
Cognitive Psychology 87 (2016) 1–28
Contents lists available at ScienceDirect

Cognitive Psychology

journal homepage: www.elsevier .com/locate/cogpsych
Phases of learning: How skill acquisition impacts
cognitive processing
http://dx.doi.org/10.1016/j.cogpsych.2016.03.001
0010-0285/� 2016 Elsevier Inc. All rights reserved.

⇑ Corresponding author at: 5000 Forbes Ave., Pittsburgh, PA 15213, United States.
E-mail address: ctenison@andrew.cmu.edu (C. Tenison).
Caitlin Tenison ⇑, Jon M. Fincham, John R. Anderson
Department of Psychology, Carnegie Mellon University, United States

a r t i c l e i n f o a b s t r a c t
Article history:
Accepted 10 March 2016
Available online 25 March 2016

Keywords:
Skill acquisition
Cognitive modeling
ACT-R
fMRI
This fMRI study examines the changes in participants’ information
processing as they repeatedly solve the same mathematical prob-
lem. We show that the majority of practice-related speedup is pro-
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tence of three learning phases. When solving a problem in one of
these learning phases, participants can go through three cognitive
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associated with a unique brain signature. Using a bottom-up
approach combining multi-voxel pattern analysis and hidden
semi-Markov modeling, we identify the duration of that stage on
any particular trial from participants brain activation patterns.
For our top-down approach we developed an ACT-R model of these
cognitive stages and simulated how they change over the course of
learning. The Solving stage of the first learning phase is long and
involves a sequence of arithmetic computations. Participants tran-
sition to the second learning phase when they can retrieve the
answer, thereby drastically reducing the duration of the Solving
stage. With continued practice, participants then transition to the
third learning phase when they recognize the problem as a single
unit and produce the answer as an automatic response. The dura-
tion of this third learning phase is dominated by the Responding
stage.
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1. Introduction

Across domains, practice is acknowledged to have transformative effects on performance. Several
models of skill acquisition propose different explanations for how practice reduces the duration and
increases the accuracy of task performance. These models differ in whether they attribute speedup
either to discrete changes in the cognitive processes executed to solve a problem or to a greater effi-
ciency of the same processes. In this paper, we address both explanations within the context of mod-
eling the speed up in mathematical problem solving. In particular, we combine cognitive modeling
with new methods of analyzing fMRI data to understand the detailed changes that take place as par-
ticipants transition from the first time they solve a novel problem, to the point at which they automat-
ically recognize a problem’s solution.
1.1. Models of skill acquisition and practice related speedup

As people practice solving a problem, the time it takes to solve that problem decreases. Previous
research has focused on understanding the nature of this speed up. In their classic paper, Newell
and Rosenbloom (1981) observed that performance tends to speed up as a power function of the
amount practice, highlighting what has been called the ‘Power Law of Practice’. In their paper describ-
ing these effects, performance improvements were explained as chunking of cognitive processes into
fewer processes (Newell & Rosenbloom, 1981). Subsequent research has refined this characterization
of practice by investigating whether the speedup is really best fit as a power function (e.g. Heathcote,
Brown, & Mewhort, 2000), and by examining to what degree the speedup might reflect changes in the
strategies used for solving the problems (e.g. Delaney, Reder, Staszewski, & Ritter, 1998).

Unlike Newell and Rosenbloom’s work, the Race model, which is part of the Instance Theory
(Compton & Logan, 1991; Logan, 1988, 2002), described the learning mechanism for practice-
related speedup as involving a quick shift from computation to retrieval followed by a power-like
speed up in the retrieval. According to the Race model, each time a problem is practiced it becomes
encoded in memory; then, when a participant sees the problem again, each of the previously encoded
instances independently races to generate the response and the fastest process ‘wins the race’. As the
number of instances in which a participant retrieves the answer increases, the speed of the winning
retrieval will increase as well. This model not only predicts a power-law speedup with practice, but
also a decrease in the variability in latency with practice.

In contrast to the Race model, a number of studies have suggested the computation process may
have its own speedup before the shift to retrieval. Delaney et al. (1998) argued that both computation
and retrieval are strategies that have their own power-law speedup. Rickard’s Component Power Law
(CMPL) model (Bajic, Kwak, & Rickard, 2011; Bajic & Rickard, 2009; Rickard, 1997) focuses on two
sources of speedup—the discrete switch from computation to retrieval and the speed up within the
computation and retrieval phases. Initially Rickard focused on speed up in retrieval but he has also
suggested that faster associative retrieval may be responsible for speed up in the computations used
to solve a problem.

Fitts and Posner (1967) were the first to propose a three-phase model of skill acquisition that con-
sists of a cognitive phase, an associative phase, and an autonomous phase. Anderson (1982, 1987) later
related this to an early version of a cognitive architecture, the ACT theory. He suggested that the tran-
sition from the cognitive to the associative phase reflected a transition from computation of the
answers to declarative retrieval of learned answers, and that the transition to the autonomous phase
was produced when retrieval was replaced by a production rule that directly produced the response to
the stimulus.

The task in this paper is modeled within modern ACT-R theory (Anderson, 2007; Anderson et al.,
2004). ACT-R models specify the full time course of processing that occurs while performing a task,
from perceptual encoding through response generation, differentially leveraging specific functional
modules over the course of a task. A significant advantage of modeling at this level of detail is that
it allows us to relate a model of skill acquisition to changes in brain activation by identifying the major
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cognitive systems used at different stages of a task. ACT-R models for a number of tasks have
addressed the transition from computation to retrieval and the impact of practice on performance.
Anderson and Lebiere (1998) described a model of an alpha-arithmetic experiment by Zbrodoff
(1995), which has become a standard in the ACT-R tutorial (Bothell et al., 2009). The major speedup
is produced by a discrete transition from computation to retrieval although there is some further
speed up in retrieval of the answer with practice. That model did not learn production rules for
directly mapping stimuli to responses (and so did not reach the autonomous phase of skill acquisi-
tion); later models, however, added this functionality. Such item-specific production rules have played
a major role in a number of ACT-R models where specific items have been repeated a large number of
times (Anderson, Taatgen, & Byrne, 2005; Taatgen & Anderson, 2002; Taatgen & Lee, 2003), and will do
so here as well.

1.2. Models of practice and the brain

The models of skill acquisition previously discussed emerged from research in which cognitive pro-
cessing was inferred from reaction time. A separate, but related field of research on the impact of prac-
tice on brain function has largely neglected theory concerning how cognitive processing changes with
practice. Many studies on the impact of practice occur over long periods of time, such as hours or days
(e.g. Lee et al., 2012; Tang & Posner, 2014), using contrasts between trained and untrained tasks to
observe gross structural changes (Lövdén, Wenger, Mårtensson, Lindenberger, & Bäckman, 2013), as
well as changes in functional activation (Patel, Spreng, & Turner, 2013). In a review of this literature,
Kelly and Garavan (2005) acknowledge the importance of considering the impact of practice on strate-
gic changes in how the task is performed. Although Kelly and Garavan wrote their review a decade
ago, this sentiment continues to be echoed by others (Reber, 2013; Tang & Posner, 2014). In this sec-
tion, we examine two different cognitive models of skill acquisition that have emerged to explain the
impact of practice on neural activation.

In their ‘Scaffolding framework’, Petersen, Van Mier, Fiez, and Raichle (1998) study the impact of
practice on task-specific demands. When participants first encounter a novel task, a set of brain
regions categorized as scaffolding regions are used to perform the task. These regions vary depending
on the task demands. With practice, associations become stored in memory and a different set of stor-
age brain regions are involved in the task. While this framework shares many similarities with the
Instance theory (Logan, 1988, 2002) and the CMPL (Rickard, 1997, 2004), the authors point out the dif-
ficulty in using neural activations to prove models such as their own. The scaffolding framework is one
of a family of frameworks researchers have pieced together to interpret changes in neural activation
that occur during skill acquisition (e.g. Kelly & Garavan, 2005; Patel et al., 2013). While these studies
often mention the previously described models of skill acquisition (e.g. Anderson, 1982; Fitts & Posner,
1967; Logan, 1988; Rickard, 1997), these are most often used to describe practice effects in broad
strokes rather than to test predictions about learning related change. In the current paper, we propose
a method that addresses some of the limitations raised by Petersen et al. (1998) when using neuro-
science to understand skill acquisition.

With the dual processing theory, Schneider and Chein (2003) makes the distinction between con-
trol and automatic processes. Unlike the scaffolding framework, the dual processing theory can be
simulated using the computational model, CAP2, developed by Schneider and Chein. When first intro-
duced to a task, the participant performs the task using controlled processes that are limited to the
sequential execution of cognitive processes. This initial process is modeled with CAP2, a system that
is much like an abbreviated version of ACT-R. Eventually, with practice, controlled processes switch to
automatic processes that simulate the reflex like automization phase described by Fitts and Posner
(1967). These automatic processes are modeled in the CAP2 system with a connectionist network
and allowed for parallel processing. Unlike the Instance theory, CMPL, or three-phase model, which
each all distinguish computation from retrieval processes, both processes occur in the control process
arm of CAP2. The distinction between computation and retrieval is not emphasized by Schneider and
Chein. This theory is used in several studies to interpret neural changes from pre- to post-training
(Albouy et al., 2012; Chein & Schneider, 2005; Luu, Tucker, & Stripling, 2007). The dual process theory,
however, is unsuitable for addressing the questions surrounding skill acquisition that we address in
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this paper as it does not address the cognitive changes that occur prior to the shift to automization
(Chein & Schneider, 2005).

