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Abstract

Learning to solve a class of problems can be characterized as a search through a space of

hypotheses about the rules for solving these problems. A series of four experiments studied how

different learning conditions affected the search among hypotheses about the solution rule for a

simple computational problem. Experiment 1 showed that a problem property such as computa-

tional difficulty of the rules biased the search process and so affected learning. Experiment 2

examined the impact of examples as instructional tools and found that their effectiveness was

determined by whether they uniquely pointed to the correct rule. Experiment 3 compared verbal

directions with examples and found that both could guide search. The final experiment tried to

improve learning by using more explicit verbal directions or by adding scaffolding to the example.

While both manipulations improved learning, learning still took the form of a search through a

hypothesis space of possible rules. We describe a model that embodies two assumptions: (1) the

instruction can bias the rules participants hypothesize rather than directly be encoded into a rule;

(2) participants do not have memory for past wrong hypotheses and are likely to retry them. These

assumptions are realized in a Markov model that fits all the data by estimating two sets of proba-

bilities. First, the learning condition induced one set of Start probabilities of trying various rules.

Second, should this first hypothesis prove wrong, the learning condition induced a second set of

Choice probabilities of considering various rules. These findings broaden our understanding of

effective instruction and provide implications for instructional design.

Keywords: Problem solving; Hypothesis testing; Search space; Examples; Verbal direction;

Markov processes

Correspondence should be sent to Hee Seung Lee, Department of Education, Yonsei University, 50 Yonsei-ro,

Seodaemun-gu, Seoul, Korea. E-mail: hslee00@yonsei.ac.kr



1. Introduction

Faced with a new class of problems, learners have to internalize a new set of rules for

solving these problems. Naively, one might think the best way to learn such rules is by

being directly told them via verbal instruction. Others might think learners learn better

when they are given an example they can model from (e.g., Reed & Bolstad, 1991; Zhu

& Simon, 1987). On the other hand, some studies showed that verbal instructions and

examples were equally effective (e.g., Cheng, Holyoak, Nisbett, & Oliver, 1986; Fong,

Krantz, & Nisbett, 1986). Given mixed results about relative efficacy of different types of

instruction (for a review, see Lee & Anderson, 2013; Wittwer & Renkl, 2008), it seems

that it is not really a matter of the student internalizing rules as instructed; it really is a

matter of the instruction influencing the rules that the student constructs. What is impor-

tant is how obvious the correct rules are given the whole instructional context.

1.1. Learning problem-solving rules as a hypothesis search process

Learning how to solve a class of problems can be characterized as a search through a

space for a rule1 that will solve the problems. Hypothesis testing in the domain of prob-

lem solving can be seen as a similar process to the hypothesis testing in concept learning

(e.g., Bower & Trabasso, 1964; Levine, 1975; Nosofsky, Palmeri, & McKinley, 1994;

Restle, 1962). For example, according to Restle’s (1962) formulation of hypothesis-test-

ing theory, a participant continuously generates hypotheses about the concept and tests

those hypotheses. Whenever a hypothesis makes a correct classification, the participant

retains it; whenever it leads to an incorrect classification, the participant rejects it. If the

sample of hypotheses contains a correct hypothesis, the problem will be eventually solved

when wrong hypotheses are eliminated by testing.

With regard to learning of problem solving, we can think of a similar process. Partici-

pants solve a series of problems while being told whether their solution is correct or not.

Participants can come up with a hypothesis as to how to solve the problems based on

whatever examples or explanations are present or just based on background knowledge if

no instructional support is present. Based on the feedback provided about the correctness

of the problem solution, participants can retain their initial hypothesis for further testing

on successive problems or discard it and choose a new one. However, many problem-

solving situations including the one we will study differ from classic concept learning

experiments in that an error does not necessarily imply the hypothesized rule is wrong.

Rather, the participant may have made a miscalculation while nonetheless applying the

correct rule.

As we will see, the learning situation induces strong initial biases in the student as to

what the correct rule is. If this first hypothesis is wrong, students have to engage in a

search for some other rules. When there is a large search space of hypotheses, problem

solvers might not get around to testing the correct rule, particularly when the learning sit-

uation leaves that rule obscure. A further challenge is remembering which hypotheses
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have already been tested. A student may wind up testing the same hypothesis over and

over again. In fact, early theories of concept learning (Bower & Trabasso, 1964; Restle,

1962) assumed that participants did not use memory of information presented on the past

trials. Bower and Trabasso supported this no-memory assumption via several experiments

(e.g., Bower & Trabasso, 1963, 1964; Trabasso, 1963; Trabasso & Bower, 1964).

Learning a problem-solving rule can pose an additional challenge not true in many of

the simple concept learning experiments. Problem-solving tasks can pose a heavy burden

on working memory. Not only do problem solvers have to formulate and compare alter-

native hypotheses, they also have to perform the computations implied by these hypothe-

ses. There are numerous demonstrations in the domain of problem solving that a heavy

cognitive load during problem solving interferes with learning (e.g., Mawer & Sweller,

1982; Sweller, 1983, 1988; Sweller, Mawer, & Howe, 1982). One can imagine that this

working memory load will make it even harder to remember what hypotheses they have

already tested than in the classic concept learning experiments.

This study will present a model that embodies two hypotheses about the nature of the

learning process, at least in our current experiments:

1. Participants learn by generating rules and seeing if the rules produce the correct

results. They keep generating rules until they find a successful one. Instructions are

not directly encoded into rules. The effect of instruction is to bias the hypothesis

generation process that produces these candidate rules.

2. If participants come up with an incorrect hypothesis and reject it, the probability of

their coming back to that incorrect hypothesis later is just the same as if they had

never tried the hypothesis. That is, they have no memory for what has failed.

The model, incorporating just these two hypotheses without further detail, does a sur-

prisingly good job in accounting for our data.

2. Current experiments

This series of experiments began with some earlier research (Anderson, Lee, & Fin-

cham, 2014; Lee, Anderson, Betts, & Anderson, 2011; Lee, Betts, & Anderson, 2015;

Lee, Fincham, Betts, & Anderson, 2014) where we studied students learning an extensive

curricula of “data-flow” diagrams under different amount of instructional guidance. The

task began with filling in the empty boxes in a diagram like Fig. 1 and most students

showed considerable difficulty when the structure of the data-flow diagram involved mul-

tiple paths to combine. Our prior research mostly focused on how to help students over-

come this learning difficulty by varying the amount of instruction.

Although students had considerable struggles with later parts of the curriculum, we

observed that most students found beginning diagrams (the one like Fig. 1) remarkably

easy. The majority of students could solve their first problem correctly without instruc-

tion. The correct hypothesis, that they were to evaluate the expression in a box and put

the answer where the arrow pointed, seemed immediately obvious. In the current research
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we looked in more detail at the factors that would make such a hypothesis more or less

obvious. We developed simplified tasks where the correct rule was either obvious or

obscure. This allowed us to contrast learning an Easy rule vs. a Hard rule, while keeping

the mathematical calculations comparable.

Fig. 2 shows an example of problems used in this study. In this example, participants

have to determine a number to fill in the empty box given the three numbers and two opera-

tors already provided. Given just the problem alone there are a number of possible rules.

On the basis of our prior work with problems like Fig. 1, we expected a strong tendency to

perform the operation in the top rectangular box and fill the answer (in this case 12) into

the empty box to which the arrow pointed. We called this the “Easy” rule. In our past

research we had observed students assume this rule without any instruction, undoubtedly

based on prior experience with mathematical expressions and conventions of such dia-

grams. However, there is a sense in which this is not such a good rule for the problem in

Fig. 2 as it was for Fig. 1. It leaves the other number (i.e., 1) and operator (i.e., +) in the

bottom box unexplained (Lewis, 1988). In some conditions of the experiments in this study,

we observed participants use what we have called the “Equality” rule. This is that the top

and bottom rectangular boxes should have the same net value and so the empty box should

be filled with the number that achieves this equality (in this case 11). This approach

explains all the numbers and operators but leaves the arrow unexplained. Sometimes, how-

ever, what students need to learn is not obvious and we wanted to study such a situation.

Therefore, we had some of our participants try to learn what we called the “Hard” rule. Par-

ticipants had to treat the bottom rectangular box (i.e., 1 + ?) as an expression and the num-

ber that is on the opposite side of the empty box (i.e., 3) as a result value. Because

1 + 2 = 3, the correct answer to this problem is 2. In this type of problem, the rule is not

intuitive, on a number of grounds, including that it contradicts a natural interpretation of

what the arrow might mean and that the relevant terms (i.e., 1, +, and 3) are not grouped in

the same box. However, ignoring such perceptual features, applying it involves performing

Problem Completed problem

Fig. 1. An example of data-flow diagram. The task is to fill a number into the empty portions of the diagram.
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a simple mathematical calculation (3�1 in this example) just like the Easy rule. In both

cases, the rule uses two of the numbers and one operator and leaves the remaining number

and operator unexplained. There are many other possible rules participants might adopt in

attempting to solve these problems, but the Easy, Hard, and Equality rules were the ones

we observed with some frequency.

Across four experiments, we had participants solve a series of problems to learn either

Easy or Hard rules and examined how different properties of the learning situation influ-

enced their success. Table 1 shows a list of experimental manipulations applied across

the four experiments. In Experiment 1, we simply investigated properties of the problems

when they were presented without instructional support. Specifically, we manipulated

how easy it was to compute the answers for specific rules. In Experiment 2, we tested

effects of example content on learning. By varying the example content, we manipulated

whether the presented example supports one specific hypothesis (good example) that is

consistent with correct solution rule or dual hypotheses (ambiguous example) that are

consistent with both correct and incorrect solution rules. In Experiment 3, we contrasted

examples with providing verbal instructions that directed the learner’s attention to rele-

vant elements of the problem. Both the examples and verbal instructions in this experi-

ment stopped short of telling the participant what the rule was. In the final experiment,

we tried to create verbal directions that specified the rule and provided scaffolding to the

example to make the rule apparent. However, even with our best attempts we will see

that learning was not always successful.

