct on the first try. Although the figure

illustrates the decomposition of a particular problem, the latencies

are averages for all problems.
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results and also reconstructing past results that they had
calculated but lost. As we will see, their latencies are con-
sistent with this general description.

METHODS

Participants

Fourteen normal college students participated in this
experiment (right-handed, native English speakers, 19 to
26 years old, average age = 21.5 years, 5 women). They
gave written informed consent as approved by the
Institutional Review Boards at Carnegie Mellon Univer-
sity and the University of Pittsburgh.

Materials

Ten numbers were chosen in this experiment as start-
ing numbers for the decomposition algorithm. These
included the eight possible numbers (59, 61, 62, 63, 64,
65, 66, and 67) that decompose into nine response
digits, all five or greater, with the same structure as in
Figure 1. To increase variety, we included two numbers
(70 and 71) that decompose into 10 digits with a similar
structure except that the third digit in Figure 1 is greater
than 10 and needs to be decomposed into two digits.
For example, the response digits of 70 are 8, 6, 6, 5, 9, 8,
9, 7, 7, and 5. In data analysis, the 3rd and 4th digits were
treated as repeated observations of the third digit and
the 5th to 10th where treated as 4th to 9th digits. Par-
ticipants went through as many random permutations of
these 10 problems as time allowed.

Procedure

Figure 2 illustrates the structure of a trial. A trial began
with a prompt, which was a column of two rectangles
with white edges on a black background. The upper
rectangle showed a red star, the lower one was empty.
After 1.5 sec, the upper rectangle showed the given
number and the lower one was empty, waiting for the
participant to key in the answer. The digits 5 to 9 where
mapped onto the thumb through the little finger on the
right hand, which was in a data glove. As the participants
keyed in correct digits, the digits accumulated in the
bottom rectangle. If a participant hit a wrong key for a
digit, a red question mark where the next digit would
have appeared and a new try for this digit would start.
Participants had up to 300 sec to key in the first digit and
120 sec for each subsequent digit. If they exceeded this
time or had 10 failed tries for any digit, the trial would

end as an error. When the participant keyed in a new
digit correctly, the digit would appear on the screen and
the participant would have to wait for the next 1.5-sec
scan to begin before they could enter the next digit. All
latencies were measured from the beginning of the first
scan that they could have entered the digit. After all the
digits had been correctly entered, the lower rectangle
would disappear, and the upper rectangle would show
a white plus sign (+) for 22.5 sec as intertrial interval.
On a randomly chosen one-fifth of the trials, the prob-
lem terminated after the first response was made. These
trials enabled more correct observations on the first digit
where more errors were made.

On the day before the scan day, the participants prac-
ticed different aspects of the experiment for about 45 min.
This session began with key practice with a data glove to
familiarize the participants with the keys corresponding to
the digits. Then, after studying the instructions for the
experiment, the participant practiced decomposing three
numbers with seven digits in their answers and one with
nine digits in its answer.

fMRI Analysis

Each event-related fMRI recording (Siemens 3 T, echo-
planar imaging, 1500 msec TR, 30 msec TE, 558 flip angle,
20 cm FOV with 64 � 64 matrix, 3.125 � 3.125 mm per
voxel, 26 slices with 3.2 mm thickness, 0 gap, and with
AC–PC in the 20th slice from top) lasted 60 min for three
of 20-min blocks with ‘‘unlimited’’ number of trials sepa-
rated by 15 scans (22.5 sec) of intertrial interval. Each
block began with a buffer of four scans (6 sec) during
which nothing was presented. These initial scans were
discarded in the analysis.

Echo-planar images were realigned to correct head mo-
tion using the algorithm AIR (Woods, Grafton, Holmes,
Cherry, & Mazziotta, 1998) with a six-parameter rigid-
body motion correction. Data were then spatially trans-
formed into a common space using the transformation
obtained from coregistering anatomical images to a
common reference structural MRI image by means of a
12-parameter automatic algorithm AIR (Woods et al.,
1998), and then smoothed with a 6-mm full-width-half-
maximum 3-D Gaussian filter to accommodate individ-
ual differences in anatomy. Our reference image with
Talairach and Tournoux coordinates is available at
http://act-r.psy.cmu.edu/mri/. This is the reference brain
used for all studies from our laboratory.

