

Holographic Declarative Memory:

A Scalable Memory Module for ACT-R

- Holographic Declarative Memory (**HDM**) is a new module for ACT-R, implemented for Python ACT-R (Stewart & West, 2006).
- HDM is an alternative to ACT-R's Declarative Memory (DM).
- HDM replaces DM's symbols with *holographic vectors* (Plate, 1995) and implements a holographic theory of memory based on **DSHM** (Rutledge-Taylor, Kelly, West, & Pyke, 2014) and **BEAGLE** (Jones & Mewhort, 2007).

Holographic Declarative Memory

- Symbolic Architectures (e.g., ACT-R DM)
 - concepts and relations between concepts represented as text
 - lists of slot-value pairs
 - "name:cat type:animal look:furry"
- Vector Symbolic Architectures (e.g. HDM)
 - concepts and relations between concepts represented as vectors
 - "name:cat type:animal look:furry"
 - = [0.0916, 0.5175, -0.8271, 0.1983, 0.0197 ...]
- Connectionist / Neural Network Architectures
 - neurons and neural connectivity represented by vectors of patterns of activation and matrices of connection weights

Architectures

- Vectors can be understood as describing coordinates in a high-dimensional space
- Points close in space have similar meaning
- Allows for shades of meaning and partial matching

astronomy physics psycillity scientific mathematics technology scientists

research

Vector space

- Holographic vectors retain the expressive power of symbols
 - Compactly store complicated, recursive relations between ideas
- Holographic vectors have a similarity metric, allowing for...
 - Shades of meaning and fuzzy / partial matching
 - Lossy compression for modeling forgetting
 - Fault tolerance
- HDM can enhance ACT-R's ability to:
 - Scale to big data / model long-term learning
 - Learn association strengths from experience
 - Provide a bridge to neural realization

Why use holographic vectors?

- Holographic models of memory in the literature
- Case Study: The Fan Effect
 - What is the fan effect?
 - The ACT-R DM model of the fan effect
 - The HDM model of the fan effect
- Results: How does DM and HDM compare?
- Analysis: Why does HDM work?
- Conclusions / future work

In what follows ...

- Explain and predict a variety of human **memory** phenomena
 - Fan effect (Rutledge-Taylor et al., 2014)
 - Serial recall and free recall of lists (Franklin & Mewhort, 2015)
 - Implicit learning (Jamieson & Mewhort, 2011)
- Analogical reasoning
 - (Plate, 2000; Eliasmith & Thagard, 2001)
- Simple problem-solving tasks
 - (Eliasmith, 2013; Rutledge-Taylor et al., 2014)
- SPAUN, the world's largest functional brain model
 - (Eliasmith, 2013)
- **BEAGLE**, a model of learning **word meaning** from a corpus
 - (Jones & Mewhort, 2007)

Holographic memory in the literature

astronomy physics psycifics scientific mathematics technology sciencentists

financial

research

savings finance invested loaned borrow lend invest invest spend save

- Takes a corpus as input
- Produces a set of vectors representing word meaning
- Similarities between vectors produce clusters of topic and part of speech
- Vector similarities predict semantic priming data

BEAGLE (Jones & Mewhort, 2007)

- Applies BEAGLE to non-lingusitic stimuli
- Models two-term and three-term fan effect
- Models rock-paper-scissors play
- Effective recommender system for movies or research papers

DSHM (Rutledge-Taylor et al., 2014)

- ACT-R describes mental processes and brain areas associated with them, but does not address the question of how those mental processes are carried out at the neural level.
- Holographic vectors can be implemented in realistic neural models.
- HDM can be straightforwardly implemented in the Neural Engineering Framework (Eliasmith, 2013), a theory of neurocomputation.