Much of the prior work exploring the impact of practice on neural activation forgoes an exploration
of the continuous changes associated with practice in favor of pre- and post-training contrasts (for
reviews: Kelly & Garavan, 2005; Patel et al., 2013). While models we discussed here exist to explain
the general distinction between novel and well-practiced tasks, there is a gap in this literature in
understanding how this shift occurs. Although these changes may be obscured in traditional analysis
(Kelly & Garavan, 2005; Patel et al., 2013; Poldrack, 2000) there is evidence that, even over the course
of an initial pre-training scan, changes in neural activation attributable to learning the stimuli can be
found (Petersen et al., 1998). Our approach offers an alternative for both identifying when shifts in
cognitive processing occur and also for building hypotheses concerning the expected impact cognitive
changes have on neural activation.

1.3. Pyramid problems and the use of hidden Markov models

This paper merges two efforts that have used hidden Markov models to understand problem solv-
ing and skill acquisition by parsing sequences of episodes into distinct states. The two efforts are
focused on different time scales. Anderson and Fincham (2014a, 2014b) were concerned with the cog-
nitive stages that occur within a particular problem-solving trial. Tenison and Anderson (2015) on the
other hand, focused on between-trial changes: the learning phases that occur over an entire experi-
mental session. The current effort combines these two approaches, providing a characterization of
changes that span three orders of magnitude, from seconds to an hour.

Anderson and Fincham (2014a, 2014b) used multi-voxel pattern analysis (MVPA) and hidden semi-
Markov models (HSMMs) to develop and test ACT-R models. Using this approach, they parsed fMRI
data collected during mathematical problem-solving episodes into multiple stages defined by distinct
brain signatures, and tested model predictions about the length of these stages. They were, however,
only concerned with problem solving on the first encounter with a problem and not on subsequent
repetitions of that problem. Tenison and Anderson (2015), using a similar experimental task, focused
on how problem solving changed across multiple practice opportunities. Using the latency data, they
found evidence for three phases of learning, which they tentatively associated with the cognitive,
associative, and autonomous phases proposed by Fitts and Posner (1967). Furthermore, fMRI data col-
lected during this experiment was qualitatively consistent with this three-phase characterization.
Here we will use the Tenison and Anderson (2015) learning paradigm, but apply the HSMM–MVPA
methods used by Anderson and Fincham (2014a, 2014b).

In both the experiments of Anderson and Fincham (2014a, 2014b) and Tenison and Anderson
(2015), participants solve pyramid problems, which are presented with a dollar symbol as the opera-
tor—e.g., 8$3 = X. Pyramid problems involve a base (‘‘8” in this example) that is the first term in an
additive sequence and a height (‘‘3” in this example) that determines the number of terms to add. Each
term in the sequence is one less than the previous—so 8$3 = 8 + 7 + 6 = 21. Anderson and Fincham
(2014b) compared problems with positive single digits for base and height (regular problems) to prob-
lems that required participants to extend their knowledge (exception problems). Exception problems
contained features such as problems with negative or variable bases (e.g. �9$4 = X, X$4 = X). Using
the HSMM–MVPA technique, they identified and modeled 4 cognitive stages in the solution of excep-
tion problems—an Encoding stage, a Planning stage, a Solving stage, and a Responding stage. When
applying this approach to regular problems, they identified only 3 stages, discovering that regular
problems were solved without a Planning stage.

The current study focuses on regular pyramid problems, and the impact of practice on the cognitive
stages participants go through when solving these problems. Fig. 1 shows a swimlane representation
of the activity of Anderson and Fincham’s (2014b) ACT-R model for the solution of the regular problem
7$4 = X, which took the model 10.91 s to solve, close to the participant’s average time of 11.24 s on
this problem. The ACT-R cognitive architecture is organized into modules, each of which processes
a different type of information and has its own buffer to hold information. Fig. 1 shows when the
Visual, Imaginal, Retrieval, Manual, and Metacognitive modules are active in solving the task. Periods
when different subgoals were active are labeled above the swimlane. During the Encoding period the 5
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Fig. 1. A swimlane representation of an ACT-R model whose subgoals correspond to the bracketed stages. The boxes in a row
represent when a module is engaged.
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terms in the expression are separately encoded, requiring heavy engagement of the Visual module and
the Imaginal module to build up a mental representation of the problem. The Encoding period is ter-
minated when the Metacognitive module selects the strategy for solving the regular problem. The
Solving subgoal involves the iterative addition of 7þ 6 ¼ 13;13þ 5 ¼ 18, and 18þ 4 ¼ 22. This
requires heavy engagement of the Retrieval module to process relevant facts and the Imaginal module
to update problem representations as the computations are performed. The Manual module domi-
nates during the Responding subgoal when the digits in ‘‘22” are keyed out followed by an enter
key. The Manual module is also involved during the Solving stage, where it is used in finger counting
to keep track of the number of terms added.

The representation of the problem solving activity in ACT-R acts as a hypothesis that can be tested
by exploring each participant’s brain activation while problem solving. The module activity can be
organized into subgoals that reflect different stages in solving the problem. For instance, in the model
of the regular problem 7$4 = X depicted in Fig. 1, there are three stages: Encoding, Solving, and
Responding. Anderson and Fincham developed the HSMM–MVPA approach illustrated in Fig. 2 to find
convergence between the predictions of cognitive models such as Fig. 1 and the participant’s neu-
roimaging data. This method simultaneously used MVPA to infer the mean brain activation pattern
in a stage and HSMM to infer how a trial was parsed into stages. Each cognitive stage is associated
with an expected whole brain pattern of activation referred to as that stage’s brain signature. The brain
signatures on individual trials were treated as samples from a normal distribution around the mean
brain signature for that stage. The durations of a cognitive stage were treated as samples from a
Gamma distribution for that stage. One of the important products of the estimation process for each
trial is stage occupancy profiles (see Fig. 2). These are the probabilities that specific scans are in speci-
fic stages. The duration of a stage within a trial was estimated as the product of the duration of a scan
and the sum of the probabilities that each scan on that trial was in that stage. Finally, Anderson and
Fincham (2014a) linked the ACT-R model (e.g. Fig. 1) to the HSMM by assuming that the duration of a
subgoal in ACT-R corresponded to the mean duration of the corresponding stage.

Tenison and Anderson (2015) did not use fMRI data to address the problem of partitioning
individual trials into stages; rather, they used problem-solving latency data to address the issue of
partitioning a sequence of trials into learning phases (i.e., computation, retrieval, autonomous).
Fig. 3A shows the HMM state structure that Tenison and Anderson used to address this ambiguity.
There was a different HMM state for each number of trials an item could spend in a learning phase.
This allowed the HMM to track speedup within a learning phase due to practice. On any trial, the par-
ticipant could transition to a faster HMM state within that learning phase or transition to the first
HMM state within the next learning phase. Fig. 3B shows, for one item practiced 36 times, the inferred
probability that it is in a particular learning phase, noted by the different line types. Fig. 3C shows the
problem solving times on which those inferences were based. As can be seen in Fig. 3B, there is some
ambiguity about when Learning phase 1 ends and Learning phase 2 begins, and even more ambiguity
about the transition between Learning phase 2 and Learning phase 3. Fig. 3C also shows the expected
latency for each trial, assuming that trial was in its most probable Learning phase. As that figure



Fig. 2. Illustration of HSMM–MVPA producing a 4-stage solution with 3 conditions. Input to the HSMM–MVPA are scans
organized within trials. Each scan consists of the 20 PCA scores. Parameters are estimated for each stage: 20 PCA means that
define the brain signature and distribution parameters for each condition-stage combination. Also calculated are the stage
occupancies (probabilities that the participant is in each stage on a particular scan).
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illustrates, the majority of the speed up seemed to be between learning phases and not within learning
phases.