All the predefined regions were taken from the trans-
lated images after coregistration. As in past research, we
used the following definitions of these predefined regions

Figure 2. Representation

of the structure of an

individual trial.
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based on prior research (e.g., Anderson, Qin, Yung, &
Carter, 2007):

1. Fusiform gyrus (visual): A region 5 voxels wide,
5 voxels long, and 2 voxels high centered at x = ±42, y =
�60, z = �8. This includes parts of Brodmann’s area 37.

2. Prefrontal (retrieval): A 5 � 5 � 4 region centered
at Talairach coordinates x = ±40, y = 21, z = 21. This
includes parts of Brodmann’s areas 45 and 46 around
the lateral inferior frontal sulcus.

3. Parietal (problem state or imaginal): A 5 � 5 � 4
region centered at x = �23, y = �64, z = 34. This
includes parts of Brodmann’s areas 7, 39, and 40 at the
border of the intraparietal sulcus.

4. Motor (manual): A 5 � 5 � 4 region centered at
x = ±37, y = �25, z = 47. This includes parts of
Brodmann’s areas 2 and 4 at the central sulcus.

5. Anterior cingulate (goal): A 5 � 3 � 4 region
centered at x = ±5, y = 10, z = 38. This includes parts
of Brodmann’s areas 24 and 32.

6. Caudate (procedural): A 4 � 4 � 4 region cen-
tered at x = ±15, y = 9, z = 2.

Except in the case of the motor and prefrontal regions,
our experience has been that the effects are nearly sym-
metric between hemispheres. The response in the motor
region is left lateralized because participants are respond-
ing with their right hand and the response in the left
prefrontal region is much stronger, as is typically found in
memory studies for such material. Our analyses will focus
on the left regions but we will report their correlations
with their right homologues.

RESULTS

Behavioral Data and Model

Table 1 summarizes the behavioral data. It gives the pro-
portion of answers correct on first attempt, the mean
time for these correct first attempts, the standard devia-

tion, and the mean number of scans for these correct
first attempts. Figure 3 shows separately the distribu-
tion of scan lengths for four categories of digits. It takes
much longer to key the first digit than any other and
Figure 3 shows the flat distribution of number of scans
for Digit 1 varying almost uniformly from 0 to 80 scans.
Digits 4 and 6 both take about 20 sec and Figure 3 again
shows a wide distribution of times but with two thirds
of the cases taking 10 scans (15 sec) or less. Digits 3
and 5 both take about 5 sec and Figure 3 shows that a
large majority of these observations are under five scans
(7.5 sec). Digits 2, 5, 7, and 8 average about a second
and Figure 3 confirms that the vast majority of these
are brief.

Table 1 and Figure 3 also show the predictions of
an ACT-R model.1 The model averages 99 sec to solve
a problem, whereas participants average 97.6 sec. The
correlation between that model and the mean latency
(Table 1) is .990 and the correlation with the distribution
of latencies in Figure 3 is .992.2 The ACT-R model for this
task was a straightforward implementation of the task
instructions. Figure 4 shows the trace of this model
(with certain parameter settings that will be explained)
performing the task in terms of the activity of the visual
module, the retrieval module, the imaginal module, and
the manual module. To make this run relatively simple,
it was set with parameters that avoid any loss of infor-
mation or need for recalculation and so it is quite a bit
shorter than the average run.

With respect to the module activity:

1. The visual module is activated whenever something
appears on the screen including the digits the partici-
pants are keying. Although it does not happen in the
instance represented in Figure 4, the visual module is also
engaged whenever the model needs to recalculate results
and so needs to re-encode what is on the screen.

2. The retrieval module is occupied retrieving arith-
metic facts, past subgoals, and mappings of digits onto
fingers.

Table 1. Behavioral Results

Position Accuracy (%) Latency (sec) Standard Deviation (sec) Scans No. Correct Scans Prediction (sec)

1 80.8 44.87 36.40 30.44 278 30 42.85

2 86.4 0.92 1.85 1.21 246 1 3.81

3 88.9 5.08 13.84 3.45 311 3 9.38

4 83.8 17.78 19.47 12.35 232 12 15.57

5 93.4 1.49 5.58 1.50 253 1 2.21

6 84.8 20.99 19.44 14.48 228 14 19.07

7 91.4 1.18 3.94 1.34 234 1 2.28

8 89.8 5.38 10.27 4.13 228 4 8.30

9 96.8 0.66 0.86 1.08 238 1 1.65

Anderson and Qin 1627



3. The imaginal module builds up separate represen-
tations of the each digit decomposition. Basically, one
image corresponds to each binary branch in Figure 1:
67 = 39 + 28, 39 = 22 + 17, 22 = 13 + 9, 13 = 7 + 6;
17 = 9 + 8; 28 = 16 + 12; 16 = 9 + 7; 12 = 7 + 5.