Neural realization (Eliasmith, 2013)

- "the hippy is in the park"
- "the hippy is in the bank"

fan(hippy) = 3

• "the hippy is in the store"

fan(store) = 2

• "the officer is in the store"

fan(officer) = 1

Fan Effect (Anderson, 1974)

- participants are **slower** to recognize or reject sentences that contain concepts that have a **higher** *fan*.
- availability of information in memory with respect to a cue is related to the **probability** of that piece of information conditional on the cue.

fan(hippy) = 3

fan(store) = 2

fan(officer) = 1

Fan Effect (Anderson, 1974)

- sentences are represented as person, location chunks in DM
- when the model is cued, activation spreads to chunks that share concepts with the cue

• DM retrieves most active chunk

Declarative Memory (DM)

ACT-R DM model

• Reaction time *T* is calculated as:

$$T = I + Fe^{-A_i}$$

• Activation A_i of chunk *i* is calculated as:

$$A_i = B_i + \sum_{j=1}^n W_j S_{ji}$$

• Association strength S_{ji} with concept j is:

$$S_{ji} = \mathbf{S} + \ln(\mathbf{P}(i/j))$$

• Where P(i/j) = 1 / fan of j

ACT-R DM model

• Anderson and Reder's (1999) model is, in milliseconds:

$$T = 233(f_{\text{person}}f_{\text{place}})^{1/3} + 845$$

• where f_{person} is the person's fan and f_{place} is the place's fan

ACT-R DM model (Anderson & Reder, 1999)

For each task symbol (or concept) there are two vectors:

environmental vector

• a random vector that stands for what the symbol looks like **memory vector**

• a continuously updated vector of the symbol's associations

Additionally, there is one special vector used in all associations:

placeholder vector Φ

- can be read as ?, i.e., the value that we want to retrieve.
- acts as a stand-in for the purposes of storage and retrieval.

HDM model

* circular convolution is used to create associations between symbols in a sequence.

+ addition is used to add new associations to a memory vector

 \mathbf{P}_{before} is a permutation indicating that the permuted vector comes earlier in a sequence.

 \mathbf{P}_{slot} is a permutation indicating that the permuted vector is the value associated with the slot *slot*.

Holographic vectors

"the hippy is in the park"

 $\mathbf{m}_{hippy (updated)} = \mathbf{m}_{hippy} + (\mathbf{P}_{before} \mathbf{\Phi})^* \mathbf{e}_{park}$ "what came before park?" $\mathbf{m}_{park (updated)} = \mathbf{m}_{park} + (\mathbf{P}_{before} \mathbf{e}_{hippy})^* \mathbf{\Phi}$ "what came after hippy?"

To **encode** an association in HDM, memory vectors are updated with all **questions** to which the memory vector's **concept** is an appropriate answer given HDM's experiences.

Encoding associations

To test if "the **hippy** is in the **park**" is in memory, two cues are constructed:

 $\mathbf{q}_{\text{hippy}?} = (\mathbf{P}_{\text{before }} \mathbf{e}_{\text{hippy}})^* \mathbf{\Phi}$

"what came after hippy?"

 $\mathbf{q}_{\text{?park}} = (\mathbf{P}_{\text{before}} \mathbf{\Phi})^* \mathbf{e}_{\text{park}}$

"what came before park?"

The memory vectors most similar to these cues are retrieved.

Similarity is measured as the cosine of the angle between vectors.

Retrieving associations

Activation is calculated as the **mean** of the **cosines** between each cue and the memory vector substituted out to create the cue:

 $A = 0.5 \operatorname{cosine}(\mathbf{q}_{hippy?}, \mathbf{m}_{park}) + 0.5 \operatorname{cosine}(\mathbf{q}_{?park}, \mathbf{m}_{hippy})$

Reaction time is computed using DM's reaction time equation:

 $T = I + Fe^{-A_i}$

Parameters *I* and *F* set to the values used by Anderson and Reder's (1999) ACT-R DM model.