Hypotheses Solutions 

Easy 3 * 4 = x  x = 12 

Equality 3 * 4 = 1 + x  x =11 

Hard 1 + x = 3  x = 2 

Fig. 2. An example of problems used in this study. Correct answer to this problem becomes different depending

on the type of problem rules participants had to learn. In the Easy problem, the correct rule is

3 9 4 = x ? x = 12; thus, the correct answer is 12. In the Hard problem, the correct rule is

1 + x = 3 ? x = 2; thus, the correct answer is 2.
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To properly assess our theoretical model, we wanted to get large samples of partici-

pants and so ran the experiments on an online labor market, Amazon Mechanical Turk.

Participants could quit anytime in the middle of the study and this resulted in a 12–17%
dropout rate in each experiment (Table 2 provides a summary and breakdown by experi-

ment). We kept sampling until we got at least 50 participants in each condition of each

experiment. Also, we tested the first experiment with both Mechanical Turk participants

(Experiment 1a) and undergraduate students (Experiment 1b) to confirm that our findings

are not attributable to characteristics of specific population.

2.1. Markov model

To test our two major claims about the hypothesis-testing behavior of the participants

(that the effect of instruction is to bias the hypothesis generation process and that there is

no memory for past hypotheses) we developed a series of Markov models. Markov mod-

els were used to characterize learning in the early concept learning experiments (e.g.,

Richard, Cauzinille, & Mathieu, 1973; Trabasso & Bower, 1968) and have been applied

to other domains in psychology (e.g., Brainerd, 1979). The development of dynamic pro-

gramming techniques associated with Hidden Markov Models (Rabiner, 1989) has led to

Table 1

A list of experimental manipulations applied across the four experiments

Exp 1 Exp 2 Exp 3 Exp 4

Problem property

Constrained

(Non-integer answer for incorrect rules)

U

Unconstrained

(Integer answer for incorrect rules)

U U U U

Example

No-example U U
Good

(Examples support one specific hypothesis)

U U

Ambiguous

(Examples support dual hypotheses)

U U

Scaffolded

(Equation plus good example)

U

Verbal direction

No-direction U U

Good

(Verbal direction supports one hypothesis)

U

Ambiguous

(Verbal direction supports dual hypotheses)

U

Enhanced

(Explicit rule is provided)

U

Notes. The marked cells represent the characteristics of problem or instructions used in each experiment.

The shaded cells indicate the major experimental manipulation.
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their wide use in many domains outside of psychology, perhaps most notably in speech

recognition. Our application of Hidden Markov Models will be close to work in educa-

tional data mining (e.g., Cohen & Beal, 2009; Gonz�alez-Brenes & Mostow, 2012).

A Hidden Markov Model can be characterized by three components describing state

behavior, where the “states” are hypotheses in our case:

Table 2

Number of participants who quit the study and those who com-

pleted the study in Experiments 1–4

Drop-out Completed

Exp 1a

Easy

Constrained 7 50

Unconstrained 6 50

Hard

Constrained 14 50

Unconstrained 11 50

Exp 2

Easy

Good example 6 50

Ambiguous example 1 51

No example 3 50

Hard

Good example 23 51

Ambiguous example 8 52

No example 19 50

Exp 3

Easy

Good verbal 1 50

Good example 5 50

Ambiguous verbal 9 50

Ambiguous example 5 50

Hard

Good verbal 16 50

Good example 11 50

Ambiguous verbal 28 50

Ambiguous example 9 50

Exp 4

Easy

Enhanced verbal 5 54

Scaffolded example 4 54

Hard

Enhanced verbal 15 51

Scaffolded example 5 51
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1. A start vector of probabilities of starting out in any state (i.e., with a specific

hypothesis).

2. A transition matrix characterizing the probabilities of transitioning between states

on each trial (i.e., sticking with the current hypothesis or trying a new one on the

next problem).

3. An observation matrix giving the probability of different actions in a state (in our

case, these are the answers the participant gives).

We will just consider four states: Easy (the participant is considering the Easy rule),

Hard (the participant is considering the Hard rule), Equality (the participant is considering

the Equality Rule), and Other (any other hypotheses). The bias interpretation of different

instruction will be tested by seeing if we can reduce the transition matrix to the result of

a bias for particular hypotheses. The no-memory assumption will be tested by whether

we can use states that do not reflect any of the past hypotheses tested.

3. Experiment 1a: Effect of problems

In our early work with problems like those in Fig. 1, we found that participants could

learn without any instructional support at all. Therefore, we decided to start with an

experiment that had no instructional support. However, we did manipulate how difficult it

was to apply the rules to the problems that participants saw. In the Constrained condition,

we made it difficult to apply the Hard and Equality rules when the Easy rule was correct,

while it was difficult to apply the Easy and Equality rules when the Hard rule was cor-

rect. In the Unconstrained condition, problems were constructed such that all three rules

were easy to apply for both Easy and Hard problems. Fig. 3 shows examples of problems

constructed for the Constrained and Unconstrained conditions. It also shows the required

computations when each of the three rules is applied to the problem. In the Constrained

condition, only the correct rule results in an integer number as an answer whereas incor-

rect rules result in non-integer answers (participants could enter the fractional answers).

In the Unconstrained condition, application of all three rules results in integer numbers as

answers. Thus, integer vs. non-integer answer manipulation served to constrain partici-

pants’ behavior by creating computational ease or difficulty, also equally plausible, by

using participants’ general tendency of preferring integer numbers to non-integer numbers

as answers in problem solving.

3.1. Method

3.1.1. Participants
A total of 238 participants took part in the study and they were recruited from Amazon

Mechanical Turk. The participant pool (133 male and 105 female, M = 28.30 years,

SD = 6.36) reported various levels of educational background (42% 4-year, 36% 2-year

or some college, 9% high school, 11% masters, and 2% others). Of 238, 38 participants
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(16%) quit the study in various phases of the study. Table 2 shows the number of partici-

pants who quit the study and the number of those who completed the study. This left a

total of 200 participants for data analysis. There were 50 participants in each of the Con-

strained and Unconstrained condition for each of Easy and Hard problems. Participants

received a fixed amount of $1.5 plus a performance-based bonus (20 cents per correctly

solved problem).

Constrained condition Unconstrained condition 

Easy 

problem 

• Easy (Correct):  3 + 1 = x  x = 4 
• Hard: -7/x = 3  x = -7/3 
• Equality: 3 + 1 = -7/x  x = -7/4 

• Easy (Correct):  3 + 1 = x  x = 4 
• Hard: 6 - x = 3  x = 3 
• Equality: 3 + 1 = 6 - x  x = 2 

Hard 

problem 

• Easy:  3 / 17 = x  x = 3/17 
• Hard (Correct): 7 – x = 3  x = 4 
• Equality: 3/17 = 7–x  x= 116/17 

• Easy:  3 + 2 = x  x = 5 
• Hard (Correct): 7 – x = 3  x = 4 
• Equality: 3 + 2 = 7 - x  x = 2 

Fig. 3. Examples of Easy and Hard problems used in Constrained and Unconstrained conditions of Experi-

ment 1. In the Constrained condition, application of correct rules results in an integer number as an answer

and application of incorrect rules results in a non-integer number as an answer. In the Unconstrained condi-

tion, application of both correct and incorrect rules results in an integer number as an answer.
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3.1.2. Design, materials, and procedure
A 2 9 2 between-subjects design was employed where we crossed the problem difficulty

and properties of the problems. Participants learned to solve either Easy problems or Hard

problems. We also manipulated problem property (Constrained vs. Unconstrained) by

changing numbers and operators used in the presented problems. A total of 16 problems

were constructed for each of the four conditions according to experimental manipulations.

As in Fig. 3, the Easy problems in both conditions had the same arithmetic solutions as did

the Hard problems in both conditions. The problems varied in terms of the location of

empty box (left, right), direction of arrow (this always pointed to the empty box), and arith-

metic operators (addition, subtraction, multiplication, division). Participants were given

1 minute for each problem. After entering a number they thought was the answer to the cur-

rent problem, participants clicked a “done” button and the response was followed by imme-

diate feedback presented for 2 seconds. The feedback page showed whether the submitted

answer was correct or incorrect, but it did not show the correct answer or any kind of expla-

nation. The entire experiment took about 15 minutes.

3.2. Results

Fig. 4a shows mean percentage of correctly solved problems for the Easy and Hard

problems in the Constrained and Unconstrained conditions. A 2 9 2 between-subjects

analysis of variance (ANOVA) was performed on the percentage of correctly solved prob-

lems. Problem difficulty (Easy vs. Hard) and problem property (Constrained vs. Uncon-

strained) were included as between-subjects variables. There were significant main effects

of both problem difficulty, F(1, 196) = 200.78, p < .0001, gp
2 = .506, and problem

(a) Experiment 1a (Amazon Mechanical Turk) (b) Experiment 1b (CMU)
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Fig. 4. Mean percentage of correctly solved problems for Easy and Hard problems in Constrained and

Unconstrained conditions of Experiments 1a and 1b. Error bars represent 1 standard error of mean.
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property, F(1, 196) = 6.74, p = .01, gp
2 = .033. Problem difficulty and problem property

did not interact, F < 1. For both Easy and Hard problems, participants who were given

Constrained problems solved significantly more problems correctly than those who were

given Unconstrained problems. For Easy problems, Constrained participants (M = 74%,

SD = 29%) solved about 9% more problems than the Unconstrained participants

(M = 65%, SD = 36%). For Hard problems, Constrained participants (M = 20%,

SD = 22%) solved about 11% more problems than the Unconstrained participants

(M = 9%, SD = 20%).

Hypothesis distribution for Easy problems

(a) Experiment 1a (Amazon Mechanical Turk) (b) Experiment 1b (CMU) 

Hypothesis distribution for Hard problems

(c) Experiment 1a (Amazon Mechanical Turk) (d) Experiment 1b (CMU) 

Fig. 5. Distribution of different hypotheses tested by participants in Constrained and Unconstrained condition

for Easy problems (a–b) and Hard problems (c–d) in Experiments 1a and 1b. * indicates the correct rule.
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Fig. 4a provides a measure of overall success but does not tell us about the various

hypotheses that participants were trying. To address this, Fig. 5 categorizes participants’

responses based on the Easy, Hard, and Equality rules. To accommodate sign errors, we

included negative of each rule into the stated rule in this analysis.2 There were also cases

where participants did not provide an answer or they timed out, and such cases were

included in the “no answer” category. Any other responses that did not belong to the

above four categories were categorized as “others.”