4. The manual module is activated to program the
output of each digit.

5. The procedural module is activated whenever a
production rule is selected. These are represented by
horizontal lines in Figure 4.

6. The control state in the goal module is reset to con-
trol each subtask in the performance of the overall task.
The durations of subtasks are indicated by brackets in Fig-
ure 4 and the caption to Figure 4 indicates the 23 subtasks
illustrated in the figure. In addition, another control state
is set for the rest period. These control states are needed

to restrict the rules applied to those appropriate for
the subtask. Without these control settings, inappropriate
rules would intrude and lead to erroneous behavior.

The model run in Figure 4 was designed to avoid all
variability in timing for purposes of creating an exem-
plary run. However, to account for the high variability in
times, the following four factors were varied:

1. The durations of the retrievals are controlled by
setting a latency parameter in ACT-R randomly according
to a uniform distribution on the range 0 to 1.5 sec. The
setting in the illustrative run in Figure 4 is 1 sec.

2. The durations of the imaginal operations were also
controlled by setting another latency parameter in ACT-R
randomly according to a uniform distribution on the

Figure 3. The distribution of

number of scans for different

digits. Dotted lines connect

actual data and solid lines
are the predictions

of the ACT-R model.

Figure 4. Activation of the

visual, retrieval, imaginal,

and manual modules in the
decomposition of ‘‘67.’’ Time

is given in seconds (sec).

Lengths of boxes ref lect

approximate times the
modules are engaged. The

horizontal lines represent the

firing of production rules.

Brackets indicate subtasks of
activity controlled by a setting

of a goal. These subtasks

are initial encoding of the
problem, calculation of 39 as

part of 67, calculation of 28 as

the other part, calculation of

22 as part of 39, calculation
of 17 as the other part,

calculation of 13 as part of

22, calculation of 9 as the

other part, special decomposition of 13 into 7 + 6, keying of 7, keying of 6 and retrieval of past decomposition 22 = 13 + 9, keying of 9,
retrieval of past decomposition of 39 = 22 + 17, special decomposition of 17 into 9 + 8, keying of 9, keying of 8 and retrieval of past decomposition

of 67 = 39 + 28, calculation of 16 as part of 28, calculation of 12 as the other part, special decomposition of 16 into 9 + 7, keying of 9, keying

of 7 and retrieval of past decomposition 28 = 16 + 12, special decomposition of 12 into 7 + 5, keying of 7, keying of 5 and processing the
end of the trial.
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range 0 to 1.5 sec. The setting in the illustrative run in
Figure 4 is 0.5 sec.

3. The activation threshold was set at �0.5 and the
activation noise was set at 0.25. If the activation of a
chunk fell below threshold, computation would fail and
the system would have to restart. This was particularly
likely to happen when past decompositions were being
retrieved and particularly in the effort to retrieve 67 =
39 + 28 after the first five digits. In the illustrative run in
Figure 4, the retrieval threshold was set so low that no
failures of recall could occur in the model.

4. The imaginal representations were lost according to
a Poisson distribution such that the losses averaged once
every 20 sec. As in factor 3 above, when this happened,
the model would have to reconstruct what it was doing.

The errors from (3) and (4) where particularly obvi-
ous in participant protocols when they would give up on
what they were doing, read the original number (e.g.,
67) again, and reconstruct what it was they were sup-
pose to do next.

The predictions displayed in Figure 3 and the predic-
tions that will be displayed for the different module ac-
tivity are based on averaging 1000 runs for each of the
10 numbers used. The match of the model times to the
participant times in Table 1 and Figure 3 is quite good.
The goal of the overall modeling enterprise is to use the
latency data to estimate the best-fitting parameters and
then use these to make predictions about the imaging
data. Because we have estimated parameters to fit the
latency data, the success at fitting latency is not as strong
a test of the model as fitting the imaging data. None-
theless, in order to give a proper account of the fMRI
data, it is important that the model is able to reproduce
the distribution of solution times in Figure 3.