Activation & Reaction Time

ACT-R DM vs. HDM

Fan in Vector Space

- Where f is the fan, the cosine between a cue and a memory vector is f^{-1/2} if the vectors are perfectly orthogonal, or approximates f^{-1/2} for the random vectors used by HDM.
- The cosine in HDM approximates the square-root of the probability only when the events are **equiprobable**.
- For *n* events with frequencies v_1 to v_n , cosine of event *i* is:

$$cosine = \frac{v_i}{\sqrt{v_1^2 + ... + v_i^2 + ... v_n^2}}$$
Probability in Vector Space

We substitute **HDM** for **DM** in the ACT-R model of the fan effect and find that *without changing any parameters* HDM provides a good fit to the **fan effect**.

Both **DM** and **HDM** models of the fan effect claim that reaction time is a function of **conditional probability**. The vector algebra of **HDM** computes an estimate of conditional probability.

We can have HDM mimic DM's fan effect model **exactly** if we substitute **squared cosines** for S_{ji} instead of substituting *A* for the mean cosine.

Conclusions

HDM, by virtue of being a holographic model, has a number of capabilities for which DM is less suited:

- learning associations between concepts without having association strengths set by the modeler
- analogical or case-based reasoning
- performing tasks that require large amounts of knowledge

Conclusions

A fully vector-symbolic ACT-R would support:

- implementing partial / fuzzy matching in procedural memory
- interference in the buffers
- interfacing with outputs from a perceptual system (e.g., a deep belief network)
- being re-described at the level of neural circuitry

Future work

- Anderson, J. R. (1974). Retrieval of propositional information from long-term memory. *Cognitive Psychology*, *6*, 451-474.
- Anderson, J. R., & Reder, L. M. (1999). The fan effect: New results and new theories. *Journal of Experimental Psychology: General*, 128, 186-197.
- Eliasmith, C. (2013). *How to build a brain: A neural architecture for biological cognition*. Oxford University Press.
- Eliasmith, C., & Thagard, P. (2001). Integrating structure and meaning: a distributed model of analogical mapping. *Cognitive Science*, *25*, 245-286.
- Franklin, D. R. J., & Mewhort, D. J. K. (2015). Memory as a hologram: An analysis of learning and recall. *Canadian Journal of Experimental Psychology*, 69, 115-135.
- Jamieson, R. K., & Mewhort, D. J. K. (2011). Grammaticality is inferred from global similarity: A reply to Kinder (2010). *The Quarterly Journal of Experimental Psychology*, 64, 209-216. doi: 10.1080/17470218.2010.537932
- Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order information in a composite holographic lexicon. *Psychological Review*, *114*, 1-37.

References

- Plate, T. A. (1995). Holographic reduced representations. *IEEE Transactions on Neural Networks*, 6, 623–641.
- Plate, T. A. (2000). Analogy retrieval and processing with distributed vector representations. *Expert Systems: The International Journal of Knowledge Engineering and Neural Networks*, 17, 29-40. doi: 10.1111/1468-0394.00125
- Rutledge-Taylor, M. F., Pyke, A., West, R. L., & Lang, H. (2010). Modeling a three term fan effect. *Proceedings* of the 10th International Conference on Cognitive Modeling, 211-216.
- Rutledge-Taylor, M. F., Vellino, A., & West, R. L. (2008). A holographic associative memory recommender system, *Proceedings of the Third International Conference on Digital Information Management*, 87-92.
- Rutledge-Taylor, M. F., & West R. L. (2008). Modeling the fan-effect using dynamically structured holographic memory. *Proceedings of the 30th Annual Conference of the Cognitive Science Society*, 385-390.
- Rutledge-Taylor, M. F., Kelly, M. A., West, R. L., & Pyke, A. A. (2014). Dynamically structured holographic memory. *Biologically Inspired Cognitive Architectures*, 9, 9-32.
- Stewart, T. C., & West, R. L. (2006). Deconstructing ACT-R. In *Proceedings of the Seventh International Conference on Cognitive Modeling* (pp. 298-303). Trieste, Italy.

References