1.4. The current study

In the current study, as in Tenison and Anderson (2015), participants were given a set of Pyramid
problems, which they practiced 36 times over the course of the experiment. The goal of the current
study is to extend the HSMM–MVPA approach developed by Anderson and Fincham (2014a) to iden-
tify what the cognitive stages were within each of the learning phases identified by Tenison and
Anderson. Therefore, rather than Tenison and Anderson’s approach of using latency to guide the esti-
mation of an HMM and then using fMRI to examine the qualitative structure of the resulting states,
this paper uses fMRI to guide the estimation of an HSMM (Fig. 4), and then latency data and ACT-R
modeling to examine the properties of the resulting states. To reliably use fMRI for this more ambi-
tious goal, we used the same task as in Tenison and Anderson but doubled the sample size. Ultimately,
by identifying the cognitive stages within each learning phase, our goal is to provide a more nuanced
picture of the changes in problem solving that occur with practice.
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2. Methods

2.1. Participants

Forty university students (21 women; mean age 22/SD 2.7) participated in the study. The first 20
participants served as a basis for Tenison and Anderson (2015). Participants gave informedwritten con-
sent and received monetary compensation for their participation. All participants were right-handed
and had normal or corrected-to-normal vision. The university ethics board approved the study.
2.2. Materials and procedure

The current study only considers regular pyramid problems as described in the introduction. Reg-
ular pyramid problems follow the form of base$height, where the base indicates the first term in the
additive sequence, and the height determines the number of terms to be added together (e.g.,
8$4 ¼ 8þ 7þ 6þ 5). Problem selection criteria were identical to Tenison and Anderson (2015) and
included problems with heights of 3, 4, and 5. The bases varied from 4 to 11 with the restriction that
the minimum base for a given height was that height plus one.

Prior to entering the scanner, participants were taught how to compute pyramid problems. The
investigator explained the role of base and height in constructing iterative additions to solve the prob-
lem, but rather than presenting ‘‘4$3 = X” as in Anderson and Fincham (2014a, 2014b), we only pre-
sented ‘‘4$3”—which means less visual encoding is required. After each problem was solved, the
participant received correctness feedback and instruction on how to solve the problem. This feedback
was visually represented as the chain of additions required to calculate the answer (e.g.,
4$3 ¼ 4þ 3þ 2 ¼ 9). None of the problems used in the practice session were used in the scan session.
Participants also received practice on using a numeric keypad that they would use in the scanner to
input the solutions to the problems.

Over the course of the experiment, each participant practiced solving three problems, one of each
height (i.e., 3, 4, and 5) repeated 36 times. Repeated problems were chosen for repetition with nearly
equal frequency across the 40 participants. The remaining 18 unique problems were presented twice,
once in the first half of the experiment and once in the second half (approximately 30 min passed
between first and second exposure). We will refer to the three practice problems repeated 36 times
as repeated problems and to mirror this distinction we refer to the remaining eighteen problems as
non-repeated problems despite the fact these problems were seen twice. In previous work using this
design, we used a concurrent strategy assessment and found that only 3% of these non-repeated prob-
lems were reported as retrieved, and we observed no increase in reports of retrieval between first and
second half of the experiment (Tenison & Anderson, 2015). These results suggest that the repetition did
not impact problem-solving and it is possible that participants did not notice the repetition in the sec-
ond half of the experiment. We divided the experiment into 6 blocks of 24 problems during which each
repeated problem occurred 6 times and there were 6 non-repeated problems. Pyramid problems were
presented on the screen following a 2-s fixation period. Once the problem appeared on the screen, the
participant was allowed a maximum of 30 s to indicate knowledge of a solution by pressing the return
key on the numeric keypad. After pressing ’return’, participants had 5 s to input a solution using the key-
pad and then press the return key. At the end of each problem solving trial, a 1-back task was presented
onscreen for a randomly selected time (between 6 and 12 s) to prevent reflection on the previous prob-
lem and allow the hemodynamic response of the brain to return to baseline. In the 1-back task, partic-
ipants were asked to judge if the letter in the center of the screen was the same as the previous letter
seen. Further details of the experimental task and protocol are provided in Tenison and Anderson
(2015). Next,we focus on the special processing of the fMRI data required for theHSMM–MVPAanalysis.
2.3. fMRI data acquisition

Images were acquired using gradient echo-echo planar image acquisition on a Siemens 3T Verio
Scanner using a 32 channel RF head coil, with 2 s. repetition time (TR), 30 ms. echo time, 79� flip angle,
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and 20 cm. field of view. The experiment acquired 34 axial slices on each TR using a 3.2 mm thick,
64� 64 matrix. This produces voxels that are 3.2 mm high and 3.125 � 3.125 mm2. The anterior
commissure-posterior commissure line was on the 11th slice from the bottom scan slice. Acquired
images were pre-processed and analyzed using AFNI (Cox, 1996). Functional images were motion-
corrected using 6-parameter 3D registration. All images were then slice-time centered at 1 s and
co-registered to a common reference structural MRI by means of a 12-parameter 3D registration
and smoothed with an 6 mm full-width-half-maximum 3D Gaussian filter to accommodate individual
differences in anatomy. As a step of dimension reduction and to accommodate variations in anatomy
over participants that may not be dealt with in co-registration, we aggregated the original voxels
(3.2 mm high and 3.125 � 3.125 mm2) in each slice into larger 2� 2 voxel regions within a slice. There
are 12,481 such regions. Some of these regions show an excess of extreme values for some partici-
pants, probably reflecting differences in anatomy; these were regions mainly on the top and bottom
slices, as well as some regions around the perimeter of the brain. Eliminating these regions resulted in
keeping 9973 regions.

The blood-oxygen-level dependent (BOLD) response is calculated as the percent change from a lin-
ear baseline defined from first scan (beginning of fixation before problem onset) to last scan (begin-
ning of fixation before next problem). The BOLD response is delayed from the brain activity that
initiated it and builds up over many seconds. The BOLD response is deconvolved with a hemodynamic
response function (HRF) to produce an estimate of the underlying activity signal at a moment in time.
The HRF in SPM is the difference of Gammas: Gammað6;1Þ � Gammað16;1Þ

6 (Friston, 2011). A Wiener filter
(Glover, 1999) with a noise parameter of .1 was used to deconvolve the BOLD response into an inferred
activity signal on each scan.

The output of this process is an estimation of activity in 9973 regions during every 2-s scan. How-
ever, the 9973 regions are not independent because of high correlation among regions. To decorrelate
the data and extract the meaningful independent sources of information, we performed a spatial prin-
cipal component analysis (PCA) of the voxel activity where each voxel is treated as a variable that var-
ies over scans, trials, and participants. As in Anderson and Fincham (2014a, 2014b), we focused on the
first 20 PCA components, which account for 47% of the total variance in the data, which we assume
captures mostly systematic effects in the data. These 20 component scores are approximately 20 inde-
pendent normally distributed variables. We standardize them to have mean 0 and variance 1.
3. Results

Table 1 presents the summary statistics by condition (height, repetition) and repeated measures
ANOVAs for solution times for corrects, and keying times for corrects. For problem solving accuracy,
we use a mixed-effects logistic regression with a random intercept for each participant. All three mea-
sures show large and highly significant effects of repetition. The repetition effect on keying is notewor-
thy because there is no difference in the number of characters that have to be entered for non-
repeated and repeated problems. There are also highly significant effects of height on problem solving
latency, as well as strong interactions of height with repetition. Much of the interaction is driven by
the decrease in accuracy and increase in solving time for non-repeated items of increasing heights. A
different pattern is observed in repeated items. Similar to non-repeated problems, height 3 repeated
items are solved significantly faster than height 4 items (t(39) = 6.03, p < .005)1 and with greater accu-
racy according to a Wilcoxon signed rank test(V = 105.5, p < .005). The repeated items, however, show
worse performance on height 4 items than height 5 items, which is the opposite direction of the effect
for non-repeated items. While small, the difference between height 4 and height 5 is significant both for
accuracy (V = 139, p < .05) and solving time (t(39) = 2.59, p < .05).

Because repetition had a major effect on keying time, in further analyses we combined the solving
and keying time as the total duration of problem solving, and the fMRI analyses focused on the scans
that combine the solving and keying periods. Items in which participants timed out while solving or
recording the answer were included in our analyses. A total of .14% of items were not solved within
1 All t-tests are 2-tailed.



Table 1
Basic performance measures shown on the left side of the table. On the right side of the table we show the results of an ANOVA for
solving and responding times and the results of a mixed-effects model of accuracy scores.

Height d.f F p-Value

Repetition (R) 1, 39 139.5 <.001
Solving (s) Non-repeated 4.7 7.5 9.5 Height (H) 2, 78 61.8 <.001

Repeated 2.2 2.9 2.5 R � H 2, 78 39.4 <.001

Repetition (R) 1, 39 74.2 <.001
Responding (s) Non-repeated 2.1 2.2 2.2 Height (H) 2, 78 1.9 .16

Repeated 1.6 1.7 1.4 R � H 2, 78 1.5 .22

Slope (S.E.) z-Value

Repetition (R) 1.1 (.26) 4.4 <.001
Accuracy Non-repeated 83.9% 74.8% 70.3% Height (H) .11 (.08) 1.3 .2

Repeated 96.2% 92.6% 95.1% R � H .33 (.12) 2.8 <.005
Intercept �3.3 (.22) �15.1 <.001
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the 30 s provided for solving, and a total of 2.4% of solutions were not keyed in within the 5 s allotted.
We also chose to include both correct and incorrect items under the assumption that participants
were attempting to execute the same algorithms for both correct and incorrect solutions. Fig. 5 shows
the latency as a function of amount of practice (which for repeated problems means the number of
times that problem has been repeated while for non-repeated problems it means how many non-
repeated problems have been seen). Purely for descriptive purposes, it also shows best-fitting power
functions of the form an�b where n is the number of repetitions. While the speedup for non-repeated
items is small, the coefficient of a linear regression of non-repeated latency on exposure reflects a sig-
nificant speed up (t(39) = 4.79, p < .0001). Both repeated and non-repeated items start out showing a
large effect of height, but for the repeated items the height differences compress rapidly with contin-
ued exposures. There is an interesting crossover between height 4 and height 5 repeated items. Height
5 items are slower on first presentation by 3.38 s (t(39) = 3.62, p < .001), but by the second half of the
experiment they average .59 s faster (t(39) = 3.57, p < .001). The difference between height 3 and 5
repeated problems disappears in the second half of the experiment (in the second half, height 3 are
2.97 s and height 5 are 2.88 s, t(39) = 0.60, p < .5).