Analysis of fMRI Data

Although participants had to repeat their calculations un-
til they got each digit correct, we only analyzed those
scans associated with the emission of a correct response
on the first attempt. We refer to each sequence of scans
ending in a first-attempt correct entry of a digit as a
scan sequence. Figure 3 showed the distribution of
the lengths of these correct scan sequences. The wide
distribution of times poses a challenge for coherently
displaying the imaging data and testing the model pre-
dictions. As we will describe, the imaging data for each
scan sequence were warped to the average number of
scans for that position. This then allows the scan se-
quences to be aggregated. For each participant, we aver-
aged the warped scan sequences to get an average scan
sequence for each position for that participant and then
averaged these sequences over participants to get the
data that are presented.

We tried a number of methods for warping data but in
the end found the following gave the most informative

results. First, for each trial and each region of interest,
we calculated the difference between the blood oxygen-
ation level-dependent (BOLD) response on the scan be-
fore presentation of the problem and each subsequent
scan in the solution of that problem. We then warped
these difference scores for the correct scan sequences to
construct a sequence of difference scores for the average
length scan sequences for each position. The following
is the warping procedure for taking a scan sequence
of length n and deriving a scan sequence of the mean
length m. It depends on the relative sizes of m and n:

1. If n is greater than or equal to m, create a sequence
of length m by taking m/2 scans from the beginning and
m/2 from the end. If m is odd, select one more from the
beginning. This means just deleting the n � m scans in
the middle.

2. If n is less than m, create a beginning sequence
of length m/2 by taking the first n/2 scans and padding
with the last scan in this first n/2. Construct the end
similarly. If either n or m is odd, the extra scan is from
the beginning.

This creates scan sequences that preserve the tempo-
ral structure of the beginning and end of the sequences
and just represent the approximate average activity in
their middle.

The nine mean scan sequences involve 67 scans. In
addition, a rest period of 15 scans was added at the end
to observe how the BOLD response settled to baseline.
These scan sequences plus the scan before the problem
presentation yield a total of 83 scans for each region of
interest. As a final data processing step, we subtracted
out any linear drift in across these scans so that the first
and last scans were both 0.

Regions of Interest

Figure 5 displays the results for the six predefined re-
gions of interest and the predictions from the six ACT-R
modules associated with these regions. The vertical lines
in the figure indicate when digits where keyed and iden-
tify the boundary of scan sequences. Although we will
explain the details of the model fitting and the evalua-
tion in the next section, the match up with the model
offers a useful basis for highlighting features of the data.
To establish the significance of apparent trends, we in-
cluded tests for linear and quadratic trends in six por-
tions of the 83 scans. To assess any initial effects, we
looked at the first 10 scans, and to assess any effects
before the first keypress, we looked at the next 20 scans.
There were three bursts of keypresses and we defined
three intervals starting with each of these bursts to
assess effects associated with these. Finally, we tested
the last eight scans to confirm that the BOLD responses
had returned to baseline. These tests are reported in
Table 2.
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Visual

Figure 5A shows the results for the left fusiform region that
corresponds to the visual module in ACT-R. The correla-
tion of the left with the right fusiform is .933. The response
in the visual region shows a rise with the presentation of

the problem and another rise after each set of numbers
is keyed as would be predicted from the visual column in
Figure 4. Although the visual column in Figure 4 shows
a long period of no activity between reading the target
number and keying the first digit, the activity does not go
down to zero during this interval. In the model, this is

Figure 5. Mean change in BOLD signal for the six predefined regions of the experiment for which ACT-R makes predictions. The mean BOLD

responses are displayed along with their standard errors. The solid curve gives the predictions of the ACT-R model. The vertical bars indicate where

the nine responses occurred: (A) fusiform (mean BOLD signal 480) ref lecting the visual module; (B) prefrontal (mean BOLD signal 463) ref lecting

the retrieval module; (C) parietal (mean BOLD signal 551) ref lecting the imaginal module; (D) motor (mean BOLD signal 476) ref lecting the
manual module; (E) anterior cingulate (mean BOLD signal 592) ref lecting the goal module; and (F) caudate (mean BOLD signal 594) ref lecting

the procedural module.
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because when it needs to recalculate a result, it has to re-
read the target number from the screen and such recalcu-
lations occur randomly throughout the interval.