For Easy problems (Fig. 5a), most trials were solved via the correct Easy rule. How-

ever, in the Unconstrained condition a good number of responses were classified as aris-

ing from use of the Equality rule. This seemed to be because of tendency to include all

numbers and operators in the computations so that nothing was left unexplained in their

problem solving. Although the Easy rule was correct in this case, the Easy rule left one

number and one operator unexplained and this might not be natural to some participants.

For Hard problems (Fig. 5c), very different patterns of hypotheses distribution were

obtained between the Constrained and Unconstrained conditions. In the Unconstrained

Hard condition, the Easy and Equality rules were tried with approximately equal fre-

quency (t(49) = 0.18) and more often than the correct Hard rule (t(49) = 2.06 for contrast

with Easy and 2.13 for contrast with Equality, both p’s < .05). The only rule tried with

much frequency in the Constrained Hard condition was the correct Hard rule, although its

frequency was much lower than for the correct Easy rule in Fig. 5a. Participants were

quite reluctant to consider the Easy and Equality rules which required fractional answers,

probably reflecting both their past experience with answers and the extra difficulty of

entering fractions.

4. Experiment 1b: Effect of problems

We also conducted Experiment 1 with undergraduate students to see whether our find-

ings can be generalized to other population and to confirm that the experimental results

in Experiment 1a are not dependent on the characteristics of specific population recruited

from the online labor market. Fifty-six undergraduate students (32 male and 24 female,

M = 19.41 years, SD = 1.23) from Carnegie Mellon University (CMU) participated in the

experiment for course credit. Each participant was randomly assigned to one of the four

conditions (13 constrained easy, 15 constrained hard, 14 unconstrained easy, and 14

unconstrained hard). Experimental design, materials, and procedures were identical to

those of Experiment 1a.

Fig. 4b shows mean percentage of correctly solved problems for the Easy and Hard

problems in the Constrained and Unconstrained conditions. Although the CMU popula-

tion, in general, performed better than the Mechanical Turk population, overall patterns

of the results were the same between the two populations. There were significant main

effects of both problem difficulty, F(1, 52) = 109.06, p < .0001, gp
2 = .677, and problem

property, F(1, 52) = 6.88, p = .01, gp
2 = .117. Problem difficulty and problem property

did not interact, F < 1. For both Easy and Hard problems, participants who were given
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Constrained problems solved significantly more problems correctly than those who were

given Unconstrained problems. For Easy problems, Constrained participants (M = 86%,

SD = 21%) solved about 13% more problems than the Unconstrained participants

(M = 73%, SD = 21%). For Hard problems, Constrained participants (M = 25%,

SD = 31%) solved about 19% more problems than the Unconstrained participants

(M = 6%, SD = 13%). The overall patterns of strategy distribution were also consistent

with those of Experiment 1a. Fig. 5 categorizes participants’ responses based on the Easy,

Hard, and Equality rules for Easy problems (Fig. 5b) and Hard problems (Fig. 5d).

4.1. Applying the Markov model

While Fig. 5 provides a summary characterization of the overall sampling of rules, it

does not tell us about the sequential characteristics of participants’ choice behavior over

the 16 problems. To get at this sequential structure, we fit the 4-state Markov model

described in the introduction to this experiment. We used standard hidden Markov model-

ing software (Hidden Markov Model Toolbox for Matlab; Murphy, 1998) for obtaining

maximum likelihood estimates of the probabilities in the start vectors, transition matrices,

and observation matrices.

The meaning of a state is given by how it affects the probability of different actions,

which is given by its observation matrix. To keep the meaning of the states the same

across all conditions and experiments, we estimated the single observation matrix in

Table 3 from all four experiments. The details of its estimation are given in the Appen-

dix.3 As described there, it was estimated under the constraints that the association of the

three rules with designated answers for that be the same (first three .92 values down the

main diagonal in Table 3), that the probability of producing a response associated with

another rule be the same (the .002 values), and the probability of an Other rule producing

an answer that matched one of the three focus rules be the same (the .105 values).

With the observation matrix fixed, we are left to estimate the start vector and transition

matrix for each condition. The start vector represents the probability that various rules

will be the first idea that participants try out to solve these problems. There are three

degrees of freedom associated with the estimated probability of the three focus rules

Table 3

Observation matrix used for all conditions of all experiments: Probability of each response category in each

state

No Memory Model

Response

Easy Hard Equality Other

State

Easy 0.920 0.002 0.002 0.076

Hard 0.002 0.920 0.002 0.076

Equality 0.002 0.002 0.920 0.076

Other 0.105 0.105 0.105 0.685
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(Hard, Easy, Equality). The probability of an Other rule is one minus their sum. We will

refer to these as the Start probabilities.

The transition matrix reflects the probability that a participant will change from one

state (hypothesis) to another. Since there are four states and the transition probabilities

out of each state must sum to 1, there are 4 9 3 = 12 degrees of freedom in estimating

a transition matrix. We explored the question of whether we could simplify this

parameter complexity down to four more meaningful parameters. Under this simplified

model, if a participant found the correct rule he or she would stay in that state. This

assumption already eliminates three degrees of freedom by eliminating transitions out

of one state. The reduction from the remaining nine degrees of freedom to four is a

test of our bias interpretation of the influence of instruction. If the rule participants

were trying was not the correct one, there was a Stay probability that they would stay

with that rule again (perhaps because they did not believe the feedback or thought

they had made a calculation error). We constrained the Stay probability to be the

same for all conditions in an experiment. If participants did choose to try another

hypothesis, we assumed there were three Choice probabilities that they would consider

each of the rules. These Choice probabilities reflect biases that depend on the instruc-

Table 4

Example parameters from the Unconstrained Easy condition of Experiment 1

(a) Probability of Starting with various rules and probability of later choosing the rules

Start Choice

Easy 0.496 0.086

Hard 0.000 0.002

Equality 0.165 0.407

Other 0.339 0.504

(b) Transition matrix constructed from the Choice probabilities in part (a) and a Stay probability of .19

To

Easy Hard Equality Other

From Easy 1.000 0.000 0.000 0.000

Hard 0.070 0.192 0.330 0.409

Equality 0.070 0.002 0.520 0.409

Other 0.070 0.002 0.330 0.599

(c) Transition matrix estimated with all 12 degrees of freedom

To

Easy Hard Equality Other

From Easy 0.998 0.002 0.000 0.000

Hard 0.510 0.490 0.000 0.000

Equality 0.067 0.000 0.545 0.388

Other 0.069 0.000 0.320 0.611
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tional condition. Thus, according to the bias interpretation, the only thing that matters

is the condition-induced attractiveness of the hypothesis that the participants are going

to, not the hypothesis they are leaving.

Table 4 illustrates how the Markov model was applied to the data collected from

Experiment 1. (In this experiment Stay probability is estimated to be .19.) Table 4a

shows the estimated Start and Choice probabilities for the Unconstrained Easy condi-

tion. Table 4b shows the transition matrix constructed from these choice probabilities

and the Stay probability of .19. For comparison, Table 4c shows the transition matrix

that would be estimated if there were no constraints (the Start vector estimated in this

case is virtually identical to that in Table 4a). There are similarities and differences

between Table 4b and c, but the question is whether the differences in Table 4c

reflect things not captured by the constrained estimation in Table 4b or whether they

reflect overfitting. To address this question, we compared a Full model, which esti-

mated all 12 degrees of freedom in a transition matrix per condition with the

Reduced model with only 3, plus the Stay probability shared across conditions. The

Appendix reviews how well the Reduced model does compared to the Full model by

three statistical measures: a chi-square test, AIC, and BIC (Lewandowsky & Farrell,

2011). For this experiment and for all experiments combined, the Reduced model is

preferred by all three measures (but the chi-square test does favor the Full model in

Experiments 2 & 4). Given these tests, we feel that we can focus on the Choice

probabilities as capturing participants’ behavior after their first choice (the Start proba-

bilities). The Appendix also reports a test supporting the underlying Markov assump-

tion that choice behavior only depends on the current hypothesis the participant is

entertaining and not prior history. This involves showing that the choice behavior is

the same in the first and second half of the experiment. After reporting all the experi-

ments, we will describe some aggregate analyses that illustrate how well this model-

ing is capturing the rule learning of the participants.

Fig. 6. The probabilities of starting with various rules and of later choosing those rules in the various condi-

tions of Experiment 1. Standard errors of parameter estimates are calculated by bootstrapping (see Appendix).

The Start probabilities for the Other category is one minus the sum of the Start probabilities of the three

focus rules, and the Choice probability for the Other category is similarly calculated.
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Fig. 6 shows the probabilities of starting with various rules (circles) and probability of

later choosing different rules (squares). In all but the Hard Constrained condition partici-

pants choose to start with the Easy rule about 50% of the time. After this first choice, the

Choice probabilities for the Easy rule drop to an average of little more than 10% in these

conditions. The Equality rule is tried quite often in the Unconstrained conditions (with

Start and Choice probabilities averaging a little over 25%). The Constrained Hard condi-

tion provides a striking contrast to the other conditions, with participants not choosing

any of the three rules with high frequency. According to the model estimates, participants

never start with the Hard rule in this condition and only chose it on later trials with a

2.4% probability. Still by the end of the 16 trials, the Markov model estimates that 25%

of the participants in the Constrained Hard condition have identified the Hard rule as cor-

rect.

4.2. Summary

This experiment has shown that participants come in with strong biases as to what the

correct rule might be and that these biases can vary even in the absence of instruction.

Both the Easy and the Equality rule were frequent hypotheses, but the Easy rule had a

preference as a first choice. However, participants were not so biased toward these rules

that they would perform fractional arithmetic in the Constrained conditions to apply them.

In the Hard Constrained condition, both the Easy and Equality rules were suppressed and

some participants eventually hit upon the Hard rule based only on correctness feedback

without any instructional support.