The remainder of this Results section consists of three parts. First, we will describe how we used
the HSMM–MVPA method to provide a bottom-up characterization of the structure of the task and
the phases of learning. Second, we will enrich this characterization using the top-down guidance of
an ACT-R model of the task. Third, with the theoretical interpretation in place, we will investigate
the learning mechanisms that are responsible for both transitions between learning phases and learn-
ing within cognitive stages.
3.1. Bottom-up stage analysis: cognitive stages within learning phases

Our analysis of the data will track the cognitive stages that participants go through within different
learning phases. As we described in the introduction, Tenison and Anderson (2015) have found evi-
dence that participants go through three learning phases as these problems are practiced. Anderson
and Fincham (2014a) found evidence that during a single trial on these items participants go through
three cognitive stages in the solution of a Regular problem: Encoding, Solving, and Responding. Fig. 4
illustrates how to put these two analyses together into a single HSMM. Across 36 trials of a repeated
problem, we assume that participants progress through some number of learning phases. At the trial
level within any particular learning phase, they transition through the three cognitive stages. After
completing the Responding stage of one problem they can return to the Encoding stage within the
same learning phase for the next problem or graduate to the Encoding stage of the next learning
phase. The brain signature for any particular cognitive stage is assumed to be constant across all learn-
ing phases; however, the durations of the stages can vary across learning phases, with the expectation
that they will decrease and some may effectively shrink to zero. We assume durations of stages are
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sampled from Gamma distributions. As in Anderson and Fincham (2014b), we estimated just one scale
parameter per cognitive stage for each learning phase (i.e., if there are N learning phases, we estimated
3� N scale parameters), but we also estimated a separate shape parameter to vary for each of the 21
problems (i.e. 3� 21� N shape parameters if we assume N learning phases).2

The estimation process involved fitting the data from both the repeated and non-repeated items.
All problems started in Learning phase 1 and repeated problems could graduate to a later phase with
some probability after each trial. The non-repeated items (i.e. the 18 items seen twice) were coded as
36 unique trials and therefore were only estimated to be in Learning phase 1. In addition to estimating
brain signatures and stage durations, we estimated this graduation probability between each pair of
successive learning phases, assuming that graduation probability applied equally for all problems.
For each item solved by each participant the model generates (a) the likelihood of belonging in each
learning phase and (b) the estimated time spent in each cognitive stage within those phases. This
avoids issues associated with averaging learning data (Haider & Frensch, 2002; Heathcote et al.,
2000; Myung, Kim, & Pitt, 2000). We conducted a leave-one-participant-out-cross-validation (LOOCV)
to determine the number of learning phases that best described the data. This involved fitting the data
to 39 participants and using the parameters to calculate the likelihood of the data from the 40th. Fig. 6
shows the results in terms of the average participant log likelihood gain over the simplest case of a 1-
Learning phase model. The results are particularly clear; three learning phases improves the predic-
tions for all 40 of the participants over fewer learning phases, while additional learning phases offer
no further improvement. This confirms the conclusion of Tenison and Anderson (2015) that there are
three phases of skill acquisition.

Fig. 7 compares the brain signatures for the three cognitive stages of problem solving identified by
Anderson and Fincham (2014b) (Fig. 7a) with the brain signatures for this experiment (Fig. 7b), which
were estimated independently. The correspondence is quite striking. Specifically, the mean correlation
among corresponding stages between the experiments is .92 (compared to the mean between-
experiment correlation of .78 for non-corresponding stages across experiments and .82 for the mean
correlation between non-corresponding stages within both experiments).3 The mean absolute differ-
ence in voxel activations for corresponding stages between the experiments is small, averaging a
0.11% difference (compared to the between-experiment difference of 0.30% for non-corresponding stages
2 This can be conceived of a stage involving different numbers of steps for a problem (shape parameter) that each take a fixed
time (scale parameter), but the real motivation is to limit the number of free parameters.

3 These statistics are for the 8245 regions the two studies have in common.
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and 0.16% between non-corresponding stages in the first experiment and 0.19% in the second
experiment).

For each problem, we obtained a weighted average of the estimated time spent in each cognitive
stage within each learning phase. This average was computed as the sum of stage occupancies in that
stage (Fig. 2) divided by the probabilities that the problems were in that learning phase (Fig. 3B). Fig. 8
shows the resulting mean times spent in each stage organized by height. In order to measure the effect
of height, we performed a mixed-effects ANOVA where we treated the 21 problems as random effects
and the cognitive stages and learning phases as fixed effects. Of the 9 cognitive stages only one shows
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a significant effect of height and it shows it quite strongly: the Solving stage in Learning phase 1 (F
(2,18) = 106.96). Every height 3 problem has an estimated duration in this stage shorter than any
height 4 problem, which has an estimated duration shorter than any height 5 problem. Thus, even
though this estimation process has no information about the height of problems or about the interpre-
tation of the phases, it finds that the effect of this height is on Solving stage and only in Learning phase
1. The Solving stages for Learning phases 2 and 3 are estimated to be strikingly brief (.07 and .03 s), in
contrast to the times for the Solving stage in Learning phase 1. While the Encoding stage does not
show an effect of height, it shows a steady decrease with learning phase: 3.26 s in Phase 1, 2.44 s
in Phase 2, and 0.54 s in Phase 3. Pairwise comparisons of Phases 1 and 2, and Phases 2 and 3 are quite
significant (t(20) = 8.94, p < .0001 and t(20) = 17.59, p < .0001). The Responding stage also decreases
across the learning phases (2.68, 2.32, and 2.20 s), but only the decrease from Learning phase 1 to 2
is significant (t(20) = 3.28, p < .005).

The passage through the learning phases is the major factor driving the decrease in times that we
see in Fig. 5. However, more is happening than just a decrease in time. The proportion of time in dif-
ferent cognitive stages is dramatically changing—it is roughly equally divided among the three cogni-
tive stages in Learning phase 1, the Solving stage nearly disappears in Learning phase 2, and the
Encoding stage shrinks dramatically in Learning phase 3. We now turn to an ACT-R model of what
is happening in these three learning phases.

3.2. Top-down theory-driven analysis: identity of cognitive stages and learning phases

Fig. 9 shows the ACT-R models for performance in the three learning phases, in each case solving
the problem 8$4. As mentioned in the introduction, a standard model for speedup is learning the
answer and retrieving it, and this is what drives the transition from Learning phase 1 to Learning
phase 2. A further phase of learning can happen within ACT-R when a new production rule is learned
that directly maps the stimulus to the response without any retrieval. This is what is driving the
change from Learning phase 2 to Learning phase 3. We will now describe the details of the ACT-R pro-
cessing in each of these learning phases.

1. Learning phase 1: The model for Learning phase 1 is the minimal adaption of the model in Anderson
and Fincham (2014b) (Fig. 1) to correspond to the current task. Only three characters are presented,
rather than the five in Anderson and Fincham (2014b), and so the visual encoding is reduced. On
the other hand, we assume that during the Encoding stage participants check problems to see if
they have a stored answer. The long retrieval in the Encoding stage reflects the failed effort to
retrieve an answer. The Solving stage has identical structure to Anderson and Fincham. The
Responding stage differs from Anderson and Fincham only in that there is an additional key press
to begin the keying of the answer.
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2. Learning phase 2: The major difference between Learning phase 1 and Learning phase 2 is that the
answer is retrieved and there is no need for a Solving stage. The Encoding stage is briefer because
the retrieval process succeeds in this stage before it would have timed out in Learning phase 1. In
addition, we assume that the participants now skip the encoding of the dollar-sign operator, and
rather just encode base and height. In contrast to what might be concluded from the analysis in
Fig. 8, there is no shortening of the Responding stage in the model.

3. Learning phase 3: In the third learning phase, the problem is recognized as a single unit and a pro-
duction maps this onto the response, resulting in a very short Encoding stage. The Responding
stage is a bit faster because there are no longer visual checks of whether the correct keys are actu-
ally struck.

