
Simple

Task-Actor

Protocol
Vladislav “Dan” Veksler

Collaborators:

Norbou Buchler (ARL)

Troy D. Kelley (ARL)

Christian Lebiere (CMU)

Don Morrison (CMU)

Cleotilde Gonzalez (CMU)

Michael Yu (CMU)

Marshall Scott Poole (UIUC)

Alex Yahja (UIUC)

Tarek Abdelzaher (UIUC)

Eric Avery (ARL)

Sean McGhee (ARL)

ACT-R

model A TASK 1

model B

model C

TASK 2

TASK 3

ACT-R

model A TASK 1

model B

model C

TASK 2

TASK 3

Task development

 How easy will it be to compare model

data with humans?

 How easy will it be to compare model

with other models?

 How easy will it be for somebody else to

run their participants or models on your

task?

Overview

Performance Comparison

 Ideally, model performance is always

contrasted with

 Behavioral data

 Many other computational models of

varying frameworks

 Across multiple tasks

 In reality, this is a very high hanging fruit

WHY

Participant pool

Task Actors

Loc Att Kind Value Color ID

--------- --- ------ ---------- ----- ----------------

(25 25) NEW TEXT “textBox1” BLACK VISUAL-LOCATION0

(35 55) NEW BUTTON “button1” BLACK VISUAL-LOCATION1

(55 55) NEW BUTTON “button2” BLACK VISUAL-LOCATION2

Task Model

≠

Participant pool

Task Actors

Task

ACT-R

Soar

Sigma

PyIBL

…

≠ ≠ ≠ …

≠ ≠ ≠ …

Participant pool

Cross-framework comparison

costs become prohibitive

 Combinatorial explosion

Tasks Actors

Task A ACT-R

Open

Cog

Soar

IBRL

Task B

Task C

…
…

To sum up….

 GUI ≠ API

 graphical task interfaces designed for

humans are rarely machine-readable

 task simulations designed for computational

agents are rarely human-readable

 API1 ≠ API2

 each task simulation employs its own API

 API designed for one agent framework is

rarely readable by another

WHY

practical problem → theoretical implications

Imagine a world where…

 you can connect your model to someone

else's plug-and-play task software

 you can grab someone else's simulation

and replay it in your lab without any non-

standard software

 you can replicate someone else's

experiment results without hassle

 you can connect different cognitive

systems to your task without hassle

The solution

1. A functional-essence approach to task

development

WHAT

task logic API

computational

participant

human

participant

API

to

GUI

The solution

1. A functional-essence approach to task

development

 separation of function from style

WHAT

task logic API

computational

participant

human

participant

API

to

GUI style

function

Function VS Style
<html>
<head><style>
input[type="submit"] {background-

color:#aaccff;border-radius:5px;}
</style></head>
<body>
<table width=100% height=100%><tr

valign=middle><td align=center>
<form style="font-family:tahoma;font-

size:18px;">
5 + 5 = <input>
<input type=submit>
</form>
</td></tr></table>
</body></html>

 Function

 two numbers

 textbox

 submit button

 Style

 spacing and colors

 font-type and size

 button style

Functional-essence approach

to task development

 Function

 8x8 table with

alternating

squares

 6 different

recognizable

piece types

WHAT

 Style

 size and colors

of the board

and squares

 images

representing

each piece

The solution

1. A functional-essence approach to task

development

2. A standard & simple API for function-only

interaction with most task types

WHAT

task logic API

computational

participant

human

participant

API

to

GUI

Simple Task-Actor Protocol

(STAP)

Veksler, V. D., Buchler, N., Lebiere, C., Morrison,
D., & Kelley, T. D. (in press). The
performance comparison problem:
Universal task access for cross-framework
evaluation, Turing tests, grand challenges,
and cognitive decathlons. Biologically
Inspired Cognitive Architectures.

STAP

http://vdv7.github.io/stap/ Collaborators:

Norbou Buchler (ARL)

Troy D. Kelley (ARL)

Christian Lebiere (CMU)

Don Morrison (CMU)

Cleotilde Gonzalez (CMU)

Michael Yu (CMU)

Marshall Scott Poole (UIUC)

Alex Yahja (UIUC)

Tarek Abdelzaher (UIUC)

Eric Avery (ARL)

Sean McGhee (ARL)

Simple Task-Actor Protocol

(STAP)

 Subset of the JSON protocol
 JSON modules in most programming languages

 Task interactions
 Vector graphics and animation

 Varying types of actions (e.g., click, hold-down, type)

 Time
 Faster-than-real-time simulations

 Slower-than-real-time simulations

 Goal and task description
 Machine-readable

 Auto-generated human instructions

STAP

http://vdv7.github.io/stap/

Hello World

STAP

task logic API

computational

participant

human

participant

API

to

GUI

print("Hello World!")

"Hello World!"

(add-text-to-exp-window
"Hello World!")

API to

virtual

display

STAP Style Templates

STAP

task logic STAP

human

participant

API

to

GUI

STAP for ACT-R

 Don Morrison's (CMU)

STAP

task logic STAP

ACT-R

human

participant

API

to

GUI

CL-STAP

PyIBL

STAP interaction/playback

 RedForce task videos

 ACT-R model

 PyIBL agent

 human participant

STAP

C:/Users/vveksler/Dropbox/+main/presentations/stap/stap1-2/IEDtb-actr.webm
C:/Users/vveksler/Dropbox/+main/presentations/stap/stap1-2/IEDtb-actr.webm
C:/Users/vveksler/Dropbox/+main/presentations/stap/stap1-2/IEDtb-actr.webm
C:/Users/vveksler/Dropbox/+main/presentations/stap/stap1-2/IEDtb-ibl.webm
C:/Users/vveksler/Dropbox/+main/presentations/stap/stap1-2/IEDtb-ibl.webm
C:/Users/vveksler/Dropbox/+main/presentations/stap/stap1-2/IEDtb-ibl.webm
C:/Users/vveksler/Dropbox/+main/presentations/stap/stap1-2/IEDtb-human.webm
C:/Users/vveksler/Dropbox/+main/presentations/stap/stap1-2/3frames.html

STAP task examples

 http://vdv7.github.io/stap/

STAP

STAP task examples

 http://vdv7.github.io/stap/

STAP

STAP task examples

STAP

Robot navigation:

 human vs instance-based learning agent

CL-STAP

Serialized task-architecture

interactions

SO WHAT

ACT-R model A
TASK 1

(python)

model B

model C

TASK 2

(JAVA)

TASK 3

(LISP)

Advancing the science

 Pace

 experiments are easier to develop (no GUI
development, API only)

 simulations are easier to run (one-time cost
to set up framework for API)

 Persistence

 enable connection to multiple tasks

 Scale

 separation of model/architecture from task
enables scaling up of task and number of
connected models (24 million?)

SO WHAT

Computational Cognition

Competitions

 Competitions and Grand Challenges
 primary means to motivate and galvanize the

research community to solve ambitious scientific
and engineering challenges

 Developing a new task for a competition is
not trivial
 API, documentation, distribution/connection

framework, human data

 No reuse of task interfacing between
competitions
 Increases engineering costs for participants
 Reduces researcher buy-in

SO WHAT

Other approaches

 web-apps (HTML5)

 visual (pixel-by-pixel)

 real-world (robotics)

 physical simulations (virtual world API's)

 task domain –specific API's (e.g. VGML)

 architecture-specific API's (e.g. JNI)

WHY NOT

QUESTIONS?

http://vdv7.github.io/stap