The model fit to the data assumes that participants have no memory for past hypothe-

ses they have abandoned and are prone to repeatedly trying the same wrong rule. Table 5

shows the average number of times participants tried a wrong rule, defined as giving an

answer that conformed to that rule either on the first trial or later after giving an answer

that did not conform to the rule. It also shows how many of these were retries, defined as

later giving the rule answer after having tried it and then producing an answer that did

not correspond to the rule. In the first experiment retries were particularly prevalent in

the Unconstrained Hard condition. Of the 50 Unconstrained Hard participants, 45 offered

an Easy or Equality answer, tried some other answers, and then returned to trying the

answer for the same rule.

The assumption that participants have no memory for past hypotheses is rather

extreme. Therefore, we tried a model that assumed there was a certain probability that

the participant would be able to remember a failed hypothesis and would not return to it.

The Appendix includes a description of such a model. This Memory model requires 20

states to keep track of what hypotheses have been remembered. It requires one more

parameter than the model we have fit, which is the probability of remembering a hypoth-

esis. To find the best fit of this model to the data requires searching the two-dimensional

space of possible Stay probabilities and Memory probabilities. Fig. 7 displays the search

of this space for the four experiments. It can be seen that in all experiments the best fits

involve choices of Stay and Memory probabilities that are rather low. The best Memory
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probabilities were 0.00 for Experiment 1, 0.11 for Experiment 2, 0.05 for Experiment 3,

and 0.00 for Experiment 4.4 Thus, at best there is very little memory for past hypotheses.

As the Appendix describes, the BIC measure indicates that the extra memory parameter

is not justified.

Table 5

Mean number of times participants tried the wrong hypothesis (Hard or

Equality when Easy was correct; Easy or Equality when Hard was cor-

rect) and number of times they retried the same hypothesis after trying

something else

Tried Retried

Exp 1

Easy

Constrained 0.10 0.02

Unconstrained 1.34 0.68

Hard

Constrained 0.36 0.12

Unconstrained 5.16 3.50

Exp 2

Easy

Good example 0.31 0.04

Ambiguous example 0.32 0.12

No example 0.66 0.28

Hard

Good example 3.67 2.19

Ambiguous example 2.43 1.18

No example 5.54 3.64

Exp 3

Easy

Good verbal 1.32 0.74

Good example 0.28 0.04

Ambiguous verbal 0.54 0.18

Ambiguous example 0.22 0.06

Hard

Good verbal 4.82 3.04

Good example 3.42 1.88

Ambiguous verbal 3.36 1.70

Ambiguous example 2.16 1.02

Exp 4

Easy

Enhanced verbal 0.07 0.00

Scaffolded example 0.26 0.06

Hard

Enhanced verbal 1.02 0.33

Scaffolded example 1.96 0.94
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5. Experiment 2: Effect of examples

In the first experiment, participants’ behavior looked very much like the classic

hypothesis-testing behavior where they conducted a search through a space of rules.

While there were strong biases in the probabilities of considering different rules, these

probabilities describe a random search process that satisfied the Markov property of being

independent of past history and only dependent on the current state. Indeed, we showed

that it was simpler than even being dependent on the current state. Independent of state,

there was a constant Stay probability of sticking with a rule for another problem. If they

chose to consider another rule, the probability of choosing that rule depended only on the

Choice probability for that rule and not on the current state.

Experiment 1 Experiment 2 

Experiment 3 Experiment 4 

(a)

(c) (d)

(b)

Fig. 7. The log likelihood of models that displayed various combinations of the Stay probability and Memory

probability.
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However, this was in the absence of any instruction and participants might behave dif-

ferently if there were instruction. Perhaps with instructional guidance learning would be

less random, more controlled by the instruction, and less controlled by simple Start and

Choice probabilities. As we noted in the introduction, studying examples can often be an

effective source of instructional guidance. Therefore, in the second experiment we intro-

duced examples and manipulated the content of the provided examples.

5.1. Method

5.1.1. Participants
A total of 364 participants took part in this study and they were recruited from Ama-

zon Mechanical Turk. The participant pool (193 male and 171 female, M = 28.31 years,

SD = 6.92) reported various levels of educational background (39% 4-year, 36% 2-year

or some college, 8% high school, 14% master, and 3% others). Of 364, 60 participants

(16%) wanted to quit the study in various phases of the study and the data from those

participants were excluded for data analysis. This left a total of 304 participants, at least

50 participants per condition. The payment was the same as Experiment 1a.

5.1.2. Design, materials, and procedure
A 2 9 3 between-subjects design was employed to test effects of example content on

learning of two difficulty types of problems (Easy and Hard). The same sequence of 16

problems was used for both Easy and Hard conditions, but depending on the rule the cor-

rect answer varied. In terms of the previous experiment, all problems were unconstrained

in that all three of the rules resulted in integer answers.

Participants were given a good example, an ambiguous example, or no-example. In the

example conditions (both good and ambiguous), an example appeared with each problem

simultaneously. The examples were already solved problems, but without any explana-

tions. Fig. 8 illustrates good and ambiguous examples. In the good example condition,

the example solution supported only the rule that participants had to find. In the Easy

problems (Fig. 8a), the provided example supported only the Easy rule (1 + 3 = 4), and

not the Hard rule (6�4 6¼ 1). In the Hard problems, the provided example supported only

the Hard rule (5�4 = 1), and not the Easy rule (1 + 2 6¼ 4). In contrast, in the ambigu-

ous example condition (Fig. 8b), the example solution always supported both Easy

(1 + 3 = 4) and Hard rule (5�4 = 1). A total of 16 examples were constructed for each

problem type. Therefore, participants were given a new example for every new problem.

In both example conditions, an example appeared on the left side of the screen while

participants were solving a current problem presented on the right side of the screen. In

the no-example condition, participants were not provided with any examples and they had

to figure out problem rules in a trial-and-error manner. As in Experiment 1, participants

were given 1 minute for each problem, and after their response they were shown feedback

(2 seconds) that simply indicated whether or not their response had been correct.
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5.2. Results

Fig. 9 shows mean percentage of correctly solved problems for Easy and Hard prob-

lems among the three example conditions. A 2 9 3 between-subjects ANOVA was per-

formed on the percentage of correctly solved problems. Problem difficulty (Easy vs.

Hard) and example content (good vs. ambiguous vs. no-example) were included as

between-subjects variables. There were significant main effects of both problem difficulty,

F(1, 298) = 391.12, p < .0001, gp
2 = .568, and example content, F(2, 298) = 9.05,

p < .001, gp
2 = .057. More interestingly, there was a significant interaction between the

problem difficulty and example content, F(2, 298) = 4.54, p = .01, gp
2 = .030.

(a) Good example condition

Easy problem: 1 + 3 = 4 Hard problem: 5 – 4 = 1

(b) Ambiguous example condition (Both Easy & Hard problems)

Fig. 8. Examples of good and ambiguous examples used in Experiments 2 and 3. In the good example condi-

tion (a), examples were constructed separately for the Easy and Hard problems. The Easy problem example

supports only the Easy rule (1 + 3 = 4), and not the Hard rule (6�4 6¼ 1). The Hard problem example sup-

ports only the Hard rule (5�4 = 1), and not the Easy rule (1 + 2 6¼ 4). In the ambiguous example condition

(b), the same example was used for both Easy and Hard problems. The example supports both the Easy

(1 + 3 = 4) and the Hard rule (5�4 = 1).
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Different patterns of results were observed for Easy and Hard problems. For Easy

problems, most participants easily figured out the correct solution rule in all three exam-

ple conditions (overall M = 75%, SD = 28%) and there were no mean differences among

the three conditions, F(2, 148) = 1.83, p = .165, gp
2 = 024. In contrast, for Hard prob-

lems, many participants never figured out the correct solution rule and thus overall perfor-

mance was much lower than the Easy problems. Participants who were provided with

good examples (M = 29%, SD = 34%) solved significantly more problems correctly than

those provided with ambiguous examples (M = 13%, SD = 23%), t(101) = 2.88,

p = .005, and than those provided with no-example (M = 4%, SD = 14%), t(99) = 4.82,

p < .001. The mean difference between the latter two groups was also significantly differ-

ent, t(100) = 2.19, p = .031.

Fig. 10 categorizes the participants’ responses in the different conditions. As in

Experiment 1, most of the responses for Easy problems (Fig. 10a) corresponded to the

Easy rule hypothesis. The Hard and Equality hypotheses were tried less than 6% of

the time in all conditions. For Hard problems (Fig. 10b), there were more cases of

different types of hypotheses. Even though the Easy rule never resulted in the correct

answer, participants in the ambiguous example condition repeatedly tried the Easy rule

because the Easy rule was supported by the examples they were given. Again there

was also an increased tendency to try the Equality rule in the no-example condition

(29.4%).

As detailed in the Appendix, the Markov model once again provides a good characteri-

zation of the sequential structure of participants’ behavior. Fig. 11 shows the probabilities

of starting with various rules and later choosing them if the correct rule has not been

identified. (The Stay probability of sticking with an incorrect hypothesis for another prob-

lem was estimated to be .35.) Once again, there are high probabilities of starting with a

choice of the Easy rule. When there was an example that exemplifies that rule (Good

Easy condition or Ambiguous Easy conditions) participants averaged over 75% probabil-

ity of starting with the Easy rule. However, even in the remaining conditions that did not

Fig. 9. Mean percentage of correctly solved problems for Easy and Hard problems in each example condition

of Experiment 2. Error bars represent 1 standard error of mean.
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have such an example, participants still started with the Easy rule over 45% of the time

(comparable to the Start probabilities in all but the Constrained Easy condition of Experi-

ment 1). Again, the probability of later choosing the Easy rule was lower but still aver-

aged over 20%. While participants seldom started with the Equality rule in this

experiment, they averaged over 10% on later choices. In this experiment, participants do

choose to start with the Hard rule on 10% of the trials given a good example and show

4% probability of later choosing that rule.