The times of the cognitive stages are determined by how long the individual modules take. We
used the timing parameters from Anderson and Fincham (2014b). The only additional parameters esti-
mated were the time for failed retrieval (1.35 s), which influences the time of the Encoding stage in the
first learning phase, and the time of the successful retrieval (0.95 s), which influences the time of the
Encoding stage in the second learning phase. Fig. 10 shows the ACT-R times for the stages according to
the models for each learning phase. It shows large effects of height only for the Solving stage of the
first learning phase because height controls the number of additions that need to be performed in that
stage.

As in Anderson and Fincham, these times can form the basis for an HSMM by constraining the
HSMM to have a Gamma distribution of times in a stage for a problem with the mean time of the
ACT-R model. Then, we estimate just a single scale parameter a per cognitive stage for each learning
phase. Given the model’s mean time t for each stage of each problem, we can directly compute the
shape parameter for a stage as t/a. This contrasts with the model fit in procedure used in the
HSMM–MVPA technique where we also estimate a shape parameter per stage per problem. Thus,
rather than estimating 3 stages � 3 learning phases � 21 problems = 189 distributional parameters,
we just estimate 7 scale parameters (there is no Solving stage for Learning phases 2 and 3). In LOOCV,
this model-constrained HSMM outperforms the unconstrained HSMM–MVPA model, fitting 28 of the
40 participants better than the 3-stage unconstrained HSMM (significant by a sign test, p < .005). Its
mean log-likelihood advantage is 6.0 per subject. The brain signatures of corresponding stages for
the unconstrained and the model-constrained fit are essentially identical (an average .997 correlation
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for the 20 PCA scores that define these brain signatures). So the advantage of the model-constrained
approach in LOOCV is that it avoids the overfitting of the many time parameters.

While there is a strong correlation between the estimated model times shown in Fig. 10 and the
bottom-up estimates shown in Fig. 8, they are not identical. The estimation of so many parameters
in Fig. 8 is problematic in that, in principle, many different combinations of parameters can yield
nearly identical fits. The top-down constraints of ACT-R serve to indicate which of these nearly equiv-
alent fits will generalize better.

While the HSMM–MVPA analysis uses whole brain activation, the ACT-R model makes predictions
for activity in specific brain regions (Anderson, 2007). As discussed by Anderson and Fincham (2014b),
these brain regions are selected because they are consistently active across diverse tasks that share
similar demands on specific ACT-R modules. Fig. 11 shows the brain mappings of the 5 modules used
in our model (Fig. 9). We used the stage occupancy probabilities from the HSMM model to estimate
brain activity in each of these regions for the three cognitive stages in Learning phase 1, the two cog-
nitive stages in Learning phase 2, and the combined Encoding and Responding stage in Learning phase
3.4 The two stages in Learning phase 3 were combined because the Encoding stage was too brief for accu-
rate estimation. Fig. 11 compares these brain activation measures derived from the HSMM–MVPA model
against predictions from the proportion of time a module was engaged in a stage according to the ACT-R
model. To get the predictions we regressed these modules proportions against the activity measures to
obtain an intercept (baseline activity in the region) and a slope (how activity in the region scaled with
activity in the module). While we estimated these parameters to get the predictions displayed in
Fig. 11, the correlation between the activity measures and module proportions provide parameter-free
measures of the correspondence. Except for the Posterior Parietal Cortex (PPC) these correlations are
greater than .9. The PPC correlation is negative, but the activity is quite high during all stages. As can
be confirmed from Fig. 9, the Imaginal module is engaged at a relatively constant rate during all stages.
Thus, there is not much predicted variance to correlate with. The other modules all have distinctive pat-
terns of engagement across stages which is confirmed by the activation in the corresponding regions:
The Retrieval module is most engaged during the Encoding stage of Learning phase 1 and 2 where retrie-
val is engaged, and then in Solving stage of Learning Phase 1 when addition facts need to be retrieved.
The Retrieval module is least engaged in the Response stages. The Metacognitive module is only engaged
in Encoding stages of Learning phases 1 and 2 when the decision to compute or use retrieval is being
4 We created a design matrix (Friston, 2011) that had 10 variables associated with each scan of each problem. There were 6 stage
regressors and 4 binary variables indicating whether or not a scan occurred during fixation, feedback, repetition-detection, or
problem-solving. The stage regressors are just the stage occupancy probabilities that the scan was in that cognitive stage and
learning phase (see Fig. 2). These were then convolved with the SPM hemodynamic function and regressed against activity in that
region to get an estimate of activity associated with each variable. The values plotted in Fig. 11 are the estimates associated with
the 6 stage regressors.
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made. The Manual module5 is only engaged during the Responding stages; and the Visual Module is
engaged in all stages but the Solving stages. The correspondence is not perfect: except for the Rostrolat-
eral prefrontal cortex (RLPFC) and Lateral inferior prefrontal cortex (LIPFC), the predicted values fall suf-
ficiently outside of the standard error of the estimates as to be significant. Nonetheless the
correspondences are striking and support our interpretation of the cognitive stages.
3.3. Analysis of learning

The fits we have considered so far have focused on performance within the three learning phases
and have not considered the learning factors that are driving the transitions between phases or the
possible learning within a learning phase. We can obtain from the HSMM–MVPA probabilities, prob
5 The counting in the Solving stage is associated with the left hand and right motor region.
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(i,k), of an item being in learning phase i on any of the 36 trials k. These probabilities will allow us to
explore a number of issues relevant to learning.

Fig. 12 shows the average probabilities, prob(i ,k), that for each height the repeated problems are in
one of the learning phases over the 36 trials.6 It also shows the predictions from the model given the
transition probabilities are the same for all heights. These are derived from the estimated per-trial tran-
sition probabilities between phases (.202 from Phase 1 to Phase 2 and .094 from Phase 2 to Phase 3).
Table 2 shows the mean number of trials in each phase (summed probabilities over the 36 trials). There
are significant differences among the number of trials spent in Learning phase 1 for the three heights (F
(2,78) = 9.05, p < .0005) and Learning phase 3 (F(2,78) = 8.73, p < .0005), but only a marginal effect in
Learning phase 2 (F(2,78) = 3.10, p < .1). Pairwise t-tests confirm significant difference between height
3 and 4 (t(39) = 3.63, p < .001 for Learning phase 1; t(39) = 2.58, p < .05 for Learning phase 3) and
between height 4 and 5 (t(39) = 3.07, p < .005; t(39) = 4.17, p < .0005) but not between heights 3 and 5
(t(39) = .23; t(39) = 1.49). Basically, participants take longer to leave the first learning phase for height
4 problems and consequently get to the last learning phase later and so, spend fewer trials in it. This
resulted in the longer average latencies for height 4 problems (Table 1 and Fig. 5), but no difference
in estimated stage occupancies in Learning phases 2 and 3 in Fig. 8.

Our interpretation of the probability of transitioning between Phase 1 and Phase 2 is that it reflects
probability of memorizing the answer. If this interpretation is correct, then height 4 problems might
be harder to memorize even if one did not know their mathematical interpretation. To test whether or
not this was true, we ran an AmazonMechanical Turk experiment with 100 participants who were just
asked to memorize paired associates consisting of a stimulus like 8$4 and a response like 26, without
any mathematical explanation (see Appendix A for experimental details). As material, we used the
pyramid problems from this experiment. Focusing on the 65 participants who performed between
20 and 80 percent correct, the mean recall probabilities were .63, .37, and .63 for heights 3, 4, and
6 These are estimated from the ACT-R HSMM.



Table 2
Number of trials in each phase for repeated problems
and model predictions.

Mean number of trials

Phase 1 Phase 2 Phase 3

Height 3 3.6 10.4 22.0
Height 4 6.8 11.7 17.5
Height 5 3.8 7.8 24.4

Model 5.6 10.9 19.6
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5.7 The mean difference between height 4 and the other two was highly significant (t(64) = 9.86,
p < .0001). We speculate that the reason height 3 and height 5 problems are easier to memorize is
because they overlap multiplications facts—n$3 is always similar to a multiple of 3 (e.g.,
8$3 ¼ 21 ¼ 7� 3), n$5 is always similar to a multiple of 5 (e.g., 8$5 ¼ 30 ¼ 6� 5), but n$4 is not a mul-
tiple of 4 (e.g., 8$4 ¼ 26). Whether this speculation is correct or not, the Mechanical Turk results support
the interpretation of the transition from Phases 1 to 2 as a matter of remembering the answer.

3.3.1. Contrasting the theoretical assumptions of learning with the practical assumptions of our model
While hidden Markov modeling offers dynamic programing solution for identifying cognitive

stages and learning phases involved in skill acquisition, there are assumptions which underlie the
semi-hidden Markov model we used in this paper. The Markov property, which is central to the model
we use, assumes that each state is dependent only upon the previous state. This assumption informs
additional assumptions governing both transitions between phases and durations within cognitive
stages. We investigate here the degree to which the assumptions of HSMM theory and the assump-
tions built in the structure of our model are met in this paper’s HSMM–MVPA model. The Markov
assumption, which underlies our estimation software, implies that the future behavior of the model
depends only on what learning phase it is in on the current trial and does not depend on how long
it has been in that phase. This assumption is not true of the ACT-R model or a number of other models
of skill acquisition. It was also not true of the Tenison and Anderson (2015) model (Fig. 3), where there
was a different HMM state to keep track of the number of trials in each learning phase; however, we
can use the results that we have obtained to test for possible deviations from the assumptions in the
current model. As we have already seen with respect to the differences in latency and learning rate for
problems of different heights, just because an assumption is built into the estimation process (such as
the assumptions that behavior across heights is uniform), we are not prevented from gathering evi-
dence from the estimation process that it is wrong. We will use the estimated prob(i,k) to explore
three issues where the HSMM assumptions are at odds with common assumptions about skill
acquisition.