Prefrontal

Figure 5B shows the results for the left prefrontal region
that corresponds to the retrieval module in ACT-R. The
correlation with the left homologous region is .786. As
would be predicted from the constant activity in the re-
trieval column, activity in this region goes up almost im-
mediately and stays at that high level throughout the
experiment and starts dropping back to baseline as soon
as the last keys are pressed.

Parietal

Figure 5C shows the results for the left parietal region
that corresponds to the imaginal module in ACT-R. The
correlation with the right parietal is .979. In contrast to
the visual and prefrontal regions, the ACT-R model dis-
plays some clear misfits to this region. The model pre-
dicts dips in parietal activation after the third digit and
after the fifth digit. As Figure 4 illustrates, these are places
where the model is engaged in response generation and
extensive retrieval of prior results and not any imaginal
activity. In contrast, if anything, this region shows rises in
activation at just these points.

Motor

Figure 5D shows the results for the left motor region
where the hand is represented. The correlation with

the right motor is .756. It gives a different pattern than
the other regions—largely flat until the first responses
are given—and shows rises in activation with each
burst of responses. The model is quite successful in
predicting this region, except for the small activation
before the first response where the model predicts no
activation. Presumably, this reflects anticipatory hand
movements.

Anterior Cingulate Cortex

Figure 5E shows the results for the left ACC, which we
think reflects control activity. The correlation with the
right ACC is .992. Although it rises to a high level like the
parietal and prefrontal, it is distinguished from these re-
gions by showing sharp rises with each response burst.
This is predicted by the model in Figure 4 because of the
rapid goal changes in the vicinity of these response
bursts.

Caudate

Figure 5F shows the results for the left caudate, which
we think reflects activity of the procedural module. Its
correlation with the right caudate is .986. Although it does
rise to a relatively high level like the ACC, it shows extra
peaks at the very beginning, after the third response, after
the fifth response, and after the ninth response. In con-
trast, the model, reflecting the rather constant activity of
production firing in Figure 4, rises to a steady level and
shows little fluctuation. Again, this illustrates evidence
that successful model prediction is hardly guaranteed.

Table 2. Tests for Linear and Quadratic Trends in Various Sequences of the Scan Sequence

Region Trend
Beginning

(Scans 1–10)
Plateau

(Scans 11–30)
First Burst

(Scans 31–46)
Second Burst
(Scans 47–61)

Third Burst
(Scans 62–75)

End Scans
(76–83)

Fusiform Linear 2.75 2.28

Quadratic 5.58 2.95 2.26 2.39

Prefrontal Linear 6.48 2.27 �4.63

Quadratic 3.36 2.61

Parietal Linear 12.40 3.92 �5.20

Quadratic 9.01 5.13

Motor Linear 4.72 �3.05 �4.84 �3.33

Quadratic 2.46 4.43 2.58 6.41

ACC Linear 5.65 4.81 �4.18

Quadratic 5.29 2.54 3.47

Caudate Linear 3.32 4.17

Quadratic 6.63 2.40 3.22

The t values are only reported if they are at least significant at the .05 level (13 df, two-tailed). A positive value denotes increasing linear trends and
convex quadratic trends.
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Prediction of Regional Activity

Figure 4 provides the information about the activity of
six modules. Four of these modules, represented by
the columns, each have significant durations of acti-
vations according to the ACT-R theory. Two of the
modules, the goal module and the procedural module,
reflect rather abrupt changes—a production rule takes
50 msec and the ACT-R theory has so far treated con-
trol state changes as instantaneous. The formulas for
predicting module activity differ depending on whether
the modules had point activity, such as the procedural
and goal, or whether they had interval activity, such as
the visual, retrieval, imaginal, or manual. In either case,
we assume that, when active, these modules will create
a metabolic demand in their associated regions and
produce a hemodynamic response. As is standard in
the field (e.g., Friston, 2003; Glover, 1999; Cohen, 1997;
Dale & Buckner, 1997; Boyton, Engel, Glover, & Heeger,
1996), we model that hemodynamic response by a gamma
function:

HðtÞ ¼ Nða; sÞmðt=sÞae�ðt=sÞ

where m determines the magnitude of the response, a
determines the shape of the response, and s determines
the time scale. N(a,s) is a normalizing constant and is
equal to 1/(s * a!). This function reaches a peak at a * s. We
set a = 4 and s = 1.2 sec for all regions. This implies the
function reaches a peak at 4.8 sec, which is a typical value.
This one hemodynamic function was used for all regions
and scaled to the overall level of activity of a region by
estimating a separate magnitude parameter. In the case of
modules with point activity, we predicted the hemody-
namic function at time t by summing the hemodynamic
effects of the n points of activity before t:

BðtÞ ¼
Xn

i¼1

Hðt � tiÞ

where ti is the time of the ith activity. In the case of
modules with interval activity, the assumption is that the
activity is making a constant metabolic demand through-

out the interval. If we let D(t) be a 0–1 demand function,
indicating whether or not the module is active at time t,
then the predicted hemodynamic function can be calcu-
lated by convolving this demand function with the hemo-
dynamic function:

BðtÞ ¼
Z t

0

DðxÞHðt � xÞdx

The model run represented in Figure 4 is just illustrative
and, as discussed with respect to the latency data, the
model was parameterized to produce a distribution of
times every bit as variable as the participants. The data
from the 10,000 simulation problems were broken into
scan sequences and these were warped according to the
same procedure as used for the data analysis. Note that
this means that the warping procedure has the same
effects on the predictions as the data—for instance, more
accurately representing activity at the beginning and end
of sequences. Thus, if we are accurately modeling the
processes as they are occurring in the participants, the
warped scans should match up between model and data.3

The fits in Figure 5 were obtained by estimating mag-
nitude parameters for each region. These magnitude
parameters are provided in Table 3 along with the cor-
relations and a chi-square measure of the goodness of
fit. The chi-square is obtained by dividing the difference
between each predicted and observed data point by the
standard error of the mean for each point (which is in-
dicated in the Figure 4), squaring these values, and sum-
ming them. The magnitude parameters were estimated
to minimize these chi-square statistics. With 81 points
not constrained to be zero and a magnitude parameter
estimated, these chi-square statistics have 80 degrees of
freedom and any value greater than 102 would be sig-
nificant at the .05 level. These measures confirm what
visual inspection of Figure 4 suggests—the fits to the
visual, prefrontal, and ACC regions are quite good and
the fits to the parietal, motor, and caudate have prob-
lems. It is also the case that all of the visual, prefrontal,
and ACC regions are best fit by their associated modules.
With two exceptions, trying to fit any other module to
these regions results in significant deviations. The ex-
ceptions are that the procedural and goal modules yield

Table 3. Statistics for Model Fitting

Module: Visual Retrieval Imaginal Manual Goal Procedural

Region: Fusiform Prefrontal Parietal Motor ACC Caudate

Correlation .913 .977 .832 .947 .956 .759

Magnitude (m) 82.30 8.22 5.06 51.03 9.66 0.98

x
2 38.32 21.17 382.14 186.41 71.40 155.71
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satisfactory fits to the prefrontal but leave more than
twice as much variance unexplained. The deviations for
the motor region reflect preparatory motor actions and
do not seem particularly interesting, thus we will ignore
them. It is also the case that the fit of any other module
to the motor region leaves four times or more variance
unexplained.

Exploratory Analysis

We performed exploratory analyses looking for regions
that might display patterns related to the activity of our
modules. Analyses that looked for regions whose activity
correlated with the overall pattern displayed by a mod-
ule tended to bring out very large portions of the brain.
This is not surprising because all of our modules basi-
cally predict increased activation during the task perfor-
mance and, therefore, will correlate with any region that
responds to task structure. We tried multiple regression
analyses but the multicollinearity among the predictions
of our modules makes it difficult to find regions that re-
flect a particular module. We did have some success fo-
cusing on a particular pattern of variation during the
middle of the trial that involves a contrast between mod-
ules that predict increased engagement before versus
after motor responses. We decided to look at the first
burst of three keypresses and the second burst of key-
presses, both of which occur during the middle of the
task when activation levels tend to be stable. We con-
trasted the BOLD response over the five scans centered
on the last response for each burst (Scans 33–37 and
46–50 in Figure 5)4 with the BOLD response over the
five scans beginning with the third scan after the re-
sponse (Scans 38–42 and 51–55 in Figure 5). This creates
a maximal contrast between modules that expect a de-
crease (imaginal, �4%; manual, �18%; goal, �1%) and
modules that expect an increase (visual, +12%; retrieval,
+11%; procedural, +5%). We performed an exploratory
analysis looking for regions of at least 30 contiguous

voxels that showed a significant effect of this contrast
across participants at p = .01.