5.2.1. Summary

To summarize the results for the Easy problem condition, participants did not really

need an example from which to learn and the effect of example content was little. The

Markov model estimates that by the end of the experiment 92% of the participants have

learned the Easy rule with good examples, 95% with ambiguous examples, and 88% with

no examples. On the other hand, when problem structure was not clear as in Hard

(a) Hypothesis distribution for Easy problems

(b) Hypothesis distribution for Hard problems

Fig. 10. Distribution of different hypotheses tested by participants in each example condition for (a) Easy

problems and (b) Hard problems in Experiment 2. *indicates the correct rule.
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problems, learners were affected by example content. The Markov model estimates that

by the end of the experiment 39% of the participants have learned the Hard rule with

good examples, 22% with ambiguous examples, and 6% (just 3 of the 50 participants)

with no examples. It seems that participants do use the examples as a source of possible

rules, but this is only needed when the rule is not already obvious.

6. Experiment 3: Effect of instructions

From Experiment 2 we can conclude that the effect of examples is to make certain

hypotheses more available as participants search through the space of possible rules. Just

as much as in the first experiment, the effect of instructional condition seems to be cap-

tured by the probabilities that they will start with certain rules or later choose these rules.

This characterization of learning (i.e., learning as a search through hypothesis space with

a bias created by instructional conditions) might no longer hold when we provided verbal

instruction. The goal of the third experiment was to investigate the effects of verbal

directions and contrast these with the effects of examples. In the verbal direction condi-

tion participants were told what parts of the problem to attend to find the rule, but we did

not tell them the explicit rule, whereas in the example condition participants were pro-

vided with an example to learn from as in Experiment 2. Crossed with this, we varied

whether the instruction was ambiguous between alternative rules or pointed only to the

correct rule. Because we were using a single verbal direction with all problems, we used

a single example with all problems. This contrasts with Experiment 2 where each prob-

lem was accompanied by a distinct example.

Fig. 11. The probabilities of starting with various rules and of later choosing those rules in the various condi-

tions of Experiment 2. Standard errors of parameter estimates are calculated by bootstrapping (see Appendix).

The Start probabilities for the Other category is one minus the sum of the Start probabilities of the three

focus rules, and the Choice probability for the Other category is similarly calculated.
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6.1. Method

6.1.1. Participants
A total of 484 participants took part in this study and they were recruited from Ama-

zon Mechanical Turk. The participant pool (246 male and 238 female, M = 28.97 years,

SD = 7.83) reported various levels of educational background (35% 4-year, 39% 2-year

or some college, 11% high school, 11% masters, and 4% others). Of 484, 84 participants

(17%) wanted to quit the study in various phases of the study and the data from those

participants were excluded for data analysis. This left 400 participants (50 per condition).

The payment was the same as the previous experiments.

6.1.2. Design, materials, and procedure
A 2 9 2 9 2 between-subjects design was employed. As in Experiments 1–2, the first

independent variable was problem difficulty type (Easy vs. Hard). Participants learned to

solve either Easy or Hard problems. We also manipulated instruction type (verbal direc-

tion vs. example) and content of instruction (good vs. ambiguous) as between-subjects

variables. In the verbal direction condition, participants were given verbal direction next

to the problem instead of examples. Verbal directions used in this study are shown in

Table 6. In the example conditions, the examples shown in Fig. 3 were used. The only

difference from Experiment 2 was that the same example was used for all 16 problems.

All procedures were identical with those of Experiments 1–2.

6.2. Results

Fig. 12 shows mean percentages of correctly solved problems in each experimental

condition. A 2 9 2 9 2 between-subjects ANOVA was performed to test the effects of

instruction type and instructional content on the percentage of correctly solved problems.

Problem difficulty (Easy vs. Hard), instruction type (verbal direction vs. example), and

instructional content (good vs. ambiguous) were included as between-subjects variables.

As in previous experiments, there was a significant main effect of problem difficulty,

F(1, 392) = 380.54, p < .0001, gp
2 = .493. There were also significant main effects of

Table 6

Verbal directions used in Experiment 3

Good verbal direction

Easy problems To find the answer, use the two numbers and operator from

the top rectangular box

Hard problems To find the answer, use one number from the top rectangular

box and use one number and the operator from the

bottom rectangular box

Ambiguous verbal direction

Both Easy & Hard problems To find the answer, use two numbers and one operator from

the rectangular boxes
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instruction type, F(1, 392) = 62.30, p < .0001, gp
2 = .137, and of instructional content,

F(1, 392) = 11.14, p < .001, gp
2 = .028. These two instructional factors did not interact

with each other, F(1, 392) = 0.73, p = .392, gp
2 = .002. Also, problem difficulty did not

interact with either instruction type, F(1, 392) = 2.71, p = .101, gp
2 = .007, or instruc-

tional content, F(1, 392) < 1, p = .982, gp
2 < .001. There was not a three-way interaction

effect, F(1, 392) = 2.56, p = .110, gp
2 = .006.

For Easy problems, regardless of instructional content (good vs. ambiguous), partici-

pants who were given examples solved more problems correctly than those who were

given verbal directions, F(1, 196) = 19.04, p < .0001, gp
2 = .089. In the good content

condition, the example participants (M = 84%, SD = 19%) performed better than the ver-

bal direction participants (M = 73%, SD = 28%). Likewise, in the ambiguous content

condition, the example participants (M = 81%, SD = 23%) performed better than the ver-

bal direction participants (M = 57%, SD = 39%). The same patterns of results were

obtained from the Hard problems. Regardless of instructional content, example partici-

pants solved more Hard problems correctly than the verbal direction participants, F(1,
196) = 46.67, p < .0001, gp

2 = .192. In the good content condition, the example partici-

pants (M = 39%, SD = 37%) performed better than the verbal direction participants

(M = 10%, SD = 24%). Likewise, in the ambiguous content condition, the example par-

ticipants (M = 27%, SD = 31%) performed better than the verbal direction participants

(M = 3%, SD = 10%).

As in Experiment 2, good (vs. ambiguous) content had positive effects on learning on

Hard problems, but this time the positive effects were found on Easy problems as well.

For Easy problems, participants who were provided with good content solved significantly

more problems than those who were given ambiguous content, F(1, 196) = 5.51,

p = .019, gp
2 = .027. Likewise, for Hard problems, the good content condition led to bet-

ter performance than the ambiguous content condition, F(1, 196) = 5.64, p = .019,

gp
2 = .028. There were no significant interaction effects between instruction and content

for Hard problems, F < 1.

Fig. 12. Mean percentage of correctly solved problems for Easy and Hard problems in each condition of

Experiment 3. Error bars represent 1 standard error of mean.
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Fig. 13 shows how the different categories of responses are distributed. For Easy prob-

lems (Fig. 13a), regardless of experimental conditions, most responses fell into the Easy

rule category. For Hard problems (Fig. 13b), various hypotheses were tested in all of the

four conditions. Participants in the ambiguous example condition tried the Easy rule more

often than in the other three conditions, implying that they were strongly affected by

example content. This pattern was consistent with that of Experiment 2. Overall, verbal

direction participants showed higher frequency of various incorrect hypotheses than the

example participants. The verbal direction conditions were similar to the unconstrained

conditions of Experiment 1 and the no-example condition of Experiment 2 in that partici-

pants tended to try the Equality hypothesis more often.

The Markov model once again provides a good characterization of the sequential

structure of participants’ behavior (see Appendix). Fig. 14 shows the probabilities of

starting with various rules and later choosing them if the correct rule has not been

identified. (The Stay probability of sticking with an incorrect hypothesis for another

problem was estimated to be .30.) As in Experiment 2 (Fig. 11), when there was an

(a) Hypothesis distribution for Easy problems 

(b) Hypothesis distribution for Hard problems 

Fig. 13. Distribution of different hypotheses tested by participants in each experimental condition for (a)

Easy problems and (b) Hard problems in Experiment 3. *indicates the correct rule.
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example that exemplifies the rule (Good Easy condition or Ambiguous Easy condi-

tions), participants averaged over 75% Start probabilities. In all of the remaining condi-

tions except for the Good example Hard condition, participants started with the Easy

rule over 45% of the time. Again, the probability of later choosing the Easy rule was

lower but still averaged about 16% across the conditions. While participants seldom

started with the Equality rule in this experiment, they used it on average in 8% of later

choices. The probabilities of choosing the Hard rule remained low but were highest in

the Example conditions.

6.2.1. Summary

Participants learned better when they were given examples than verbal directions,

but this was really because the biases induced by the examples better matched the rules

we were asking participants to solve.5 As Figs. 12 and 13 reveal, the biases induced

by the examples better matched what participants were being asked to learn. Had the

“correct” rule been Equality, participants would have done best with ambiguous verbal

directions. However, given that this bias was inappropriate, the Ambiguous Verbal par-

ticipants did worst. The Markov model estimates only 66% learned the Easy rule in

the Ambiguous Verbal condition, which is much lower than the other Easy conditions

(88% for Good Verbal, 98% for Good Example, and 94% for Ambiguous Example) in

this experiment or any other experiments. In the Hard Ambiguous Verbal condition,

the model only identifies one of the 50 participants as learning the rule in this condi-

tion (5 in the Good Verbal, 19 in both the Good Example and Ambiguous Example

conditions).

Fig. 14. The probabilities of starting with various rules and of later choosing those rules in the various condi-

tions of Experiment 3. Standard errors of parameter estimates are calculated by bootstrapping (see Appendix).

The Start probabilities for the Other category is one minus the sum of the Start probabilities of the three

focus rules, and the Choice probability for the Other category is similarly calculated.
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Unlike Experiment 2, there was no difference in how many participants achieved mas-

tery in the two Hard Example conditions. However, Fig. 14 reveals that mastery is

achieved differently. Given a good example, participants have a .16 probability of starting

right away with the Hard rule, whereas this never happens given an ambiguous example.

However, Ambiguous Example participants actually have a slight edge in choosing the

Hard hypothesis for subsequent problems—5.8% vs. 5.3%. Over the 16 trials they caught

up with the Good Example participants. In contrast to Experiment 2, participants just saw

the same example repeated for all problems. It seems that repeated exposure to the same

ambiguous information increased the chance that participants would identify a rule that

was not obvious on the first exposure.

7. Experiment 4: Effect of enhanced instructions

Across Experiments 1–3, we intentionally made instructions (both verbal direction

and examples) somewhat ambiguous so that we could examine what kinds of solution

hypotheses participants generated during their learning of problem solving. However,

this ambiguity may have been what pushed participants into the classic hypothesis-

testing behavior that we saw in each experiment. In Experiment 4, we created a

learning condition that would be similar to an educational setting where a teacher pro-

vides students with much more directive instructions. Experiment 4 tested two instruc-

tional conditions by providing either an enhanced version of verbal directions or a

scaffolded example (an equation was added to an example). We expected that partici-

pants would show better learning performance in both conditions than in Experiments

1–3.