3.3.1.1. Issue 1: Sigmoidal phase transitions. The Markov property assumes that on every trial there is a
constant probability p of transitioning into the next Learning phase. If p is the probability of transition-
ing from Learning phase 1 to Learning phase 2, the probability that the transition from Learning phase
1 to Learning phase 2 will occur on trial n is
7 We
probabi
p12ðnÞ ¼ p� ð1� pÞðn�1Þ ð1Þ

This exponential learning function is not what many models of learning would imply, including the

ACT-R model. Repeated encounters with a memory in ACT-R increase the strength of the memory as a
logarithmic function and when the memory exceeds a threshold it can be recalled. The probability of
being able to recall an item on the nth trial (i.e., advancing to Learning phase 2) is
chose this focus to avoid participants who were not trying or perhaps copying answers. For all participants the
lities were .72, .56, and .71 (t(99) = 7.69, p < .0001).
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p12ðnÞ ¼ normalðlogðnÞ; s;rÞ ð2Þ
where s is the threshold and r represents the variability of individual items.8 The exponential function
implies that the first trial will be the trial of maximum transition while the sigmoidal function allows for
the possibility that the trial of maximum transition can be later. Transition between Learning phases 2
and 3 is driven by production compilation. The newly formed production has to build up enough utility
to be preferred over the older production. Because of variability in utility, the transition probability for
using a new production follows a similar sigmoidal function (Fig. 5.10 in Anderson (2007)). To test
between the exponential (1) and sigmoidal (2) transition functions, we examined whether our estimated
state occupancies better fit the exponential equation or the sigmoidal equation. While we have indicated
a basis for the sigmoidal equation in ACT-R, the assumption is not unique to ACT-R. So we are really test-
ing two general theories about the likelihood of transition between learning phases.

We fit the exponential learning Eq. (1) and the sigmoidal learning Eq. (2) to the probabilities, prob
(i,k), of being in the three phases. To make the parameters of the sigmoidal and the exponential mod-
els equal we set r in the sigmoidal equation to 1. For each repeated problem the HSMM delivers 108
prob(i,k)’s of being in one the three phases i on one of the 36 trials k. If p12ðnÞ is the theoretical prob-
ability of transitioning between Learning phase 1 and 2 after n trials in Learning phase 1 and p23ðnÞ is
the theoretical probability of transitioning between Learning phase 2 and 3 after n trials in Phase 2,
then the probability of the estimated prob(i,k)’s for an item is
X36
i¼1

X36
j¼iþ1

p12ðiÞ � p23ðj� iÞ
Yi

k¼1

probð1; kÞ
Yj

k¼iþ1

probð2; kÞ
Y36
k¼jþ1

probð3; kÞ
" #

ð3Þ
The exponential and sigmoidal equations differ in their calculation of p12ðnÞ and p23ðnÞ. We fit these
models to the data allowing for separate parameter estimates for heights 3, 4, and 5. Table 3 shows the
parameters estimated for the two models. These parameters again confirm the difficulty of transition-
ing out of Learning phase 1 when practicing height 4 problems (either in the lower transition proba-
bility for the exponential equation or the increased threshold for the sigmoidal equation). Fig. 13
contrasts the estimated probabilities of transitioning between phases according to the two models,
averaging over the three heights. As can be seen, the maximum trial of transition is delayed according
to the sigmoidal equation relative to the first trial prediction of the exponential equation. The sig-
moidal equation provides slightly better fits in terms of log likelihood for all three heights. Since
the number of parameters for the two models is equivalent we can double the total log likelihood dif-
ference to get a Bayesian Information Criterion (BIC) difference of 12.7, which provides strong support
of the sigmoidal equation as the best fitting model. Given that we were using state occupancies esti-
mated from a Markov model, which embodies the exponential assumption, the fact that a sigmoidal
function does better suggest there is a delay in the trial of maximum transition.
3.3.1.2. Issue 2: Within-phase speedup. Another assumption of the Markov property is that the duration
of all trials in a learning phase should have the same average duration. However, a number of models
reviewed in the introduction, including ACT-R, allow for within-phase speedup. In the ACT-R model,
there should be speed up in both the first and second learning phases since both involve retrieval
of new declarative information. In Learning phase 1 this occurs during the Solving stage where math-
ematical retrievals are required in order calculate the pyramid value, while in Learning phase 2, this
occurs during the Encoding stage where participants practice retrieving the newly learned informa-
tion about the value of a specific pyramid problem. Tenison and Anderson (2015) fit models to latency
data that had within-phase speedup or no speedup and found evidence for shallow within-phase
speedup as illustrated in Fig. 3C. They did not address whether separate phases might speed up and
others not, but rather tested an assumption of uniform within-phase speedup versus none.
CT-R the variability r in this equation both reflects variability in items and participants, and variability in trial-to-trial
on for a single item. The latter allows for the possibility that an item may regress from a later learning phase to an earlier
g phase as discussed previously. In this analysis we assume all of the variability is among items.



Table 3
Fit of exponential and sigmoidal learning equations.

p for p for Log
1–2 transition 2–3 transition Likelihood

Exponential equation
Height 3 .23 .07 �257.7
Height 4 .15 .05 �287.3
Height 5 .28 .09 �251.2

Total �796.3

s for s for Log
1–2 transition 2–3 transition likelihood

Sigmoidal equation
Height 3 .41 2.3 �254.5
Height 4 1.3 2.7 �286.6
Height 5 .8 2.2 �248.8

Total �789.9
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Fig. 13. Estimated probability of transitioning between the learning phases according to the two learning equations.
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To address this issuewe fit 9 separate power functions of the form an�b for the 3� 3 combinations of
learning phase and height. We have no strong commitment to the power function; it is just being used
as representative of a negatively accelerated speed up.9 For each item for each individual on each trial n,
we measured the prediction error as the sum of the squared differences between the predicted and
observed times for each phase weighted by the probability that the item was in that phase on that trial:
9 Ten
evidenc
intercep
X3
i

probði;nÞðAijn�bij � tðnÞÞ2 ð4Þ
where Aij is the scale and bij is the exponent associatedwith phase i and height j. With 9 combinations of
phase and height and 2 parameters there are 18 potential parameters to estimate, but there proved to
be considerable potential for parameter simplification. Table 4 summarizes the search process as we
went from the full model to simpler models. The first line gives the full model with all 18 parameters,
which has a residual sum of squares (RSS) of 15,738. From this we can calculate the BIC measure as
BIC ¼ n� log
RSS
n

� �
þ k� logðnÞ ð5Þ
ison and Anderson (2015) could not discriminate between exponential and power speedup for their data but did find
e for a power law in a reanalysis of data from Rickard (1997). The fits of a power law to both datasets estimated a 0
t as in the power function we are using here.



Table 4
Parameter estimation for speed up modeling.

Model comparison Number of parameters Residual sum of squares BIC

Full model 18 15,738 5735.7
1 Exponent per phase 12 15,894 5727.9
Exponent only in Phase 1 10 15,911 5716
3 Scales only for Phase 1 6 15,925 5685.3

Table 5
Parameters of best-fitting speed up model.

Phase 1 Phase 2 Phase 3

Exponent Height 3 Height 4 Height 5 Factor Factor

0.077 9.4 11.8 14.0 4.8 2.7
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where n is the 4320 observed latencies and k is the number of model parameters. The lower BIC values
reflect bettermodel fits, so as the number of parameters amodel uses increases the better the fitmust be
for those parameters to be justified. Estimating a single exponent per learning phase leads to a reduction
of 6 parameters and a decrease in the BICmeasure of 7.8. The question of whether there is speed up in a
phase comes down to the question of whether the exponent for that phase is non-zero. We did a search
of the 8 (i.e., 23) possible restrictions of the exponent to zero for phases and the best fitting model only
estimated a learning exponent for the first phase. The closest competitors also estimated an exponent
either for the second phase or third phase but both had a BICmeasure 6.1 larger. Themodel with just an
exponent for the first learning phase has a BIC measure more than 10 less than the model that assumes
exponents for all phases, and almost 60 less than a model that has no learning exponents. It turns out
that we can further simplify the model by assuming that the scale factor varies with height for only
Learning phase 1. The parameter estimates of the final model are given in Table 5. The Phase 1 factor
in Table 5 increases about 2 s with each height, which corresponds to the magnitude of the effect of
height on the Solving stage for Learning phase 1 (see Fig. 10). The exponent for the first learning phase,
.077, is rather small but it does imply a speedup of more than a second during the average time that a
problem is in Phase 1. So, even with an HSMM estimation that assumes a constant time in a stage, there
is evidence for speed up in the first stage.We should note that the failure to find evidence for speed up in
the other phases does not mean that there was not speedup in these phases, only that it was not
substantial enough to justify the estimation of the additional parameters.

