
Two methods for optimising
cognitive model parameters

David Peebles

—

9th August 2016

The problem

I Searching parameter spaces can be laborious and time
consuming – particularly if done iteratively by hand

I It’s difficult to know if you have an optimal solution
I Worse when model has several interacting parameters, is

non-differentiable, non-continuous, non-linear, stochastic, or
has many local optima.

I Guilt and shame < boredom and frustration.

One solution, two methods

I Use a population of models to explore the parameter space.
I Differential evolution (DE)

I Genetic algorithm for multidimensional real-valued functions.
I Ideal for optimising models with relatively few parameters or

short run times on a single computer.

I High-throughput computing with HTCondor
I Open source software for managing job scheduling on

computer clusters or cycle scavenging idle computers.
I Ideal for larger, more complex models or when simulating the

behaviour of many participants.
I Used by many universities and easy to set up on local

networks (or so I’m told).

Differential evolution

I An evolutionary strategy for real numbers used for
multidimensional numerical optimisation [2, 3].

I Attractions:

- Simplicity of the algorithm
- Only three control parameters
- Fast, accurate, and robust performance
- Wide applicability

I Control parameters:

NP the population size
F a scale factor applied to the mutation process
Cr a constant that regulates the crossover process

The DE algorithm in a nutshell

DE applies repeated cycles of mutation, recombination, and
selection on an initial, randomly generated population of vectors to
create a single vector that produces the best solution to a problem.

RecombinationInitialisation Mutation Selection

Initialisation

RecombinationInitialisation Mutation Selection

I Create a population of real-valued vectors – one dimension
for each of the model parameters to be optimised.

I Initialise vectors with uniformly distributed random numbers
within maximum and minimum bounds set for each dimension.

(:rt −5.0 −0.01) (:lf 0.1 1.5) (:ans 0.1 0.8)

I To create the next population of vectors, each vector i in the
current population is selected in sequence, designated as the
target vector, and subjected to a competitive process. . .

Mutation

RecombinationInitialisation Mutation Selection

I Mutation is the weighted difference between two vectors in the
current population.

I A mutated donor vector is created by randomly selecting three
unique vectors, j, k and l from the population and adding the
difference between j and k (scaled by the F parameter) to l.

}=
j

k

l

}=
Donor vector

Sum

(weighted by F)
Difference

I This ensures that differences in the scale and sensitivity of
different vector parameters are taken into account and that
the search space is explored equally on all dimensions.

Recombination

RecombinationInitialisation Mutation Selection

I Cross the donor vector with the target vector to create the trial
vector to allow successful solutions from the previous
generation to be incorporated into the trial vector.

}=
Trial vector

Crossover

Donor

vector

vector

Target

I Achieved by series of Bernoulli trials which determine for each
dimension which parent will donate its value.

I Moderated by the crossover rate parameter Cr (0≤ Cr ≤ 1.).

Selection

RecombinationInitialisation Mutation Selection

I Run the model with the parameter values from the trial vector.
I If fitnesstrial ≥ fitnesstarget replace target vector with trial vector

in next generation, else retain target vector.
I Repeat for each vector in the current population until the next

population is created and the evolutionary process continues
for a user-defined number of cycles.

I Retain vector with highest fitness in each population.
I Winning vector in the final population is considered the best

solution to the problem.

Paired Associate model example
1. Load (a) ACT-R, (b) DE code file, and (c) the fan effect model.

2. Modify the output function to just return one correlation.

3. Define a function to run the task suppressing the model output
and any warnings resulting from poor parameter choices.

4. Specify the three parameters to adjust with their ranges and
use the default DE configuration.

(defun output-data (data n)
(let ((probability (mapcar (lambda (x) (/ (first x) n)) data))

(latency (mapcar (lambda (x) (/ (or (second x) 0) n)) data)))
;; (correlation latency *paired-latencies*)

(correlation probability *paired-probability*)))

(defun run-paired-with-no-output ()
(let ((*standard-output* (make-string-output-stream)))

(suppress-warnings (paired-experiment 100))))

(optim ’run-paired-with-no-output ’((:rt -5.0 -0.01) (:lf 0.1 1.5) (:ans 0.1 0.8)))

HTCondor

I DE useful for models with relatively few parameters or short
run times on a single computer.

I DE too slow for large, complex models or when simulating the
behaviour of many participants.

HTCondor Pool

HPC Resources
Cloud Resources

HTCondor
 Job
 Manager

Users

I Run a population of models over a network using HTCondor.
I HTCondor – open source, cross-platform software system for

managing and scheduling tasks over computer networks [1].

Running ACT-R models on HTCondor

1. Modify your model to allocate random values to parameters.

2. Create a submit description file specifying job details
(executable, platform, the model files, commands etc.).

requirements =(OpSys == “WINNT61” && Arch == “INTEL”) ‖‖
(OpSys == “WINDOWS” && Arch == “INTEL”) ‖‖
(OpSys == “WINDOWS” && Arch == “X86 64”))

executable = actr-s-64.exe
arguments = “-l ’paired.lisp’ -e ’(collect-data 20)’ -e ’(quit)’ ”
transfer executable = ALWAYS
transfer input files = paired.lisp

output = out.stdout.$(Cluster).$(Process)
error = out.err.$(Cluster).$(Process)
log = out.clog.$(Cluster).$(Process)

queue 100

Random number generation

I A potential problem arises with how the pseudorandom
number generator (PRNG) seed is set.

I Each model instance must be initialised with a unique seed.
I Many Lisps (and the ACT-R random module) use the

computer’s clock to generate seed. Problem if different
instances are given the same clock time.

I To avoid this, use an ACT-R PRNG that doesn’t using the
system clock, uses a random number generated from CCL
(the Lisp used to create the MS Windows standalone ACT-R).

I This method is employed in a new ACT-R
create-random-module which is loaded prior to loading the
model file.

Why not use MindModeling@Home?

I NOT a toothbrush thing
I MAYBE a lack of knowledge thing
I MAYBE a World Community Grid thing (Zika, cancer cures).
I Some models are small/trivial
I Speed, convenience and flexibility

Try them out

Code and instructions for using both methods using the paired
associate model from tutorial unit 4.

I DE: https://github.com/peebz/actr-paired-de
I HTCondor: https://github.com/peebz/actr-paired-htc

Thanks as always to Dan Bothell for his patience and advice.

References I

M. J. Litzkow, M. Livny, and M. W. Mutka. ‘Condor—A Hunter
of Idle Workstations’. In: Proceedings of the 8th International
Conference on Distributed Computing Systems. IEEE. June
1988, pp. 104–111.

R. Storn and K. Price. Differential evolution: A simple and
efficient adaptive scheme for global optimization over
continuous spaces. Tech. rep. TR-95-012. Berkeley, CA: ICSI
Berkeley, 1995.

R. Storn and K. Price. ‘Differential evolution: A simple and
efficient heuristic for global optimization over continuous
spaces’. In: Journal of global optimization 11.4 (1997),
pp. 341–359.