7.1. Method

7.1.1. Participants
A total of 239 participants participated and they were recruited from Amazon Mechan-

ical Turk. The participant pool (131 male and 108 female, M = 29.76 years, SD = 7.84)

reported various levels of educational background (40% 4-year, 38% 2-year or some col-

lege, 14% masters, 5% high school, and 3% others). Of 239, 29 participants (12%) quit

the study in various phases of the study. This left a total of 210 participants for data anal-

ysis. The payment was the same as in Experiments 1–3.

7.1.2. Design, materials, and procedure
A 2 9 2 between-subjects design was employed. As in Experiments 1–3, participants

learned to solve either Easy or Hard problems. We also manipulated instruction type by

providing either verbal direction or an example. Experimental materials and procedures

were identical to each of the verbal direction and example conditions of Experiment 3,

with one exception. Experiment 4 used an enhanced version of verbal direction and a

scaffolded example to make the problem solution more apparent to learners. In the verbal
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direction condition, Easy instructions were “Applying the top operator to the top two

numbers results in the number that goes into the box where the arrow is pointing,” and

the Hard instructions were “Applying the bottom operator to the bottom two numbers

results in the top number that is on the opposite side of the empty box.” In the scaf-

folded example condition, we provided the same example that was used in the good

example condition of Experiment 3 (see Fig. 8a) and added an equation below the exam-

ple to indicate how to compute the answer. In Fig. 8a, the added equations were

“1 + 3 = 4” and “5�4 = 1” for Easy and Hard problems, respectively. As in Experiment

3, the same verbal direction or the same example repeatedly appeared across the entire

problems.

7.2. Results

Fig. 15 shows the mean percentage of correctly solved problems for Easy and Hard

problems in the enhanced verbal direction and scaffolded example condition. A 2 9 2

between-subjects ANOVA was performed on the percentage of correctly solved prob-

lems to see the effect of problem type (Easy vs. Hard) and instruction type (enhanced

verbal direction vs. scaffolded example) on learning. There were significant main effects

of both problem difficulty, F(1, 206) = 48.17, p < .0001, gp
2 = .190, and instruction

type, F(1, 206) = 6.77, p = .01, gp
2 = .032. The problem difficulty and instruction type

did not interact, F(1, 206) = 1.86, p = .17, gp
2 = .009. As in prior experiments, partici-

pants solved more Easy problems (M = 85%, SD = 20%) correctly than Hard problems

(M = 61%, SD = 25%). Also, participants who were given a scaffolded example solved

more problems correctly than those who were given enhanced verbal direction.

Although the difficulty by instruction interaction effect was not reliable, the magnitude

of the mean difference was greater for Hard problems. For Easy problems, example par-

ticipants (M = 88%, SD = 15%) solved about only 4% more problems than the verbal

direction participants (M = 84%, SD = 24%), whereas for Hard problems, example

Fig. 15. Mean percentage of correctly solved problems for Easy and Hard problems in enhanced verbal

direction and scaffolded example conditions of Experiment 4. Error bars represent 1 standard error of mean.
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participants (M = 68%, SD = 25%) solved about 14% more problems than the verbal

direction participants (M = 54%, SD = 35%). Overall, participants performed much bet-

ter than the participants from any experimental conditions of Experiments 1–3. In none

of the previous experiments was the average performance of Hard problems greater than

50%.

Fig. 16 shows how the different categories of responses were distributed. For Easy

problems, as in Experiments 1–3, most cases were observed in the Easy rule category.

For Hard problems, however, different from Experiments 1–3, most cases were now

observed in the Hard rule category. Although we were able to greatly reduce the amount

of incorrect hypothesis generation, there were still some responses that conformed to the

Easy and Equality rules. This tendency was slightly greater in the verbal direction condi-

tion than in the example condition. This pattern is consistent with the findings from prior

experiments in that the Equality hypothesis was tested more often when participants were

not provided with examples that disprove the Equality hypothesis.

(a) Hypothesis distribution for Easy problems 

(b) Hypothesis distribution for Hard problems 

Fig. 16. Distribution of different hypotheses tested by participants in enhanced verbal direction and scaf-

folded example conditions for (a) Easy problems and (b) Hard problems in Experiment 4. *indicates the cor-

rect rule.
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The Markov model once again provides a good characterization of the sequential struc-

ture of participants’ behavior (see Appendix). Fig. 17 shows the probabilities of starting

with various rules and later choosing them if the correct rule has not been identified (The

Stay probability of sticking with an incorrect hypothesis for another problem was esti-

mated to be .12). The probabilities of correct choices are generally higher than in previ-

ous experiments. The model identifies all 54 of the participants in the Easy Example

condition as learning the rule, 51 of the 54 participants in the Easy Verbal condition, 48

of the 51 participants in the Hard Example condition, and 39 of the 51 participants in the

Hard Verbal condition. However, it is worth noting that none of the Hard probabilities in

Fig. 17 are greater than .5. The high levels of mastery are only achieved through repeated

opportunities to learn the concept.

7.2.1. Summary

To summarize, Experiment 4 showed when we tried as best we could to make the

problem structure apparent by either example or verbal instruction, participants enjoyed

greater success in learning. The sequential behavior of participants still satisfies the test

for the Markov property, but their probability of trying correct rules increased.

8. General discussion

In this study, we viewed learning of problem solving as hypothesis testing and con-

ducted four experiments to see how instructional conditions can affect learning by chang-

ing the probabilities of trying various rules. Experiment 1 tested this with two different

types of populations, and overall patterns of the results were consistent between the two

populations. We also tested a Markov model that described how participants consider var-

Fig. 17. The probabilities of starting with various rules and of later choosing those rules in the various condi-

tions of Experiment 4. Standard errors of parameter estimates are calculated by bootstrapping (see Appendix).

The Start probabilities for the Other category is one minus the sum of the Start probabilities of the three

focus rules, and the Choice probability for the Other category is similarly calculated.
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ious hypotheses and transition among such hypotheses. Across the four experimental stud-

ies, we tested how instructional properties affected learning by constraining or relaxing

the hypothesis search space. We created a task that could have various correct answers

depending on the experimenter’s rule and tested how well participants could find the cor-

rect rule in various experimental conditions. When the correct rule was the Easy rule,

participants enjoyed high probabilities of success independent of instructional condition

or indeed whether there was any instruction. In contrast, when it was the Hard rule, the

majority of participants had difficulty learning. It was only with strong instructional inter-

vention (Experiment 4) that most participants were successful at learning the Hard rule

and even then it required multiple learning opportunities to assure that most participants

achieved mastery. Over the four experiments we showed that success in finding the Hard

rule was affected by computational difficulty (Experiment 1), quality of examples (Exper-

iments 2–4), and quality of verbal directions (Experiment 3–4). In each case we showed

that these instructional effects could be explained in terms of the effect these instructions

had on the probability of starting with various rules and later choosing a rule should the

initial rule hypothesis prove wrong.

8.1. Aggregate data analyses

Fig. 18 shows summary analyses aggregating the data from all four experiments. Part

(a) shows the proportion of correct answers for the 559 Easy participants and 555 Hard

participants. It displays what appears to be rather slowly improving learning curves with

Easy problems much better than Hard problems. The smooth lines reflect the predicted

average performance according to the Markov models that were fit to the experiments.

However, as is the case in hypothesis-testing situations (Bower & Trabasso, 1964; Levine,

1975; Nosofsky et al., 1994; Restle, 1962), such continuous learning curves can hide an

all-or-none discovery process where the correct rule is mastered on a single trial but differ-

ent trials for different participants. The Markov models provide an estimate of the proba-

bility that a rule is mastered on each trial. We can identify the trial of mastery as the trial

when estimated probability of the correct rule exceeds 50%. Given that there is a chance

that the response does not reflect the rule being considered (i.e., solvers may make a com-

putational error implementing their rule), one cannot be certain in identifying the trial of

mastery. Still confidence is high: The inferred probability that the rule is mastered on the

trial of mastery is 91% while the probability that it was mastered on the prior trial is 14%.

Fig. 18c shows the probability of being correct as a function of the trial relative to the trial

of mastery. It reveals a rather dramatic jump with the difference between Easy and Hard

problems largely eliminated. Thus, the difference between Easy and Hard rules depends on

differences in when their rules are identified, not accuracy in applying the rules.

One could criticize the analysis in Fig. 18c because the inference of trial of mastery is

based on the accuracy data that we are plotting. Parts (b) and (d) of Fig. 18 look at

latency, which we have not used in the modeling. Part (b) looks at average response time

as a function of problem position. That figure reveals some tendency toward speed-up for

both types of problems, but Hard problems average more than 7 seconds longer than

H. S. Lee, S. Betts, J. R. Anderson / Cognitive Science 40 (2016) 1067



Easy problems. It shows a complicating factor as well. The times for the first two prob-

lems average more than twice as long as the average for later problems (29.2 seconds vs.

13.9 seconds) and the time actually increases for the second problem (an increase for

problem 2 is significant for both Easy and Hard problems, t(558) = 2.00 and

t(554) = 2.43, both p’s < .05). We are fairly confident that this delay reflects solvers’

need to familiarize themselves with the input interface (the second problem is the first

instance of an answer below zero that required entering a negative sign).