3.3.1.3. Issue 3: Regression to earlier learning phases. In the Markov model we employed, once a learning
phase has been reached the model either stayed in that phase or graduated to a later learning phase.
There was not the possibility of regressing back to an earlier learning phase. This is in contrast to many
models of learning that assume retrieval failures and successes can alternate, with probability of suc-
cess increasing with practice (Averell & Heathcote, 2011; Rubin, Hinton, & Wenzel, 1999). Similarly in
ACT-R, while a newly formed production rule increases in its probability with usage, it remains pos-
sible to regress back to using an older procedure. Depending on the steepness of the learning curve,
such backward regressions can be common or rare. To assess whether there are backward regressions,
we need to independently assess what phase a participant has reached on a trial and whether they
have regressed on that trial.

The calculation of phase occupancy probabilities prob(i,k) can be decomposed into two compo-
nents that allow a separation of what the history implies about the phase of an item and what phase
the item is actually in on a trial. First, the fMRI signal on trial k by itself provides some information
about the phase on that trial: signal(k, i) will denote the probability of phase given that signal.10

Second, the signals on all prior and subsequent trials, in conjunction with the transition probabilities,
10 The HSMM–MVPA analysis calculates the log conditional probability of the imaging data given each state. This can be
converted into the probability that is signal(k, i) by assuming each state is equally likely.
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provide evidence as to what the phase should be independent of the signal on that trial: context(k, i) will
denote the probability from the context. With three learning phases we can write:
Fig. 14.
the con
probði; kÞ ¼ contextði; kÞ � signalði; kÞP3
i¼1contextði; kÞ � signalði; kÞ

ð6Þ
The two quantities, context(i,k) and signal(i,k) can be calculated independently will allow us to assess
whether there has been a regression to an earlier trial.

There is a fairly strong relationship between the context probabilities and the signal probabilities.
Fig. 14 shows how the signal probabilities for the three learning phases vary as a function of the con-
text probabilities. While this is aggregated data, the individual trial probabilities are also quite corre-
lated (r = .718, .544, and .743 for learning phases 1–3). The signal probabilities tend to be less extreme
(standard deviation of .33 across trials) than the context probabilities (standard deviation of .43). This
implies that the net force of the context of a trial is more informative about its phase than the signal. In
some cases, this is particularly obvious. For instance, on the first trial an item must be in Learning
phase 1. Thus the context probability for Phase 1 on this trial is 1 in these cases while the average sig-
nal probability is 0.6.

We looked for cases where there was strong disagreement between the context and the signal,
specifically situations in which the context strongly implied that the participant was in a later learning
phase than was implied by an equally strong signal. These are cases where it is likely that participants
regressed to a previous learning phase. For instance, there are 27 trials (.6% of all trials) where the con-
text probability of being in Learning phase 1 is less than 0.1 but the signal implies a probability greater
than .9. One might suspect these of being cases where the participant has regressed back to calculating
the answer. Similarly, there are 68 trials (1.6% of all trials) where the contextual probability of being in
the Autonomous Learning phase 3 is greater than .9 and the signal probability is less than .1. One
might suspect these are cases where the participant has regressed from the Autonomous learning
phase. Even if there were not regressions, we would expect a few random occurrences of discordant
cases like this (while the probabilities are extreme, they are not 0 and 1). However, in Appendix B we
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show that these frequencies are greater than would be expected by chance from the context and signal
probabilities. Thus, despite the assumption of no backwards transitions we used to do our modeling,
we have evidence that participants can slip back a phase for a single trial, as would be expected by
many learning models.

3.3.2. The impact of the Markov assumption and our modeling decisions
While the violations we have identified of the Markov model are not particularly large, one can ask

why we premised our estimation on a model that embodies such assumptions. The answer is that it
enabled us to use the HSMM machinery to track the trajectory of individual problems and estimate
parameters. The average repeated problem involved anywhere from 41 to 165 scans (mean 76.3) over
the 36 repetitions. There are 9 cognitive stages (3 stages for each learning phase). If we had to consider
each possible interpretation of the history of a problem that covered N scans over its repetitions we
would be considering at 9N interpretations per problem. The Markov assumption, which is the source
of the violation of Issues 1 and 2, is that future behavior only depends on current state. This enables
efficient computation of the implications of all of these interpretations without separately computing
each.

Beyond violations of the Markov assumption, we introduced the assumption that there was no
regression to previous Learning phases when building our model (Issue 3). We could have put back-
ward transitions into an HSMM, but we judged that, in combination with the Markov assumption, this
would lead to a very implausible model of human learning. The probability of a backward transition
cannot change with duration in the phase, so if added to the model it would be just as likely to have a
failed recall trial after the first successful recall trial, as after a sequence of 10 successful recall trials.
Also, once having transitioned backward, it might take a good number of trials to get back to the orig-
inal phase because the return would be governed by the original transition probability. Another pos-
sibility would be to have a different HMM state for each combination of numbers of trials in different
phases, as in Tenison and Anderson (2015), but including backwards transitions in this model would
have led to an explosion of phases and parameters. The current approach seemed the best method for
tracking the specific phase history of each problem, which was our major goal. This tracking enables us
to identify new detailed features of the learning process and has not prevented us from identifying
places where the simplifying assumptions in our analysis machinery were not exactly right.
4. Discussion

This research examines the underlying learning phases and cognitive stages that occur when par-
ticipants practice a novel procedure. On average, their solution times decrease from about 12 to about
3 s over the course of 36 practice opportunities (Fig. 6). The current study uses an fMRI-guided
approach to come to the same conclusion as the Tenison and Anderson (2015) findings that used a
latency-guided approach. Both approaches find that participants go through three qualitatively dis-
tinct learning phases. The more detailed analysis of trial structure in this paper has allowed us eluci-
date finer details of the structure of the three learning phases. In the first learning phase, where
calculation dominates, participants solved problems by moving through three cognitive stages:
Encoding, Solving, and Responding, with the Solving stage involving a sequence of additions deter-
mined by the problem’s height. On average (Fig. 6), it takes them 5–6 practice opportunities before
participants can then recall the solution the next time the problem is seen. Once this happens there
is a transition to the second learning phase, where participants skip the Solving stage and transition
directly from Encoding to Responding. By the end of the experiment, about 85% of the problems are
in the third learning phase, where a simple stimulus–response rule results in a further substantial
shortening of the Encoding stage. The theoretical analysis suggests that problems in this final phase
are solved in about 2.5 s with most of the time devoted to executing a 4 character keying sequence
to enter the answer (Fig. 9).

A major signature of the transition from Learning phase 1 to Learning phase 2 is the drop out of
factors reflecting computational complexity, such as height of the problem. There is not the same clear
behavioral signature in the transition from Phase 2–3. It was here that imaging data were particularly
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important, showing the change in the nature of the processing. While state identification depended on
whole brain activity, we examined the activation patterns in Fig. 11 and compared Learning phase 2
(by averaging Encode and Respond) with Learning phase 3. There is more LIPFC activity in Learning
phase 2 (.53% vs. .31%, t(39) = 2.18, p < .05), more RLPFC activity in Learning phase 2 (.35% vs. .00%,
t(39) = 2.8, p < .05), but more motor activity in Learning phase 3 (.70% vs. 1.03%, t(39) = 3.84,
p < .0005). These differences are predicted from the differing mixes of ACT-R modules involved in
these learning phases.

The transition from Phase 2 to Phase 3 raises questions about the roles of familiarity and recall dur-
ing what we labeled the Encoding stage. Previous research on encoding processes suggests that as
items become more familiar early frontal activation diminishes in strength (Curran, 2000). Such work
agrees with our findings that the involvement of frontal regions during Encoding stage diminishes
with practice. Furthermore, fMRI studies have found reduction in the activation of the left dorsal lat-
eral prefrontal cortex (Reas & Brewer, 2013) and left lateral prefrontal cortex (Cabeza, Locantore, &
Anderson, 2003) as retrieval becomes easier; however, the diverse functions performed by these
regions make it difficult to know the exact role of these regions in memory recall.

As reviewed in the introduction, both Delaney et al. (1998) and Rickard (1997) have proposed mod-
els that involve two learning phases. Rickard and colleagues (Bajic et al., 2011; Bajic & Rickard, 2009;
Rickard, 2004) associated the first phase with computation and the second phase with retrieval. Across
a range of novel tasks, researchers have shown that fitting calculation and retrieval to separate power
functions provides a better model of individual skill acquisition than fitting a single function across
both strategies (Bajic et al., 2011; Bajic & Rickard, 2009; Delaney et al., 1998; Rickard, 1997, 2004).
We found relatively weak learning in the first phase and no learning in the second or third phases.
The ACT-R theory would predict second-phase speedup as the retrieval was practiced, but not speed
up in the third phase. The ACT-R model of phase 2 would suggest however, that retrieval of the answer
is only about 18% of the solution time in the second learning phase (Fig. 9), and most of the time is
taken up in parsing the problem and executing the answer. The major speedup after entering Learning
phase 2 comes from the later transition to Learning phase 3. It is possible that the evidence seen in
these previous efforts for second phase power-law learning could really have reflected this third phase
transition.