Table 4 lists the eight regions identified and the mag-
nitude of the change defined as the difference change in
BOLD values from early scans to late scans. It also lists the
correlation of each of these regions with the patterns
predicted from the visual, manual, and goal modules. The
highest correlation between any of these regions and
the other modules (retrieval, imaginal, and procedural)
was only .655. This analysis found a left motor region,
which includes our predefined regions and which corre-
lates with the manual module almost as well as the pre-
defined region. It also uncovered a right motor and a
supplementary motor region that correlated strongly with
the manual module. The exploratory analysis also found
a right prefrontal region that correlated most strongly
with the predictions of the goal module (but not nearly
as strongly as our predefined ACC regions). It uncovered
left and right insula regions that correlated relatively
strongly with both the visual and the manual modules.
Finally, it uncovered left and right temporal/occipital areas
that correlated relatively strongly with the visual module,
although not as strongly as the predefined fusiform re-
gion. Figure 6 displays the time course of the left motor
and left temporal/occipital regions. These two regions
correlate least with each other (r = .498) of all the
exploratory regions. The motor region does give a profile
very much like the predefined region (Figure 5D), but
there is a qualitative difference between the patterns
displayed by the exploratory temporal/occipital region
and the predefined fusiform region (Figure 5A), that is,
the exploratory region goes down to baseline after each
visual event (initial presentation and appearance of typed
digits on the screen), whereas the exploratory region main-
tains levels above baseline. The model predicts a pattern
that corresponds to the predefined fusiform region be-
cause, occasionally, it issues top–down requests to encode
information when it suffers loss of information due to
memory failures or loss of information in the imaginal
buffer. The fact that the fusiform reflects this top–down

Table 4. Areas Found in Exploratory Analyses

Talairach Coordinates Correlations

Region of Interest Brodmann’s Area(s) Voxel Count x y z Difference Visual Manual Goal

1. SMA and Cingulate 23/24/32/6 598 0 3 50 �0.47 .814 .883 .589

2. Left motor 1/2/3/4 835 �39 �25 45 �1.37 .746 .932 .828

3. Right motor 1/2/3/4 290 52 �25 33 �0.36 .810 .922 .818

4. Right middle frontal 6/9 42 44 1 39 �0.71 .754 .845 .864

5. R Temporal/Occipital 19, 37 207 44 �59 5 0.40 .869 .666 .437

6. Right insula 13 219 41 9 5 �0.15 .839 .847 .675

7. Left insula 13 391 �30 �6 8 �0.26 .853 .926 .708

8. L Temporal/Occipital 19, 37 88 �39 �64 4 0.40 .864 .589 .429
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visual activity indicates that it reflects task-relevant visual
encoding better than other visual regions.

DISCUSSION

This research has shown that it is possible to take a
complex task spanning more than a minute, analyze it,
and make sense of both behavioral and imaging data. A
qualification on this demonstration was that the task in-
volved a set of stimulus onsets and behavioral responses
(keying of digits) that partitioned the overall duration
into periods that could be given functional significance.
The interpretation of the data is anchored around these
significant external events. Without these, and in the
presence of so much temporal variability, we would have
not been able to extract the internal structure of the
task. However, many tasks have this structure of break-
ing up into what Card, Moran, and Newell (1983) called
unit tasks. A unit task involves a period of thought
ending in a burst of action. Card et al. (1983) identified
unit tasks as the major organizational structure at the
rational band. Unit task analysis was initially used to
characterize text-editing behavior, where each unit task
ended in a change to the manuscript. Behavioral re-
search in our laboratory has had a fair degree of success
in taking complex tasks, decomposing them into unit
tasks, and then applying standard cognitive analyses to
the individual unit tasks (e.g., Sohn, Douglass, Chen, &
Anderson, 2005; Anderson, 2002; Lee & Anderson,
2001). This article has shown that a unit task analysis
also can be applied to imaging data.