(a)

(c) (d)

(e) (f)

(b)

Fig. 18. Analyses average over the four experiments. (a) Probability of a correct answer as a function of prob-

lem position; (b) time to answer as a function of problem position; (c) probability of a correct answer relative

to the trial of mastery; (d) time to answer relative to the trial of mastery; (e) proportion of a hypothesis as a

function of Easy problem position; (f) proportion of a hypothesis as a function of Hard problem position.
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Fig. 18d replots latency as a function of position relative to trial of mastery, excluding

the first two trials (because of the problem noted above) and problems that were mastered

on these first two trials or never mastered. It reveals a major speed-up after the trial of

mastery (from 13.1 to 9.4 seconds for Easy problems, and from 22.1 to 17.0 seconds for

Hard problems). This Mastery Drop contrasts with the rather gradual speed-up before

(Pre Slopes: average of .3 seconds per problem for both types of problems) and afterward

(Post Slopes: .15 sec for Easy and .65 seconds for Hard). Looking at just those partici-

pants for whom we could compute both Pre and Post slopes excluding the first two trials,

these differences are all significant (Mastery Drop > Pre Slope: t(106) = 2.00 for Easy

and t(100) = 2.56 for Hard, both p’s < .05; Mastery Drop > Post Slope: t(106) = 4.39 for

Easy, t(100) = 3.59 for Hard, both p’s < .01). Thus, there seems a qualitative shift in pro-

cessing once the participants have determined the rule. The search process has been elim-

inated and participants are now just practicing the rule. Fig. 18d also reveals that the

difference in times between Hard and Easy problems is not just a consequence of differ-

ent points of mastery. Even after mastery, Hard problems average about 5 seconds longer

than Easy problems. Although the arithmetic computations are not more difficult, partici-

pants find it harder to apply the Hard rule. In part, this is probably because the numbers

they need to combine are not adjacent and they need to invert the operator.

Fig. 18e–f also shows the proportion of hypothesis used by participants as a function

of problem position for the Easy problems and Hard problems. For the Easy problems

(e), Easy rule was used most often and the proportion of the Hard rule was low across

the trials. In contrast, for the Hard problems (f), the relative proportion of the Easy and

Hard rule was reversed between the initial and later trials. The proportion of the Hard

rule gradually increased, whereas the pattern was the opposite for the Easy rule.

Fig. 19 shows the relationship between Start probabilities and Choice probabilities,

separately for Easy and Hard problems, plotting the points for the 22 conditions across

the four experiments. Both sets of points are basically on the same function. The best-fit-

ting function through the origin for Easy problems is

Choice-Probability ¼ :329� Start-Probability

which accounts for 59.4% of the variance while the best-fitting function for Hard prob-

lems is

Choice-Probability ¼ :345� Start-Probability

which accounts for 81.8% of the variance. Thus, each condition seems to induce a certain

initial preference for a rule, which is reduced to about a third of its original value after

the first problem, but the same experimental factors determine both Start and Choice

probabilities.

Besides showing the correspondence between Start and Choice probabilities, this graph

raises the question of why the Choice probabilities are so reduced. The reduction in the

Easy and Hard probabilities is accompanied by an increase mainly in the probability of
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the “Other” state (which is one minus the probabilities displayed in Figs. 6, 11, 14, and

17). It is hard to characterize generally what the rules are that participants are following

in this state, but many seem specific to particular problems and reflect features that do

not involve arithmetic computation. There is considerable copying of numbers of one of

the numbers in the problems but many other sorts of answers. As instance of another sort

of answer, in Experiments 2–4 one of the Hard problems had “30” appearing in two of

the boxes and “�3” in the third. For this problem only, there were frequent answers of

“3” (35 of 270 of all non-Hard answers). It seems that the participants’ hypothesis gener-

ation for this problem was influenced by the fact that one of the digits in all of the

numbers was a “3.” The dramatic rise in these kinds of hypotheses after the first prob-

lem suggests that if the subjects are wrong with their first guess (typically some arith-

metic computation) they open their hypothesis space to the possibility that the answer

may not involve an arithmetic computation.

While the Markov model seems to capture the sequential structure of participants’

behavior across these experiments based on the probabilities in Fig. 19, it leaves open

what determines these probabilities. Abstractly, we have described students as being in a

space of hypotheses with biases determining the probabilities of trying various hypothe-

ses. However, in more information-processing detail this search of the hypothesis space

must involve constructing rules to try (perhaps revising former rules they have tried to

produce new ones). There are numerous models of how rules are constructed and changed

on the bases of examples (Gulwani, 2014; Matsuda, Cohen, Sewall, Lacerda, & Koedin-

ger, 2007; Nosofsky et al., 1994). While these models exemplify a variety of approaches

they can all be abstractly characterized as searching for a procedure, synthesized out of

primitive components, that will produce the output given the input. Although this

approach has not been applied to our task, such an approach could in principle be devel-

oped to learn from examples in our experiments. As multiple procedures can match any

example, the procedure that these models produce is determined by various biases that

guide their search. While simplicity is an inevitable part of these biases, there can be

many other biases determined by how the models construct and search the space of

Fig. 19. Choice probabilities as a function of Start probabilities. The solid lines reflect the best-fitting linear

functions through the origin.
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possible procedures. If there is a random component in such models, some of these biases

will be expressed probabilistically and enable the system to produce a range of programs

given the same input. This random variation certainly was a characteristic of participants

in our experiments. Such an approach would directly apply to the example conditions of

our experiments. However, it could be further extended to explaining learning without an

example by just generating a procedure according to the internal biases, without the con-

straint that it matches an example, and applying it to the problem. These approaches

would explain the differences among conditions by essentially moving the probabilities

we identified in our Markov model down into the biases in program generation. So, in a

sense, they would still leave open what determines the probabilities.

8.2. Learning as a hypothesis testing

This study looked at learning to solve a class of problems as a hypothesis testing and

demonstrated that constraining the search space could help learning by reducing trial-and-

error search. Although the way of thinking of learning as a hypothesis testing is not new,

this research provides an important clue on why some instructions are effective and

others are not. Simply put, good instruction creates good biases, whereas poor instruction

creates poor biases in hypothesis testing. The most surprising finding in our research was

that participants showed no or little memory of failed hypothesis. This strongly suggests

provision of instruction that creates good biases is critical to successful learning. Some

may argue that no-memory assumption may not hold with extended amount of practice.

Future studies will be needed to address how our no-memory assumption changes

depending on the amount of instruction.

The current study suggests that focusing the search can improve learning of problem

solving. One possible piece of supporting evidence comes from Zhu and Simon’s (1987)

work on example-based learning. They had students learn to factor quadratic expressions

and demonstrated that students can learn problem solving by studying examples and/or

by working problems without lectures if examples/problems are arranged in an appropri-

ate way. They attributed students’ learning success to the fact that students had to attend

to only certain aspects of learning while solving a series of problems. This could have

possibly reduced inefficient trial-and-error search and in turn working memory load. This

is related to VanLehn’s (1987) “one-disjunct-per-lesson” hypothesis that learning one sub-

procedure at a time is more effective than teaching two or more disjunctively related pro-

cedures in the same lesson.

Also, in the domain of science learning, several attempts have been made to help

learning by supporting hypothesis formation in designing computer-supported learning

environments. For example, Van Joolingen and De Jong (1993; De Jong & Van Joolin-

gen, 1995; Van Joolingen & De Jong, 1991, 1996) introduced a cognitive tool called the

hypothesis scratchpad. The scratchpad constrains the hypothesis that a learner could state

and shows the contents of the hypothesis space. This can serve as a memory of the trace

through hypothesis space. Kim and Pederson (2011) also introduced metacognitive scaf-

folds to strengthen the hypothesis-development process among sixth-grade participants.
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Participants who used metacognitive scaffolds developed better hypotheses than the con-

trol group of participants and that hypothesis-development performance was predictive of

solution-development performance.

One might think that the simplest way of constraining the search space is to provide

explicit instruction about a correct rule. This is what we tried in the fourth experiment.

While it had some success it was apparent that it did not constrain the search space down

to just the correct rule. In fact, providing a scaffolded example was more successful, even

though there was still search. As Fig. 19 reveals, each of our 22 different conditions can

be characterized as inducing different biases to try the Hard and Easy rules. Learning

was more successful when the induced biases matched what was to be learned. This is

consistent with the general claim that good instruction is instruction that induces in the

learner biases that hypothesize the correct rules and principles.

Although none of our conditions produced high rates of success in learning the Hard

rule, we have observed high rates of success in a neuroimaging study conducted in our

laboratory (H. S. Lee et al., 2015). Students first practiced learning from examples or ver-

bal instruction for a set of 24 problems. Then, when we provided a novel verbal direction

like “apply the top operator to the bottom two numbers” or an example illustrating the

rule, participants were able to solve their first problem with over 90% accuracy. What

subjects learned from the prior problems was appropriate biases for learning rules like

our Hard rule.

8.3. Implications for instructional design

The findings from this research provide several implications for instructional design.

First, when examples can be interpreted in more than one way, it will increase induction

errors and negatively affect learning. Therefore, examples should be carefully selected so

that learners can learn the correct rule, while not being misled by incorrect rules. Instruc-

tors should examine whether an example can be interpreted in multiple ways other than

the correct way before they provide students with the instructional example. Although

there is no doubt that ambiguity is problematic, recognizing and avoiding it might not be

easy. Some ambiguity may not be obvious to instructors, especially when they already

know problem-solving rules and they may experience “expert blind spot” (Koedinger &

Nathan, 2004; Nathan & Petrosino, 2003).

Second, simply changing problem properties can help the discovery learning process.

When students have to learn in a minimally guided instructional environment such as

when doing homework alone, teachers can assign problems that are designed to help stu-

dents focus on certain features of the problem. These could be formal features of prob-

lems such as numbers or operators as in our current study or informal perceptual features

of problems such as spacing or visual salience (e.g., Landy & Goldstone, 2007, 2009).

The way a problem is displayed can have a substantial effect on learning performance

(Larkin & Simon, 1987; Zhang & Norman, 1994). For example, Landy and Goldstone

(2007) demonstrated that accuracy was greater when visual layout of algebraic equations

supported the mathematical convention via a non-mathematical grouping pressure (e.g.,
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proximity, closure). Landy and Goldstone (2009) also showed that linear equation solving

was facilitated when the background motion was consistent with the direction of the

numeric transposition people would do to solve for the unknown variable. Using a gra-

phic inference task, Hegarty, Canham, and Fabrikant (2010) also demonstrated the effect

of visual salience on learning of inference task. Participants’ performance increased when

they were given visual materials that made task-relevant information more visually sali-

ent.

Third, provision of yes/no feedback appears insufficient to stop students from repeating

their wrong strategies. The Markov modeling revealed that students had a tendency to

stick with a wrong hypothesis even after they were provided with disconfirming evidence.