Like previous work on understanding the learning processes driving skill acquisition (Bajic et al.,
2011; Bajic & Rickard, 2009; Haider & Frensch, 2002; Heathcote et al., 2000; Myung et al., 2000) our
effort has focused on following the trajectory of individual items. If these items are going throughmul-
tiple phases rather than a continuous speed up, the challenge becomes identifying the phase a problem
is in on a particular trial. Past efforts have relied on measurements like subject reports to make the dis-
tinction between calculation and retrieval (Rickard, 2004).While participants probably have some abil-
ity to identify when they are engaged in an activity like repetitive addition, we suspect that it is largely
beyond introspective powers to discriminate between retrieval and direct recognition. Adding imaging
data to latency data facilitatesmaking such discrimination; however, whatever the sources of evidence,
one cannot know with certainty what phase a problem is in on a particular trial. We gained evidence
about the underlying phases by aggregating the evidence produced by our different models and mea-
sures across problems (which is quite different than averaging the data across problems). Future
research on skill acquisition would benefit from considering the changes in information processing
involved in practicing a task alongside questions of individual and item level differences.

In addition to making advances in the understanding of skill acquisition, this work also puts forth a
method for more thoroughly studying the neural basis of skill acquisition. Prior work studying practice
effects on brain activation has been frequently limited to pre- and post-training study designs, and
consequently the resulting theories and models have focused on the distinction between static cogni-
tive states (Chein & Schneider, 2005; Petersen et al., 1998; Schneider & Chein, 2003). While these mod-
els are not necessarily counter to the ACT-R model which informed this study, they do not focus on the
finer-grain analysis that we use to consider the impact of practice on each trial. Future work would
benefit from using the bottom-up and top-down approaches discussed in this paper to better under-
stand how learning changes cognition and neural activation. Building and testing theories to describe
the correspondence between these changes is important piece in the larger puzzle of understanding
the neural basis of cognition.
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While our results are specific to the current task, they can be seen as part of a movement to replace
the continuous behavioral characterizations that have dominated much of psychology with mixtures
of qualitatively distinct processes. For instance, individual differences that are often measured on con-
tinuous ability scales might reflect different mixtures of distinct processes. There is considerable cur-
rent effort (e.g. Scheibehenne, Rieskamp, & Wagenmakers, 2013) to develop rigorous methods to
identify such qualitative mixtures. Within the context of such efforts, our research can be seen as a
push to elaborate the sequential structure of learning with a similar mixture analysis.
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Appendix A. Mechanical turk experiment

An analysis of the data from our 40 fMRI participants indicated differences in the memorability of
the three repeated problems. Height 4 problems took longer to transition from Learning phase 1 to
Learning phase 2, than either height 3 or height 5 problems. We considered two possible explanations:
(1) participants may develop alternative strategies for solving problems of different heights, or (2) that
the numbers sequences of the height 4 problems were less memorable than the other heights. The
height 3 and height 5 problems both share some resemblance to multiplication facts. For example,
8$5 ¼ 30 which overlaps with 6� 5 ¼ 30 and 9$3 ¼ 24 overlaps with 8� 3 ¼ 24. In order to test these
explanations we ran two studies on Amazon Mechanical Turk in which participants answered
repeated and non-repeated pyramid problems. Although we did not collect demographic information
for this sample of 120 participants, previous mathematical problem solving research (Lee, Betts, &
Anderson, 2015) conducted on Mechanical Turk included a diversity of age (28 years with a standard
deviation of 6) and education (roughly 10% masters, 40% 4-year, 40% 2-year or some college, 10% high
school). In these previous studies the samples about 55% of the participants were male.

Our first study of 20 participants set out to establish whether when given practice on a set of pyra-
mid problems participants recruited fromMechanical Turk, who complete the experiment on comput-
ers in unknown environments, would display the same memorability differences as our sample
collected in the fMRI scanner. The structure of the experiment was nearly identical to the one run
in the fMRI scanner with some slight modifications. First we removed the n-back task separating
the problem solving trials because we were not collecting brain response data. Second, we increased
the number of practice blocks to 9, thus giving participants 42 opportunities to practice the repeated
problems. These problems were interspaced with low-practice items seen 3 times over the course of 9
blocks. Although we could not perform the HSMM–MVPA analysis of this paper on our Mechanical
Turk data set, a repeated-measures ANOVA showed significant differences in response latencies
between problems of the three heights (f(2,38) = 6.95, MES = 118.1, p < .005) with height 4 (M 2.8,
SD 2.7) problems taking on average longer to solve than height 3 (M 2.2, SD 2.1) or height 5 (M 2.7,
SD 3.2). After completion of the study we had participants report if they used any strategies to remem-
ber the problems, or found any formulas to solve the problems. We were interested if the use of alter-
native problem solving strategies may explain the learning differences between the three heights. Five
participants reported devising some type of formula for solving some of the problems. However exam-
ining the distribution of these strategies over height showed formulas were used on 3 height 3 prob-
lems, 5 height 4 problems, and 6 height 5 problems. These results provide little evidence that the
faster learning of height 3 and 5 problems is due to participants developing alternative problem solv-
ing strategies.

http://act-r.psy.cmu.edu/?post_type=publications&amp;p=19047
http://act-r.psy.cmu.edu/?post_type=publications&amp;p=19047


Table A.1
Summary of fixed effects in mixed logit mode (N = 100, BIC = 2180.7).

Predictor Coefficient SE Wald’s Z p-Value

Intercept (Height 3) 1.4 .18 7.5 <.001
Height 4 �.97 .13 �7.3 <.001
Height 5 �.07 .14 �.53 .59
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Our next study of 100 participants investigated the hypothesis that the terms of height 3 and
height 5 problems were more memorable than the terms of height 4 problems. The experiment con-
sisted of 4 blocks, during the memorization period of each block the participant would be shown five
pyramid problems three times each. These problems appeared as full expressions, such as ‘‘8$5 = 30”,
and remain on the screen for 2 s. Participants in this study were not given the introduction explaining
what the $ operator meant, instead they were told that they would be memorizing numerical expres-
sions. After the memorization period, each of the 5 expressions would be presented again, but with the
solution missing (i.e. 8$5) and participants would have to recall the value. To test whether across par-
ticipants the height of the item impacted recall, we ran a mixed logit model using the lmer package in
R (Bates, Maechler, Bolker, & Walker, 2014). We included main effects for height, and random inter-
cept for participant (including random effects for height did not improve model fit). The main effects
of height supported the significant distinction of height 4 from height 3, but no significant distinction
between height 3 and 5 problems (Table A.1).
Appendix B. Upper bounds on the number of apparent regressions by chance

There are 27 trials where the context probability of being in the first learning phase is less than .1
and the signal probability is greater than .9. We can place a bound on how often this would occur by
chance. These 27 trials would have to come from one of two categories:

1. They actually are in Phase 1. There are 3519 trials overall with a context probability of being in
Phase 1 less than .1. These include the 27 trials in question. They have an average context proba-
bility of .0027. Thus, we would expect 3519� :0027 ¼ 9:4 trials actually in Phase 1 when the con-
text probability is less than .1.

2. They are not in Phase 1. There are 246 trials overall with a signal probability of being in the first
learning phase greater than .9 that include these 27 trials. These trials have an average signal prob-
ability of not being in Phase 1 of .0246, implying that no more than 246� :0246 ¼ 6:0 of the 27 tri-
als are not in Phase 1.

Thus, 9:4þ 6:0 ¼ 15:4 is the expected number of trials in the disjunction of being in learning phase
1 with a context probability less than .1 or not in Phase 1 with a signal probability greater .9. This
number is an upper bound on the expected number of trials in the conjunction of these two con-
straints, which is observed to be 27.

There are 68 trials where the contextual probability of being in learning phase 3 is greater than .9
and the signal probability is less than .1. These 68 trials would have to come from one of two
categories:

1. They are not in Phase 3. There are 2257 trials overall with a context probability greater than .9 of
being in the Phase 3 that include the 68 trials. They have an average context probability of .0046 of
not being in Phase 3, implying an expected number of 2257� :0046 ¼ 10:4 trials.

2. They are in Phase 3. There are 995 trials overall with a signal probability of being in the Phase 3 less
than .1 that include these 68 trials. These trials have an average signal probability of being in Phase
3 of .0258, implying an expected number of 995� :0258 ¼ 25:6 trials.
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Thus, the expected number of trials in the disjunction is 10.4 + 25.6 = 36.0 trials while there are
observed 68 trials in the conjunction.
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