With respect to support for the ACT-R theory, the im-
aging data allowed for strong tests of the model that was
developed in that theory and indirectly of the theory
itself. After the latency data were used to parameterize
the model, the model made predictions for the activity
that would be observed in the six predefined regions.
The basic shape of the BOLD response for each region
was completely determined by the timing of the ACT-R

modules and the only parameter estimated in fitting the
BOLD response was overall magnitude. The predictions
were stronger than what was reflected in the correlation
coefficients because the model is also committed to a
zero value (this is similar to regression where one only
estimates slope and not intercept). By this strong test,
the results obtained in the fusiform (visual module),
prefrontal (retrieval module), ACC (goal module), and
motor regions (manual module) were remarkably good.
In addition to confirming the predictions of the ACT-R
model, these results are relevant to current issues about
the function of the ACC. The activity in the ACC is re-
sponding to the overall need for cognitive control in the
task and is not just a matter of response conflict (e.g.,
Botvinick et al., 2001; Carter et al., 2000; MacDonald,
Cohen, Stenger, & Carter, 2000) or response to errors
(e.g., Falkenstein, Hohnbein, & Hoorman, 1995; Gehring,
Goss, Coles, Meyer, & Donchin, 1993). Its general con-
trol function seems closer to the proposals of D’Esposito
et al. (1995) and Posner and Dehaene (1994).

There were problems with our use of the imaginal
module for the parietal and the procedural module for
the caudate. The imaginal module is the newest module
in ACT-R and is still in development. The module had
predicted a decrease in activation with each response
burst because the module was not involved in the re-
sponse generation or the subsequent effort to retrieve a
past result. Our exploratory efforts failed to find any brain
region with a general profile like the imaginal but which
showed decreases at these points. Thus, it does not seem
that the problem is with the association of this region with
the module. Rather, either the problem is with the model
or the underlying theory of the imaginal module. With re-
spect to the model, perhaps we were wrong in assuming
that it is not engaged in response generation. Convert-
ing digits to fingers may have placed a representational
burden. Or perhaps we were wrong in assuming that par-
ticipants tried to retrieve past results; maybe they im-
mediately tried to reconstruct them. With respect to the

Figure 6. BOLD response in

two exploratory regions: left

motor (mean BOLD signal 480)

and left temporal/occipital
(mean BOLD signal 468).
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theory of imaginal module, we may be wrong in the as-
sumption that it is not engaged in retrieval (for discus-
sions of this issue, see Anderson, Byrne, Fincham, &
Gunn, 2008; Wagner, Shannon, Kahn, & Buckner, 2005).

The procedural module failed to predict the pro-
nounced spikes in the caudate that occurred after each
burst of keypresses. In contrast to the imaginal module,
the procedural module is one of the most established
in ACT-R and, as noted earlier, there is general evidence
for a procedural involvement of the caudate. However,
it is probably unreasonable to expect that caudate activ-
ity only reflects this single function. It is known to also
reflect reward activities (e.g., Delgado, Locke, Stenger, &
Fiez, 2003; Breiter, Aharon, Kahneman, Dale, & Shizgal,
2001) and to respond to eye movements (e.g., Gerardin
et al., 2003). The unexpected spikes may reflect these
processes. It should be noted that increased caudate fired
at episode boundaries has been found in rats (Barnes,
Kubota, Hu, Jin, & Graybiel, 2005) and in monkeys (Fujii
& Graybiel, 2005). It may be that its activity reflects unit
task structure at the level of Newell’s rational band.

Although the results of this research have been mixed
with respect to supporting the predictions of the ACT-R
model, they seem uniformly positive with respect to the
prospect of using fMRI to study the structure of complex
tasks. We were able to obtain meaningful data that could
confirm predictions of a model (those derived from the
visual, retrieval, and goal modules in ACT-R), to suggest
ways that a model could be adjusted (adding anticipatory
motor programming to the motor module), to suggest
places where a theory may need to be changed (results
from the caudate and parietal modules), and to identify
new regions that may be related to the structure of the
task. Provided one can deal with the temporal variability
in the performance of such tasks, the temporal resolution
of fMRI seems well suited to understanding the structure
of tasks that are in Newell’s rational band.
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Notes

1. This model can be downloaded from the models link at the
ACT-R Website (act-r.psy.cmu.edu) under the title of this article.
2. All correlations reported in the article are highly significant
( p < .0001).
3. On the other hand, it is possible that the warping proce-
dure might fail to bring out some critical feature in the data
that would not match up with the model’s predictions.

4. These scans are lagged a little after the events because of
the delay in the hemodynamic response.
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