We speculate that this is because they were not sure of why their answers were wrong

and considered the reasonable hypothesis that their rule was correct but they had made a

computational error. Effective feedback needs to make clear why an answer was wrong.
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Notes

1. The word “rule” may have two senses. In a context of category learning, it may

mean a criterion that divides class into different categories, whereas in a context of

problem solving, it means a solution used for problem solving. In this study, we

used the word to refer to the second meaning.

2. But participants were told that these answers were incorrect.

3. Estimation of all quantities is provided by the scripts associated with website

https://www.dropbox.com/sh/nl4mrlocu46mnie/CekvOkmNJ5.

4. The corresponding Stay probabilities were .19, .25, .27, and .11. These are similar

but not identical to the ones estimated with the four-state model used in the study.

It will be noted that the curve tends to be rather flat for low Memory probabilities

and Stay probabilities below .5, indicating a lack of sensitivity to the exact Stay

probability.

5. Some may argue that this might be due to the language ability of the participants.

Understanding of verbal instructions requires comprehension of language. Although

we could not directly examine participants’ native language, geo-locations of the

Mechanical Turk population based on their ip address were identified as US terri-

tory in 98% of population. Also, results were not really different with our small

CMU sample in Experiment 1.
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6. Estimation of all quantities is provided by the scripts associated with website

https://www.dropbox.com/sh/nl4mrlocu46mnie/CekvOkmNJ5.

7. The problems were only designed to guarantee that the Easy, Hard, and Equality

answers would be different for each problem.

8. In this experiment, it was never the case that both the Hard and Easy rule would

fail and so these states were really hypothetical and never reached.

9. The Stay probabilities for the no-memory models reported here are very slightly

different than those in the main text because the estimated observation matrix was

very slightly different.
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Appendix6: Observation matrix

We estimated a single best-fitting model to the pooled data from all the experiments. In

addition, we imposed the following constraints on the observation matrix to make the Easy,

Hard, and Equality states equivalent in their association with their intended observations:

1. The probabilities of observing the appropriate response in each of these three states

were the same. The best estimate of this probability was .92. The other .08 are

interpreted as cases where participants made an error in calculating the answer

appropriate to the state.

2. The .08 above includes responses that match either of the other two focus rules.7

We constrained these probabilities to be the same. The best estimate of this proba-

bility was .002.

3. When in the Other state, the probability of observing a response that corresponded

to one of the focus states was the same. The best estimate of this probability was

.105. Most of these are probably cases where the participant’s Other rule produced

the same answer for that problem as one of the focus rules.

The estimation of these three probabilities completely determines the probability of observ-

ing a response that corresponds to Easy, Hard, and Equality in the four states. The probabili-

ties of observing something else can then be calculated as 1�.9200�2 9 .002 = .0756 for

the Easy, Hard, and Equality states and 1�3 9 .105 = .685 for the other state.

The resulting parameters are quite reasonable—a very high probability of giving a response

that matches the state, a very low probability of giving a response in one of the focus state

that matches another focus state, and a modest probability of giving something different.

Degrees of freedom for the transition matrices

The transition matrices for a condition have 12 degrees of freedom, but to increase

interpretability we tested reducing this to three choice probabilities plus a stay probability

that was shared by all the conditions in the matrix. Table A1a reports three tests ordered

by how much they weight differences in significance vs. simplicity in choosing between
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the Full model and the Reduced model. That table gives the ingredients for calculating

these various statistics:

1. Number of observations (N: 16 times the number of participants).

2. Number of parameters in estimating these models (K: 15 (3 start parameters, 12 transi-

tion parameters) x number of conditions for the Full model; 6 (3 start parameters, 3

choice parameters) x number of conditions plus 1 (Stay probability) for the Reduced

model).

3. Log Likelihood (LL) of the data given those parameters.

4. BIC (Bayesian Information Criterion). This measure is calculated as

BIC ¼ �2� LLþ K � lnðNÞ

Smaller values are better. This measure most favors simplicity. The Bayes factor

can be computed from the difference in BIC scores as exp(�MBIC/2) and can be

interpreted as the relative probability of the two models (Kass & Raftery, 1995). It

can be seen that in all cases BIC decisively favors the Reduced model.

5. AIC (Akaike’s Information Criterion). This is measure is calculated as

AIC ¼ �2� LLþ 2� K

This measure penalizes number of parameters less. It is a measure of distance to

the “true” model. Again in every case this measure favors the Reduced model.

6. Chi-square test. This test can be used when one model is nested within another, as in

our case. Under the null hypothesis of no difference between the two models, twice

the log-likelihood difference is distributed as a chi-square test with degrees of free-

dom equal to the difference in number of parameters. The null hypothesis can be

rejected in the cases of Experiments 2 and 4, which is to be interpreted as there being

some significant variance that is being captured by the additional parameters. Com-

bined across the four experiments, the chi-square test is marginal just failing the .05

criterion value.

Tests of Markov property

A standard method (Bickenbach & Bode, 2001) of testing the Markov property is to

determine whether different segments of the sequential data can be fit with the same

parameters. To do this, we broke the data into the first eight problems and the second

eight problems. The Single Model estimated a single set of Start probabilities and Choice

probabilities to fit both segments. The Double Model estimated two sets for each half. In

the Single Model a Start vector for the second half was calculated by using the start vec-

tor for the beginning of the experiment and applying the transition matrix eight times to

it. Table A1b reports tests of the Markov property using the same structure as Table A1a.

The Markov property is satisfied by all tests.
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Bootstrapped estimates of errors of parameter estimates

To obtain bootstrapped estimates of the standard errors (Figs. 6, 10, 13, and 16) we

randomly choose with replacement participants from the original experiment to create

samples of the same size as in the original experiment. Thus, any participant could occur

0, 1, or more times in these random samples. The standard errors of the parameters are

calculated by estimating parameters for 1,200 samples so generated.

The memory model

The memory model required creating a different state for considering a tracked rule

(Easy, Hard, or Equality) for each possible set of past history of rules remembered as

failed. This required creating four states for each of the Easy, Hard, and Equality rules.

For instance, the Hard hypothesis could be considered without memory of any rules

failed, after remembering Easy as failed, after remembering Equality as failed, or after

remembering both rules as failed. As in the no-memory model, once it entered a state

where it was considering the correct rule, it stayed in that state (but now there are four

such absorbing states for the correct rule). There were eight Other states for each of the

23 combinations memory of Easy, Hard, and Equality rules as failed.8 If participants did

not stay in a state after an error, they could either transition to a state that included mem-

ory of the rule as failed or to a state that did not include such a memory. The probability

of the first option was the choice probability for that state times the global memory prob-

ability for the experiment. The probability of the second option was the choice probabil-

ity for that state times one minus the global memory probability for the experiment.

Just as we had for the no-memory model, we estimated the probabilities of giving each

of the four categories of answers in any state (the observation matrix). These values were

the same for all states that involved the same rule with different past histories. Initially

the model would start in one of four states according to the Start probability, just like the

no-memory model. We could derive the probabilities of subsequent histories from the

Stay probability, the Memory probability, and three Choice probabilities for Easy, Hard,

and Equality. If there were less than four states it could go to (because it remembered a

rule as failed), it scaled its probabilities of going to these remaining states according to

the choice probabilities associated with those states. For instance, if the choice probabili-

ties for the two states were .1 and .3, the rescaled choice probabilities would be .25 and

.75. The parameters estimated for different experiments and the software that imple-

mented the memory model are available at the website that contains the data and code

for this paper.

The best-fitting combination of memory and stay probabilities were 0.00 and 0.19 for

Experiment 1, 0.11 and 0.25 for Experiment 2, 0.05 and 0.27 for Experiment 3, and 0.00

and 0.11 for Experiment 4. The best-fitting no-memory model for Experiment 2 had

parameters of 0.00 and 0.35. It had a log-likelihood 5.40 worse than the best-fitting model,

but considering the extra parameter the memory model’s BIC measure was 2.32 worse.
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The best-fitting no-memory model for Experiment 3 had parameters of 0.00 and 0.29. It

had a log-likelihood 1.11 worse, but its BIC measure was 6.55 better.9

Table A1

Tests of the assumptions of the model

(a) Full Model vs. Reduced Model

Experiment

Combined1 2 3 4

1. Numbers

Participants 200 304 400 210 1,114

Observations 3,200 4,864 6,400 3,360 17,824

2. Parameters

Full 60 90 120 60 330

Reduced 25 37 49 25 136

3. Log likelihood

Full �2,305.2 �3,509.2 �4,554.6 �1,683.3 �12,052.3

Reduced �2,310.8 �3,561.4 �4,582.7 �1,710.4 �12,165.3

4. BIC

Full 5,094.7 7,782.5 10,160.9 3,853.8 27,334.7

Reduced 4,823.4 7,436.9 9,594.8 3,623.8 25,661.8

5. AIC

Full 4,730.4 7,198.4 9,349.2 3,486.6 24,764.6

Reduced 4,671.6 7,196.8 9,263.4 3,470.8 24,602.6

6. Chi-square test

Chi-square 11.2 104.4 56.2 54.2 226.0

df 35 53 71 35 194

Probability 1.000 0.000 0.900 0.020 0.057

(b) Markov Property

Experiment

Combined1 2 3 4

1. Numbers

Participants 200 304 400 210 1,114

Observations 3,200 4,864 6,400 3,360 17,824

2. Parameters

Double 49 73 97 49 268

Single 25 37 49 25 136

3. Log likelihood

Double �2,354.6 �3,622.8 �4,673.9 �1,723.2 �12,374.5

Single �2,366.5 �3,642.5 �4,698.6 �1,733.4 �12,440.9

4. BIC

Estimate 5,104.6 7,865.3 10,198.0 3,844.3 27,372.2

Re-Use 4,934.7 7,599.1 9,826.6 3,669.8 26,213.0

5. AIC

Double 4,807.1 7,391.5 9,541.8 3,544.4 25,284.9

Single 4,782.9 7,358.9 9,495.1 3,516.8 25,153.8

6. Chi-square test

Chi-square 23.8 39.4 49.3 20.4 132.9

df 24 36 48 24 132

Probability 0.474 0.320 0.421 0.675 0.463
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